Spaces:
Runtime error
Runtime error
update model to reflect dev changes
Browse files
app.py
CHANGED
@@ -8,31 +8,33 @@ from model import *
|
|
8 |
|
9 |
# # TODO:
|
10 |
# - Reformat the model introduction
|
11 |
-
# - Center the images using the 3 column method
|
12 |
# - Make the iterative text generation
|
13 |
|
14 |
def gen_show_caption(sub_prompt=None, cap_prompt = ""):
|
15 |
with st.spinner("Generating Caption"):
|
16 |
-
|
17 |
-
st.write("Without a specified subreddit we default to /r/pics")
|
18 |
-
subreddit, caption = virtexModel.predict(image_dict, sub_prompt=sub_prompt, prompt = cap_prompt)
|
19 |
st.markdown(
|
20 |
f"""
|
21 |
<style>
|
22 |
red{{
|
23 |
color:#c62828
|
24 |
}}
|
|
|
|
|
|
|
25 |
mono{{
|
26 |
font-family: "Inconsolata";
|
27 |
}}
|
28 |
</style>
|
29 |
|
30 |
-
### <red> r/{subreddit} </red>
|
31 |
""",
|
32 |
unsafe_allow_html=True)
|
33 |
|
|
|
34 |
|
35 |
-
|
|
|
36 |
st.sidebar.markdown(
|
37 |
"""
|
38 |
### Image Captioning Model from VirTex trained on RedCaps
|
@@ -41,20 +43,15 @@ st.sidebar.markdown(
|
|
41 |
You can also generate captions as if they are from specific subreddits,
|
42 |
as if they start with a particular prompt, or even both.
|
43 |
|
44 |
-
Share your results on twitter with #redcaps or with a friend
|
45 |
"""
|
46 |
)
|
|
|
47 |
|
48 |
with st.spinner("Loading Model"):
|
49 |
virtexModel, imageLoader, sample_images, valid_subs = create_objects()
|
50 |
|
51 |
|
52 |
-
# staggered = st.sidebar.checkbox("Iteratively Generate Captions")
|
53 |
-
|
54 |
-
# if staggered:
|
55 |
-
# pass
|
56 |
-
# else:
|
57 |
-
|
58 |
select_idx = None
|
59 |
|
60 |
st.sidebar.title("Select a sample image")
|
@@ -102,38 +99,46 @@ cap_prompt = st.sidebar.text_input(
|
|
102 |
|
103 |
_ = st.sidebar.button("Regenerate Caption")
|
104 |
|
105 |
-
advanced = st.sidebar.checkbox("Advanced Options")
|
106 |
-
num_captions=1
|
107 |
-
if advanced:
|
108 |
-
num_captions = st.sidebar.select_slider("Number of Captions to Predict", options=[1,2,3,4,5], value=1)
|
109 |
-
nuc_size = st.sidebar.slider("Nucelus Size:", min_value=0.0, max_value=1.0, value=0.8, step=0.05)
|
110 |
-
virtexModel.model.decoder.nucleus_size = nuc_size
|
111 |
|
112 |
-
|
113 |
-
|
|
|
|
|
114 |
|
115 |
-
|
116 |
-
image_file = sample_image
|
117 |
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
|
126 |
-
|
127 |
|
128 |
-
|
129 |
|
130 |
|
131 |
-
|
132 |
|
133 |
-
|
134 |
|
|
|
135 |
show = st.image(show_image)
|
136 |
-
show.image(show_image
|
137 |
|
|
|
|
|
138 |
for i in range(num_captions):
|
139 |
-
gen_show_caption(sub, imageLoader.text_transform(cap_prompt))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
# # TODO:
|
10 |
# - Reformat the model introduction
|
|
|
11 |
# - Make the iterative text generation
|
12 |
|
13 |
def gen_show_caption(sub_prompt=None, cap_prompt = ""):
|
14 |
with st.spinner("Generating Caption"):
|
15 |
+
subreddit, caption = virtexModel.predict(image_dict, sub_prompt=sub_prompt, prompt=cap_prompt)
|
|
|
|
|
16 |
st.markdown(
|
17 |
f"""
|
18 |
<style>
|
19 |
red{{
|
20 |
color:#c62828
|
21 |
}}
|
22 |
+
blue{{
|
23 |
+
color:#2a72d5
|
24 |
+
}}
|
25 |
mono{{
|
26 |
font-family: "Inconsolata";
|
27 |
}}
|
28 |
</style>
|
29 |
|
30 |
+
### <red> r/{subreddit} </red> <blue> {cap_prompt} </blue> {caption}
|
31 |
""",
|
32 |
unsafe_allow_html=True)
|
33 |
|
34 |
+
_, center, _ = st.columns([1,8,1])
|
35 |
|
36 |
+
with center:
|
37 |
+
st.title("Image Captioning Demo from RedCaps")
|
38 |
st.sidebar.markdown(
|
39 |
"""
|
40 |
### Image Captioning Model from VirTex trained on RedCaps
|
|
|
43 |
You can also generate captions as if they are from specific subreddits,
|
44 |
as if they start with a particular prompt, or even both.
|
45 |
|
46 |
+
Share your results on twitter with #redcaps or with a friend*.
