File size: 21,632 Bytes
c6f8b96
 
 
 
 
 
 
 
 
 
 
 
 
1416c31
c6f8b96
 
 
 
cd507e6
c6f8b96
cd507e6
c6f8b96
4f639de
 
cd507e6
 
 
4f639de
 
 
c6f8b96
cd507e6
 
 
 
4f639de
cd507e6
 
4f639de
 
 
cd507e6
4f639de
 
cd507e6
 
4f639de
 
 
 
c6f8b96
cd507e6
 
 
 
4f639de
cd507e6
 
4f639de
 
 
 
 
c6f8b96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd507e6
c6f8b96
 
 
 
 
 
 
 
 
 
 
 
 
cd507e6
 
c6f8b96
 
cd507e6
c6f8b96
 
 
 
 
 
 
cd507e6
c6f8b96
 
 
 
 
 
 
 
 
 
 
 
 
cd507e6
4f639de
cd507e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f639de
cd507e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f639de
c6f8b96
 
4f639de
 
 
 
c6f8b96
 
4f639de
 
c6f8b96
 
 
4f639de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6f8b96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f639de
c6f8b96
 
 
 
4f639de
c6f8b96
4f639de
c6f8b96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f639de
c6f8b96
4f639de
c6f8b96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f639de
c6f8b96
4f639de
c6f8b96
 
 
 
 
 
 
 
 
 
 
 
 
 
4f639de
c6f8b96
 
 
 
 
 
 
96f2b16
c6f8b96
 
 
96f2b16
c6f8b96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96f2b16
cd507e6
c6f8b96
 
 
96f2b16
 
c6f8b96
 
 
96f2b16
 
c6f8b96
 
 
96f2b16
c6f8b96
 
96f2b16
 
 
c6f8b96
 
 
96f2b16
c6f8b96
 
 
 
cd507e6
4f639de
96f2b16
 
4f639de
96f2b16
4f639de
 
 
 
96f2b16
4f639de
96f2b16
 
 
c6f8b96
 
 
96f2b16
c6f8b96
 
 
 
4f639de
 
96f2b16
4f639de
 
 
 
 
 
96f2b16
 
 
c6f8b96
 
4f639de
 
c6f8b96
4f639de
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
from sumy.parsers.plaintext import PlaintextParser
from sumy.nlp.tokenizers import Tokenizer
from nltk.tokenize import word_tokenize, sent_tokenize
from transformers import pipeline
from nltk.corpus import stopwords
from collections import Counter
import regex as re
import pandas as pd
import gradio as gr
import nltk

nltk.download("wordnet")
nltk.download("omw-1.4")
nltk.download("punkt")


def run(the_method, text, compression_ratio, use_golden=False, golden=None):
    if the_method[0:4] == "Sumy":
        return run_sumy(the_method, _clean_text(text), compression_ratio), run_eval(use_golden, _clean_text(text), run_sumy(the_method, _clean_text(text), compression_ratio), golden)
    elif the_method[0:13] == "Transformers-":
        return run_transformers(the_method, _clean_text(text), compression_ratio), run_eval(use_golden, _clean_text(text), run_transformers(the_method, _clean_text(text), compression_ratio), golden)


def run_csv(the_method, csv_input, text_column, n, golden_column=None, compression_ratio=1 / 8, use_golden=False):
    df_original = pd.read_csv(csv_input.name)
    text_series = df_original[text_column]
    text_series = text_series.apply(lambda x: _clean_text(x))
    golden_series = []
    if use_golden:
        golden_series = df_original[golden_column]

    if the_method[0:4] == "Sumy":
        result = run_sumy_df(the_method, text_series, compression_ratio)
        the_method_dir = the_method[4:]
    elif the_method[0:13] == "Transformers-":
        the_method_dir = re.sub(r"[\/]", "-", the_method[13:])
        result = run_transformers_df(the_method, text_series, compression_ratio)

    evaluators = run_eval_df(use_golden, text_series, result["summary"], golden_series, n)

