Spaces:
Runtime error
Runtime error
example
Browse files- .gitignore +1 -0
- model.py +89 -0
- requirements.txt +19 -0
.gitignore
CHANGED
@@ -3,3 +3,4 @@
|
|
3 |
*.yaml
|
4 |
*ipynb_checkpoints
|
5 |
__pycache__
|
|
|
|
3 |
*.yaml
|
4 |
*ipynb_checkpoints
|
5 |
__pycache__
|
6 |
+
*.json
|
model.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from huggingface_hub import hf_hub_url, cached_download
|
2 |
+
from PIL import Image
|
3 |
+
import os
|
4 |
+
import json
|
5 |
+
import glob
|
6 |
+
import random
|
7 |
+
from typing import Any, Dict, List
|
8 |
+
import torch
|
9 |
+
import torchvision
|
10 |
+
|
11 |
+
import wordsegment as ws
|
12 |
+
|
13 |
+
from virtex.config import Config
|
14 |
+
from virtex.factories import TokenizerFactory, PretrainingModelFactory
|
15 |
+
from virtex.utils.checkpointing import CheckpointManager
|
16 |
+
|
17 |
+
CONFIG_PATH = "config.yaml"
|
18 |
+
MODEL_PATH = "checkpoint_last5.pth"
|
19 |
+
VALID_SUBREDDITS_PATH = "subreddit_list.json"
|
20 |
+
SAMPLES_PATH = "./samples/*.jpg"
|
21 |
+
|
22 |
+
class ImageLoader():
|
23 |
+
def __init__(self):
|
24 |
+
self.transformer = torchvision.transforms.Compose([torchvision.transforms.Resize(256),
|
25 |
+
torchvision.transforms.CenterCrop(224),
|
26 |
+
torchvision.transforms.ToTensor()])
|
27 |
+
def load(self, im_path, prompt = ""):
|
28 |
+
im = torch.FloatTensor(self.transformer(Image.open(im_path))).unsqueeze(0)
|
29 |
+
return {"image": im, "decode_prompt": prompt}
|
30 |
+
def transform(self, image, prompt = ""):
|
31 |
+
im = torch.FloatTensor(self.transformer(image)).unsqueeze(0)
|
32 |
+
return {"image": im, "decode_prompt": prompt}
|
33 |
+
|
34 |
+
class VirTexModel():
|
35 |
+
def __init__(self):
|
36 |
+
self.config = Config(CONFIG_PATH)
|
37 |
+
ws.load()
|
38 |
+
self.device = 'cpu'
|
39 |
+
self.tokenizer = TokenizerFactory.from_config(self.config)
|
40 |
+
self.model = PretrainingModelFactory.from_config(self.config).to(self.device)
|
41 |
+
CheckpointManager(model=self.model).load("./checkpoint_last5.pth")
|
42 |
+
self.model.eval()
|
43 |
+
self.valid_subs = json.load(open(VALID_SUBREDDITS_PATH))
|
44 |
+
|
45 |
+
def predict(self, image_dict, sub_prompt = None, prompt = ""):
|
46 |
+
if sub_prompt is None:
|
47 |
+
subreddit_tokens = torch.tensor([self.model.sos_index], device=self.device).long()
|
48 |
+
else:
|
49 |
+
subreddit_tokens = torch.tensor([self.tokenizer.token_to_id(sub_prompt)], device=self.device).long()
|
50 |
+
predictions: List[Dict[str, Any]] = []
|
51 |
+
|
52 |
+
is_valid_subreddit = False
|
53 |
+
subreddit, rest_of_caption = "", ""
|
54 |
+
while not is_valid_subreddit:
|
55 |
+
|
56 |
+
with torch.no_grad():
|
57 |
+
caption = self.model(image_dict)["predictions"][0].tolist()
|
58 |
+
|
59 |
+
if self.tokenizer.token_to_id("[SEP]") in caption:
|
60 |
+
sep_index = caption.index(self.tokenizer.token_to_id("[SEP]"))
|
61 |
+
caption[sep_index] = self.tokenizer.token_to_id("://")
|
62 |
+
|
63 |
+
caption = self.tokenizer.decode(caption)
|
64 |
+
|
65 |
+
if "://" in caption:
|
66 |
+
subreddit, rest_of_caption = caption.split("://")
|
67 |
+
subreddit = "".join(subreddit.split())
|
68 |
+
rest_of_caption = rest_of_caption.strip()
|
69 |
+
else:
|
70 |
+
subreddit, rest_of_caption = "", caption
|
71 |
+
|
72 |
+
is_valid_subreddit = True if sub_prompt is not None else subreddit in self.valid_subs
|
73 |
+
|
74 |
+
|
75 |
+
return subreddit, rest_of_caption
|
76 |
+
|
77 |
+
def download_files():
|
78 |
+
#download model files
|
79 |
+
download_files = [CONFIG_PATH, MODEL_PATH, VALID_SUBREDDITS_PATH]
|
80 |
+
for f in download_files:
|
81 |
+
fp = cached_download(hf_hub_url("zamborg/redcaps", filename=f))
|
82 |
+
os.system(f"cp {fp} ./{f}")
|
83 |
+
|
84 |
+
def get_samples():
|
85 |
+
return glob.glob(SAMPLES_PATH)
|
86 |
+
|
87 |
+
def get_rand_img(samples):
|
88 |
+
return samples[random.randint(0,len(samples)-1)]
|
89 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
albumentations>=0.5.0
|
2 |
+
Cython>=0.25
|
3 |
+
ftfy==5.8
|
4 |
+
future==0.18.0
|
5 |
+
huggingface-hub==0.1.2
|
6 |
+
lmdb==0.97
|
7 |
+
loguru==0.3.2
|
8 |
+
mypy_extensions==0.4.1
|
9 |
+
lvis==0.5.3
|
10 |
+
numpy>=1.17
|
11 |
+
opencv-python==4.1.2.30
|
12 |
+
scikit-learn==0.21.3
|
13 |
+
sentencepiece>=0.1.90
|
14 |
+
torch==1.7.0
|
15 |
+
torchvision==0.8
|
16 |
+
tqdm>=4.50.0
|
17 |
+
wordsegment==1.3.1
|
18 |
+
git+git://github.com/facebookresearch/fvcore.git#egg=fvcore
|
19 |
+
git+git://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI
|