File size: 5,872 Bytes
052c3ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2ddbfd
cad836c
d2ddbfd
 
fe970c6
052c3ff
 
 
 
 
 
d2ddbfd
052c3ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe970c6
052c3ff
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import os

import torch.nn.functional as F
import torchaudio
from loguru import logger
import gradio as gr

from huggingface_hub import hf_hub_download
import torch
import yaml

# ---------- Settings ----------
GPU_ID = '-1'
os.environ['CUDA_VISIBLE_DEVICES'] = GPU_ID
DEVICE = 'cuda' if GPU_ID != '-1' else 'cpu'

SERVER_PORT = 42208
SERVER_NAME = "0.0.0.0"
SSL_DIR = './keyble_ssl'

FS = 16000
resamplers = {}
MIN_REQUIRED_WAV_LENGTH = 1040

# EXAMPLE_DIR = './examples'
# en_examples = sorted(glob(os.path.join(EXAMPLE_DIR, "en", '*.wav')))
# jp_examples = sorted(glob(os.path.join(EXAMPLE_DIR, "jp", '*.wav')))
# zh_examples = sorted(glob(os.path.join(EXAMPLE_DIR, "zh", '*.wav')))

# ---------- Logging ----------
logger.add('app.log', mode='a')
logger.info('============================= App restarted =============================')

# ---------- Download models ----------
logger.info('============================= Download models ===========================')

model_paths = {
    "SSL-MOS, all training sets": {
        "ckpt": hf_hub_download(repo_id="unilight/sheet-models", filename="bvcc+nisqa+pstn+singmos+somos+tencent+tmhint-qi/sslmos+mdf/2337/checkpoint-86000steps.pkl"),
        "config": hf_hub_download(repo_id="unilight/sheet-models", filename="bvcc+nisqa+pstn+singmos+somos+tencent+tmhint-qi/sslmos+mdf/2337/config.yml"),
    }
}

# ---------- Model ----------
models = {}
for name, path_dict in model_paths.items():
    logger.info(f'============================= Setting up model for {name} =============')
    checkpoint_path = path_dict["ckpt"]
    config_path = path_dict["config"]
    with open(config_path) as f:
        config = yaml.load(f, Loader=yaml.Loader)

    if config["model_type"] == "SSLMOS":
        from models.sslmos import SSLMOS
        model = SSLMOS(
            config["model_input"],
            num_listeners=config.get("num_listeners", None),
            num_domains=config.get("num_domains", None),
            **config["model_params"],
        ).to(DEVICE)
    model.load_state_dict(torch.load(checkpoint_path, map_location="cpu")["model"])
    model = model.eval().to(DEVICE)
    logger.info(f"Loaded model parameters from {checkpoint_path}.")

    models[name] = model

def read_wav(wav_path):
    # read waveform
    waveform, sample_rate = torchaudio.load(
        wav_path, channels_first=False
    )  # waveform: [T, 1]

    # resample if needed
    if sample_rate != FS:
        resampler_key = f"{sample_rate}-{FS}"
        if resampler_key not in resamplers:
            resamplers[resampler_key] = torchaudio.transforms.Resample(
                sample_rate, FS, dtype=waveform.dtype
            )
        waveform = resamplers[resampler_key](waveform)

    waveform = waveform.squeeze(-1)

    # always pad to a minumum length
    if waveform.shape[0] < MIN_REQUIRED_WAV_LENGTH:
        to_pad = (MIN_REQUIRED_WAV_LENGTH - waveform.shape[0]) // 2
        waveform = F.pad(waveform, (to_pad, to_pad), "constant", 0)

    return waveform, sample_rate

def predict(model_name, wav_file):
    x, fs = read_wav(wav_file)
    logger.info('wav file loaded')

    # set up model input
    model_input = x.unsqueeze(0).to(DEVICE)
    model_lengths = model_input.new_tensor([model_input.size(1)]).long()
    inputs = {
        config["model_input"]: model_input,
        config["model_input"] + "_lengths": model_lengths,
    }

    with torch.no_grad():
        # model forward
        if config["inference_mode"] == "mean_listener":
            outputs = models[model_name].mean_listener_inference(inputs)
        elif config["inference_mode"] == "mean_net":
            outputs = models[model_name].mean_net_inference(inputs)

    pred_mean_scores = outputs["scores"].cpu().detach().numpy()[0]

    return pred_mean_scores

with gr.Blocks(title="S3PRL-VC: Any-to-one voice conversion demo on VCC2020") as demo:
    gr.Markdown(
        """
        # Demo for SHEET: Speech Human Evaluation Estimation Toolkit
        ### [[Paper (arXiv)]](https://arxiv.org/abs/2411.03715) [[Code]](https://github.com/unilight/sheet)
        **SHEET** is a subjective speech quality assessment (SSQA) toolkit designed to conduct SSQA research. It was specifically designed to interactive with MOS-Bench, a collective of datasets to benchmark SSQA models.

        In this demo, you can record your own voice or upload speech files to assess the quality.
        """
    )

    with gr.Row():
        with gr.Column():
            gr.Markdown("## Record your speech here!")
            input_wav = gr.Audio(label="Input speech", type='filepath')

            gr.Markdown("## Select a model!")
            model_name = gr.Radio(label="Model", choices=list(model_paths.keys()))

            evaluate_btn = gr.Button(value="Evaluate!")
            # gr.Markdown("### You can use these examples if using a microphone is too troublesome!")
            # gr.Markdown("I recorded the samples using my Macbook Pro, so there might be some noises.")
            # gr.Examples(
            #     examples=en_examples,
            #     inputs=input_wav,
            #     label="English examples"
            # )
            # gr.Examples(
            #     examples=jp_examples,
            #     inputs=input_wav,
            #     label="Japanese examples"
            # )
            # gr.Examples(
            #     examples=zh_examples,
            #     inputs=input_wav,
            #     label="Mandarin examples"
            # )
        
        with gr.Column():
            gr.Markdown("## The predicted scores is here:")
            output_score = gr.Textbox(label="Prediction", interactive=False)
        evaluate_btn.click(predict, [model_name, input_wav], output_score)

if __name__ == '__main__':
    try:
        demo.launch(debug=True)
    except KeyboardInterrupt as e:
        print(e)

    finally:
        demo.close()