    column_name = "summary_" + the_method_dir
    df_original[column_name] = result["summary"]
    df_original.to_csv(the_method_dir + "_results.csv", index=False)
    return str(the_method_dir + "_results.csv"), evaluators


def run_df(the_method, df, n, compression_ratio=1 / 8, use_golden=False):

    text_series = df.iloc[:, 0].apply(lambda x: _clean_text(x))
    golden_series = df.iloc[:, 1].apply(lambda x: _clean_text(x))

    if the_method[0:4] == "Sumy":
        result = run_sumy_df(the_method, text_series, compression_ratio)
        the_method_dir = the_method[4:]
    elif the_method[0:13] == "Transformers-":
        the_method_dir = re.sub(r"[\/]", "-", the_method[13:])
        result = run_transformers_df(the_method, text_series, compression_ratio)

    evaluators = run_eval_df(use_golden, text_series, result["summary"], golden_series, n)

    result.to_csv(the_method_dir + "_results.csv", index=False)
    return str(the_method_dir + "_results.csv"), evaluators


def _clean_text(content):
    if isinstance(content, str):
        pass
    else:
        content = str(content)
    # strange jump lines
    content = re.sub(r"\.", ". ", str(content))
    # URLs
    content = re.sub(r"http\S+", "", str(content))
    # trouble characters
    content = re.sub(r"\\r\\n", " ", str(content))
    # clean jump lines
    content = re.sub(r"\u000D\u000A|[\u000A\u000B\u000C\u000D\u0085\u2028\u2029]", " ", content)
    # Replace different spaces
    content = re.sub(r"\u00A0\u1680​\u180e\u2000-\u2009\u200a​\u200b​\u202f\u205f​\u3000", " ", content)
    # replace multiple spaces
    content = re.sub(r" +", " ", content)
    # normalize hiphens
    content = re.sub(r"\p{Pd}+", "-", content)
    # normalize single quotations
    content = re.sub(r"[\u02BB\u02BC\u066C\u2018-\u201A\u275B\u275C]", "'", content)
    # normalize double quotations
    content = re.sub(r"[\u201C-\u201E\u2033\u275D\u275E\u301D\u301E]", '"', content)
    # normalize apostrophes
    content = re.sub(r"[\u0027\u02B9\u02BB\u02BC\u02BE\u02C8\u02EE\u0301\u0313\u0315\u055A\u05F3\u07F4\u07F5\u1FBF\u2018\u2019\u2032\uA78C\uFF07]", "'", content)

    content = " ".join(content.split())
    return content


def run_sumy(method, text, compression_ratio):
    from sumy.summarizers.random import RandomSummarizer
    from sumy.summarizers.luhn import LuhnSummarizer
    from sumy.summarizers.lsa import LsaSummarizer
    from sumy.summarizers.lex_rank import LexRankSummarizer
    from sumy.summarizers.text_rank import TextRankSummarizer
    from sumy.summarizers.sum_basic import SumBasicSummarizer
    from sumy.summarizers.kl import KLSummarizer
    from sumy.summarizers.reduction import ReductionSummarizer
    from sumy.summarizers.edmundson import EdmundsonSummarizer

    the_method = method.replace("Sumy", "")
    summarizer = locals()[the_method + "Summarizer"]()
    sentence_count = int(len(sent_tokenize(text)) * compression_ratio / 100)
    if sentence_count < 1:
        sentence_count = 1
    parser = PlaintextParser.from_string(text, Tokenizer("english"))

    summary = summarizer(parser.document, sentence_count)

    text_summary = ""
    for s in summary:
        text_summary += str(s) + " "
    return text_summary


def run_transformers(method, text, compression_ratio):

    the_method = method.replace("Transformers-", "")
    summarizer = pipeline("summarization", model=the_method)

    length = 3000
    while len(word_tokenize(text[0:length])) > 450:
        length -= 100
    token_count = len(word_tokenize(text[0:length])) * compression_ratio / 100
    aux_summary = summarizer(text[0:length], min_length=(int(token_count - 5)), max_length=(int(token_count + 5)))
    summary = aux_summary[0]["summary_text"]
    return summary