|
47 |
"""
|
48 |
)
|
49 |
+
# st.markdown(footer,unsafe_allow_html=True)
|
50 |
|
51 |
with st.spinner("Loading Model"):
|
52 |
virtexModel, imageLoader, sample_images, valid_subs = create_objects()
|
53 |
|
54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
select_idx = None
|
56 |
|
57 |
st.sidebar.title("Select a sample image")
|
|
|
99 |
|
100 |
_ = st.sidebar.button("Regenerate Caption")
|
101 |
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
+
st.sidebar.write("Advanced Options:")
|
104 |
+
num_captions = st.sidebar.select_slider("Number of Captions to Predict", options=[1,2,3,4,5], value=1)
|
105 |
+
nuc_size = st.sidebar.slider("Nucelus Size:\nLarger values lead to more diverse captions", min_value=0.0, max_value=1.0, value=0.8, step=0.05)
|
106 |
+
virtexModel.model.decoder.nucleus_size = nuc_size
|
107 |
|
108 |
+
image_file = sample_image
|
|
|
109 |
|
110 |
+
# LOAD AND CACHE THE IMAGE
|
111 |
+
if uploaded_image is not None:
|
112 |
+
image = uploaded_image
|
113 |
+
elif select_idx is None and 'image' in st.session_state:
|
114 |
+
image = st.session_state['image']
|
115 |
+
else:
|
116 |
+
image = Image.open(image_file)
|
117 |
|
118 |
+
image = image.convert("RGB")
|
119 |
|
120 |
+
st.session_state['image'] = image
|
121 |
|
122 |
|
123 |
+
image_dict = imageLoader.transform(image)
|
124 |
|
125 |
+
show_image = imageLoader.show_resize(image)
|
126 |
|
127 |
+
with center:
|
128 |
show = st.image(show_image)
|
129 |
+
show.image(show_image)
|
130 |
|
131 |
+
if sub is None and imageLoader.text_transform(cap_prompt) is not "":
|
132 |
+
st.write("Without a specified subreddit we default to /r/pics")
|
133 |
for i in range(num_captions):
|
134 |
+
gen_show_caption(sub, imageLoader.text_transform(cap_prompt))
|
135 |
+
|
136 |
+
st.sidebar.markdown(
|
137 |
+
"""
|
138 |
+
*Please note that this model was explicitly not trained on images of people, and as a result is not designed to caption images with humans.
|
139 |
+
|
140 |
+
This demo accompanies our paper RedCaps.
|
141 |
+
|
142 |
+
Created by Karan Desai, Gaurav Kaul, Zubin Aysola, Justin Johnson
|
143 |
+
"""
|
144 |
+
)
|
model.py
CHANGED
@@ -92,7 +92,6 @@ class VirTexModel():
|
|
92 |
subreddit_tokens = torch.cat(
|
93 |
[
|
94 |
subreddit_tokens,
|
95 |
-
torch.tensor([self.tokenizer.token_to_id("[SEP]")], device=self.device).long(),
|
96 |
cap_tokens
|
97 |
])
|
98 |
|
@@ -118,11 +117,14 @@ class VirTexModel():
|
|
118 |
subreddit = "".join(subreddit.split())
|
119 |
rest_of_caption = rest_of_caption.strip()
|
120 |
else:
|
121 |
-
subreddit, rest_of_caption = "", caption
|
|
|
|
|
|
|
|
|
122 |
|
123 |
is_valid_subreddit = subreddit in self.valid_subs
|
124 |
|
125 |
-
|
126 |
return subreddit, rest_of_caption
|
127 |
|
128 |
def download_files():
|
@@ -147,3 +149,36 @@ def create_objects():
|
|
147 |
valid_subs.insert(0, None)
|
148 |
return virtexModel, imageLoader, sample_images, valid_subs
|
149 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
subreddit_tokens = torch.cat(
|
93 |
[
|
94 |
subreddit_tokens,
|
|
|
95 |
cap_tokens
|
96 |
])
|
97 |
|
|
|
117 |
subreddit = "".join(subreddit.split())
|
118 |
rest_of_caption = rest_of_caption.strip()
|
119 |
else:
|
120 |
+
subreddit, rest_of_caption = "", caption.strip()
|
121 |
+
|
122 |
+
# split prompt for coloring:
|
123 |
+
if prompt is not "":
|
124 |
+
_, rest_of_caption = caption.split(prompt.strip())
|
125 |
|
126 |
is_valid_subreddit = subreddit in self.valid_subs
|
127 |
|
|
|
128 |
return subreddit, rest_of_caption
|
129 |
|
130 |
def download_files():
|
|
|
149 |
valid_subs.insert(0, None)
|
150 |
return virtexModel, imageLoader, sample_images, valid_subs
|
151 |
|
152 |
+
footer="""<style>
|
153 |
+
a:link , a:visited{
|
154 |
+
color: blue;
|
155 |
+
background-color: transparent;
|
156 |
+
text-decoration: underline;
|
157 |
+
}
|
158 |
+
|
159 |
+
a:hover, a:active {
|
160 |
+
color: red;
|
161 |
+
background-color: transparent;
|
162 |
+
text-decoration: underline;
|
163 |
+
}
|
164 |
+
|
165 |
+
.footer {
|
166 |
+
position: fixed;
|
167 |
+
left: 0;
|
168 |
+
bottom: 0;
|
169 |
+
width: 100%;
|
170 |
+
background-color: white;
|
171 |
+
color: black;
|
172 |
+
text-align: center;
|
173 |
+
}
|
174 |
+
</style>
|
175 |
+
<div class="footer">
|
176 |
+
<p>
|
177 |
+
*Please note that this model was explicitly not trained on images of people, and as a result is not designed to caption images with humans.
|
178 |
+
|
179 |
+
This demo accompanies our paper RedCaps.
|
180 |
+
|
181 |
+
Created by Karan Desai, Gaurav Kaul, Zubin Aysola, Justin Johnson
|
182 |
+
</p>
|
183 |
+
</div>
|
184 |
+
"""
|