import librosa from transformers import AutoProcessor, Wav2Vec2ForCTC import torch import logging # Set up logging logging.basicConfig(level=logging.DEBUG) ASR_SAMPLING_RATE = 16_000 MODEL_ID = "facebook/mms-1b-all" try: processor = AutoProcessor.from_pretrained(MODEL_ID) model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) logging.info("ASR model and processor loaded successfully.") except Exception as e: logging.error(f"Error loading ASR model or processor: {e}") def transcribe(audio): try: if audio is None: logging.error("No audio file provided") return "ERROR: You have to either use the microphone or upload an audio file" logging.info(f"Loading audio file: {audio}") # Try loading the audio file with librosa try: audio_samples, _ = librosa.load(audio, sr=ASR_SAMPLING_RATE, mono=True) except FileNotFoundError: logging.error("Audio file not found") return "ERROR: Audio file not found" except Exception as e: logging.error(f"Error loading audio file with librosa: {e}") return f"ERROR: Unable to load audio file - {e}" # Set the language for the processor to Faroese lang_code = "fao" processor.tokenizer.set_target_lang(lang_code) model.load_adapter(lang_code) # Process the audio with the processor inputs = processor(audio_samples, sampling_rate=ASR_SAMPLING_RATE, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs).logits ids = torch.argmax(outputs, dim=-1)[0] transcription = processor.decode(ids) logging.info("Transcription completed successfully.") return transcription except Exception as e: logging.error(f"Error during transcription: {e}") return "ERROR"