def run_sumy_df(method, texts_series, compression_ratio):

    from sumy.summarizers.random import RandomSummarizer
    from sumy.summarizers.luhn import LuhnSummarizer
    from sumy.summarizers.lsa import LsaSummarizer
    from sumy.summarizers.lex_rank import LexRankSummarizer
    from sumy.summarizers.text_rank import TextRankSummarizer
    from sumy.summarizers.sum_basic import SumBasicSummarizer
    from sumy.summarizers.kl import KLSummarizer
    from sumy.summarizers.reduction import ReductionSummarizer
    from sumy.summarizers.edmundson import EdmundsonSummarizer
    from sumy.parsers.plaintext import PlaintextParser
    from sumy.nlp.tokenizers import Tokenizer  # For Strings
    from sumy.parsers.html import HtmlParser
    from sumy.utils import get_stop_words
    from nltk.tokenize import word_tokenize
    from nltk.corpus import stopwords
    from nltk.stem import WordNetLemmatizer
    from collections import Counter

    the_method = method.replace("Sumy", "")
    the_summarizer = locals()[the_method + "Summarizer"]()

    summarizer_output_list = []
    for text in texts_series:
        parser = PlaintextParser.from_string(text, Tokenizer("english"))
        sentence_count = int(len(sent_tokenize(text)) * compression_ratio / 100)
        if sentence_count < 1:
            sentence_count = 1
        summarizer_output_list.append(the_summarizer(parser.document, sentence_count))

    candidate_summaries = []
    for summarizer_output in summarizer_output_list:
        text_summary = ""
        for sentence in summarizer_output:
            text_summary += str(sentence) + " "

        candidate_summaries.append(text_summary)

    results = pd.DataFrame({"text": texts_series, "summary": candidate_summaries})
    return results


def run_transformers_df(method, texts_series, compression_ratio):
    from transformers import pipeline
    from nltk.tokenize import word_tokenize

    the_method = method.replace("Transformers-", "")
    summarizer = pipeline("summarization", model=the_method)

    aux_summaries_list = []
    for text in texts_series:
        length = 3000
        while len(word_tokenize(text[0:length])) > 450:
            length -= 100
            token_count = len(word_tokenize(text[0:length])) * compression_ratio / 100
        aux_summaries_list.append(summarizer(text[0:length], min_length=int(token_count - 5), max_length=int(token_count + 5)))

    candidate_summaries = [x[0]["summary_text"] for x in aux_summaries_list]

    results = pd.DataFrame({"text": texts_series, "summary": candidate_summaries})
    return results


def run_eval(use_golden, text, summary, golden):
    if use_golden:
        rouge, x = run_rouge_eval(summary, golden)
        nltk, x = run_nltk_eval(summary, golden)
        gensim, x = run_gensim_eval(summary, golden)
        sklearn, x = run_sklearn_eval(summary, golden)
        return rouge + nltk + gensim + sklearn
    else:
        gensim, x = run_gensim_eval(summary, text)
        sklearn, x = run_sklearn_eval(summary, text)
        return gensim + sklearn


def run_eval_df(use_golden, text, summary, golden, n):
    if n > len(text):
        n = len(text)
    elif n == 0:
        n = len(text)

    def print_results_golden(rouge, nltk, gensim, sklearn):
        rouge_names = ["ROUGE-1", "ROUGE-2", "ROUGE-3", "ROUGE-4", "ROUGE-L", "ROUGE-SU4", "ROUGE-W-1.2"]
        rouge_str = ""
        for i in range(0, 6):
            rouge_str += str("{}:\t\t{}: {:5.2f} \t{}: {:5.2f} \t{}: {:5.2f}\n".format(str(rouge_names[i]).upper(), "P", 100.0 * rouge[i][0], "R", 100.0 * rouge[i][1], "F1", 100.0 * rouge[i][2]))
        nltk_str = str(f"NLTK:\t\t\t\tP: {100*nltk[0]:5.2f} \tR: {100*nltk[1]:5.2f} \tF1: {100*nltk[2]:5.2f}\n")
        sklearn_str = str(f"SKLearn:\t\t\tC: {sklearn:5.2f}\n")
        gensim_str = str(f"Gensim:\t\t\tH: {gensim[0]:5.2f} \tJ: {gensim[1]:5.2f} \tKLD: {gensim[2]:5.2f}\n")
        return rouge_str + nltk_str + gensim_str + sklearn_str

