File size: 2,369 Bytes
1180f3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
import os
import torch
import sys
import gradio as gr
from huggingface_hub import hf_hub_download
# Setup TTS env
if "vits" not in sys.path:
sys.path.append("vits")
from vits import commons, utils
from vits.models import SynthesizerTrn
class TextMapper(object):
def __init__(self, vocab_file):
self.symbols = [x.strip() for x in open(vocab_file, encoding="utf-8").readlines()]
self.SPACE_ID = self.symbols.index(" ")
self._symbol_to_id = {s: i for i, s in enumerate(self.symbols)}
def text_to_sequence(self, text, cleaner_names):
sequence = [self._symbol_to_id[symbol] for symbol in text.strip()]
return sequence
def get_text(self, text, hps):
text_norm = self.text_to_sequence(text, hps.data.text_cleaners)
if hps.data.add_blank:
text_norm = commons.intersperse(text_norm, 0)
return torch.LongTensor(text_norm)
def filter_oov(self, text, lang=None):
val_chars = self._symbol_to_id
return "".join(filter(lambda x: x in val_chars, text))
def synthesize(text, speed):
if speed is None:
speed = 1.0
lang_code = "fao"
vocab_file = hf_hub_download(repo_id="facebook/mms-tts", filename="vocab.txt", subfolder=f"models/{lang_code}")
config_file = hf_hub_download(repo_id="facebook/mms-tts", filename="config.json", subfolder=f"models/{lang_code}")
g_pth = hf_hub_download(repo_id="facebook/mms-tts", filename="G_100000.pth", subfolder=f"models/{lang_code}")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
hps = utils.get_hparams_from_file(config_file)
text_mapper = TextMapper(vocab_file)
net_g = SynthesizerTrn(len(text_mapper.symbols), hps.data.filter_length // 2 + 1, hps.train.segment_size // hps.data.hop_length, **hps.model)
net_g.to(device)
net_g.eval()
utils.load_checkpoint(g_pth, net_g, None)
text = text.lower()
text = text_mapper.filter_oov(text)
stn_tst = text_mapper.get_text(text, hps)
with torch.no_grad():
x_tst = stn_tst.unsqueeze(0).to(device)
x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).to(device)
hyp = net_g.infer(x_tst, x_tst_lengths, noise_scale=0.667, noise_scale_w=0.8, length_scale=1.0 / speed)[0][0, 0].cpu().float().numpy()
return gr.Audio.update(value=(hps.data.sampling_rate, hyp)), text
|