    def print_results(gensim, sklearn):
        sklearn_str = str(f"SKLearn:\t\t\tC: {sklearn:5.2f}\n")
        gensim_str = str(f"Gensim:\t\t\tH: {gensim[0]:5.2f} \tJ: {gensim[1]:5.2f} \tKLD: {gensim[2]:5.2f}\n")
        return gensim_str + sklearn_str

    rouge_results, nltk_results, gensim_results, sklearn_results = [], [], [], []

    if use_golden:
        for i in range(0, n):
            x, rouge = run_rouge_eval(summary[i], golden[i])
            x, nltk = run_nltk_eval(summary[i], golden[i])
            x, gensim = run_gensim_eval(summary[i], golden[i])
            x, sklearn = run_sklearn_eval(summary[i], golden[i])
            rouge_results.append(rouge)
            nltk_results.append(nltk)
            gensim_results.append(gensim)
            sklearn_results.append(sklearn)

        rouge_sort = [[[r[i][0] for r in rouge_results], [r[i][1] for r in rouge_results], [r[i][2] for r in rouge_results]] for i in range(0, len(rouge_results[0]))]
        nltk_sort = [[r[0] for r in nltk_results], [r[1] for r in nltk_results], [r[2] for r in nltk_results]]
        gensim_sort = [[r[0] for r in gensim_results], [r[1] for r in gensim_results], [r[2] for r in gensim_results]]
        rouges_avgs = [[sum(i[0]) / len(i[0]), sum(i[1]) / len(i[1]), sum(i[2]) / len(i[2])] for i in rouge_sort]
        nltk_avgs = [sum(i) / len(i) for i in nltk_sort]
        gensim_avgs = [sum(i) / len(i) for i in gensim_sort]
        sklearn_avgs = sum(sklearn_results) / len(sklearn_results)
        return print_results_golden(rouges_avgs, nltk_avgs, gensim_avgs, sklearn_avgs)

    if not use_golden:
        for i in range(0, n):
            x, gensim = run_gensim_eval(summary[i], text[i])
            x, sklearn = run_sklearn_eval(summary[i], text[i])
            gensim_results.append(gensim)
            sklearn_results.append(sklearn)
        gensim_sort = [[r[0] for r in gensim_results], [r[1] for r in gensim_results], [r[2] for r in gensim_results]]
        gensim_avgs = [sum(i) / len(i) for i in gensim_sort]
        sklearn_avgs = sum(sklearn_results) / len(sklearn_results)
        return print_results(gensim_avgs, sklearn_avgs)


def run_rouge_eval(text, golden):
    import rouge
    from rouge_metric import PyRouge

    def print_results(m, p, r, f):
        return str("{}:\t\t{}: {:5.2f} \t{}: {:5.2f} \t{}: {:5.2f}\n".format(str(m).upper(), "P", 100.0 * p, "R", 100.0 * r, "F1", 100.0 * f))

    evaluator = rouge.Rouge(
        metrics=["rouge-n", "rouge-l", "rouge-w"],
        max_n=4,
        limit_length=True,
        length_limit=100,
        length_limit_type="words",
        apply_avg=False,
        apply_best=False,
        alpha=0.5,
        weight_factor=1.2,
        stemming=True,
    )  # Default F1_score

    evaluator_su = PyRouge(
        rouge_n=(1, 2, 3, 4),
        rouge_l=True,
        rouge_w=True,
        rouge_w_weight=1.2,
        # rouge_s=True,
        rouge_su=True,
        skip_gap=4,
    )

    scores = evaluator_su.evaluate([text], [[golden]])

    rouge_strings = ""
    rouge_results = []
    for m, results in sorted(scores.items()):
        p = results["p"]
        r = results["r"]
        f = results["f"]
        rouge_results.append([p, r, f])
        rouge_strings += print_results(m, p, r, f)
    return rouge_strings, rouge_results


def run_nltk_eval(text, golden):
    from nltk.metrics.scores import precision, recall, f_measure

    def print_results(p, r, f):
        return str(f"NLTK:\t\t\t\tP: {100*p:5.2f} \tR: {100*r:5.2f} \tF1: {100*f:5.2f}\n")

    p, r, f = [], [], []

    reference = [i for i in golden.split()]
    hypothesis = [i for i in text.split()]

    p = precision(set(reference), set(hypothesis))
    r = recall(set(reference), set(hypothesis))
    f = f_measure(set(reference), set(hypothesis), alpha=0.5)
    nltk_results = [p, r, f]

    return print_results(p, r, f), nltk_results


def run_gensim_eval(text, golden):
    from gensim.matutils import kullback_leibler, hellinger, jaccard, jensen_shannon
    from gensim.corpora import Dictionary, HashDictionary
    from gensim.models import ldamodel, NormModel

    def print_results(h, j, kld):
        return str(f"Gensim:\t\t\tH: {h:5.2f} \tJ: {j:5.2f} \tKLD: {kld:5.2f}\n")

    def generate_freqdist(text, golden):

        ref_hyp = text + golden
        ref_hyp_dict = HashDictionary([ref_hyp])
        ref_hyp_bow = ref_hyp_dict.doc2bow(ref_hyp)
        ref_hyp_bow = [(i[0], 0) for i in ref_hyp_bow]
        ref_bow_base = [ref_hyp_dict.doc2bow(text) for text in [golden]][0]
        hyp_bow_base = [ref_hyp_dict.doc2bow(text) for text in [text]][0]
        ref_bow, hyp_bow = [], []
        ref_list = [i[0] for i in ref_bow_base]
        hyp_list = [i[0] for i in hyp_bow_base]

        for base in ref_hyp_bow:
            if base[0] not in ref_list:
                ref_bow.append((base[0], base[1] + 1))
            else:
                for ref in ref_bow_base:
                    if ref[0] == base[0]:
                        ref_bow.append((ref[0], ref[1] + 1))

        for base in ref_hyp_bow:
            if base[0] not in hyp_list:
                hyp_bow.append((base[0], base[1] + 1))
            else:
                for hyp in hyp_bow_base:
                    if hyp[0] == base[0]:
                        hyp_bow.append((hyp[0], hyp[1] + 1))

        sum_ref = sum([i[1] for i in ref_bow])
        sum_hyp = sum([i[1] for i in ref_bow])
        vec_ref = [i[1] / sum_ref for i in ref_bow]
        vec_hyp = [i[1] / sum_hyp for i in hyp_bow]

        return vec_ref, vec_hyp, ref_bow_base, hyp_bow_base

    ref_bow_norm, hyp_bow_norm, ref_bow, hyp_bow = generate_freqdist(text, golden)

    h = hellinger(hyp_bow_norm, ref_bow_norm)
    kld = kullback_leibler(hyp_bow_norm, ref_bow_norm)
    j = jaccard(hyp_bow, ref_bow)
    gensim_results = [h, j, kld]

    return print_results(h, j, kld), gensim_results


def run_sklearn_eval(text, golden):
    from sklearn.metrics.pairwise import cosine_similarity
    from sklearn.feature_extraction.text import TfidfVectorizer

    def print_results(cosim_avg):
        return str(f"SKLearn:\t\t\tC: {cosim_avg:5.2f}\n")

    Tfidf_vect = TfidfVectorizer()
    vector_matrix = Tfidf_vect.fit_transform([text, golden])
    cosine_similarity_matrix = cosine_similarity(vector_matrix)
    cosim = cosine_similarity_matrix[0, 1]

    return print_results(cosim), cosim


if __name__ == "__main__":

    with gr.Blocks() as demo:
        with gr.Row():
            with gr.Column(scale=1, min_width=300):
                gr.Markdown("### Automatic Text Summarization + Summary Evaluation\n Data Science Research Project Applied to the Portfolio of Financial Products (PPF-MCTI)")
                with gr.Row():
                    with gr.Column(scale=1, min_width=300):
                        dropdown = gr.Dropdown(
                            label="Summarization Method",
                            choices=[
                                "SumyRandom",
                                "SumyLuhn",
                                "SumyLsa",
                                "SumyLexRank",
                                # "SumyEdmundson",
                                "SumyTextRank",
                                "SumySumBasic",
                                "SumyKL",
                                "SumyReduction",
                                "Transformers-google/pegasus-xsum",
                                "Transformers-facebook/bart-large-cnn",
                                "Transformers-csebuetnlp/mT5_multilingual_XLSum",
                            ],
                            value="SumyLuhn",
                        )
                    with gr.Column(scale=1, min_width=300):
                        compression_ratio = gr.Slider(
                            label="Compression Rate (% of original length)",
                            value=10,
                            minimum=1,
                            maximum=100,
                        )
                        use_golden = gr.Checkbox(label="Evaluate using Golden Summary?")
                with gr.Tab("Text"):
                    with gr.Row():
                        with gr.Column(scale=1, min_width=300):
                            text = gr.Textbox(
                                label="Text",
                                placeholder="Insert text here",
                            )
                            golden = gr.Textbox(
                                label="Golden Summary",
                                placeholder="Insert Golden Summary here (optional)",
                            )
                        with gr.Column(scale=1, min_width=300):
                            generated_summary = gr.Textbox(label="Automatically generated summary")
                            evaluators = gr.Textbox(label="Summary evaluation")
                    text_button = gr.Button("Run")
                with gr.Tab("CSV"):
                    with gr.Column(scale=1, min_width=300):
                        gr.Checkbox(
                            label="Upload a .csv file below with a column containing texts to be summarized. Golden summaries should be in a different column, if any",
                            value=False,
                            interactive=False,
                        )
                        with gr.Row():
                            with gr.Column(scale=1, min_width=300):
                                with gr.Row():
                                    text_column = gr.Textbox(label="Texts column title", placeholder="text")
                                    golden_column = gr.Textbox(label="Golden Summaries column title (optional)", placeholder="golden")
                                n_csv = gr.Number(
                                    label="Number of summaries to be evaluated (0 = All)",
                                    precision=0,
                                    value=30,
                                    interactive=True,
                                )
                                csv_input = gr.File(label=".csv file with texts")
                            with gr.Column(scale=1, min_width=300):
                                csv_output = gr.Files(label=".csv file with summaries")
                                csv_evaluators = gr.Textbox(label="Summary evaluation (average)")
                        csv_button = gr.Button("Run")
                with gr.Tab("DataFrame"):
                    with gr.Column(scale=1, min_width=300):
                        gr.Checkbox(
                            label="Add texts and golden summaries (optional) to the DataFrame below.",
                            value=False,
                            interactive=False,
                        )
                        with gr.Row():
                            with gr.Column(scale=1, min_width=300):
                                n_df = gr.Number(
                                    label="Number of summaries to be evaluated (0 = All)",
                                    precision=0,
                                    value=5,
                                    interactive=True,
                                )
                                df_input = gr.DataFrame(headers=["Texto", "Golden Summary"], row_count=(1, "dynamic"), col_count=(2, "fixed"))
                            with gr.Column(scale=1, min_width=300):
                                df_output = gr.Files(label=".csv file with summaries")
                                df_evaluators = gr.Textbox(label="Summary evaluation (average)")
                        df_button = gr.Button("Run")

            text_button.click(run, inputs=[dropdown, text, compression_ratio, use_golden, golden], outputs=[generated_summary, evaluators])
            csv_button.click(run_csv, inputs=[dropdown, csv_input, text_column, n_csv, golden_column, compression_ratio, use_golden], outputs=[csv_output, csv_evaluators])
            df_button.click(run_df, inputs=[dropdown, df_input, n_df, compression_ratio, use_golden], outputs=[df_output, df_evaluators])

demo.launch()