Spaces:
Runtime error
Runtime error
import librosa | |
import gradio as gr | |
#from transformers import Wav2Vec2Tokenizer, Wav2Vec2ForCTC | |
from transformers import pipeline | |
#Loading the model and the tokenizer | |
model_name = "unilux/wav2vec-xls-r-Luxembourgish20-with-LM" | |
pipe = pipeline("automatic-speech-recognition", model=model_name) | |
#tokenizer = Wav2Vec2Tokenizer.from_pretrained(model_name) | |
#model = Wav2Vec2ForCTC.from_pretrained(model_name) | |
def load_data(input_file): | |
""" Function for resampling to ensure that the speech input is sampled at 16KHz. | |
""" | |
#read the file | |
speech, sample_rate = librosa.load(input_file) | |
#make it 1-D | |
if len(speech.shape) > 1: | |
speech = speech[:,0] + speech[:,1] | |
#Resampling at 16KHz since wav2vec2-base-960h is pretrained and fine-tuned on speech audio sampled at 16 KHz. | |
if sample_rate !=16000: | |
speech = librosa.resample(speech, sample_rate,16000) | |
return speech | |
def asr_pipe(input_file): | |
transcription = pipe(input_file, chunk_length_s=3, stride_length_s=(0.5, 0.5)) | |
return transcription | |
gr.Interface(asr_pipe, | |
inputs = gr.inputs.Audio(source="microphone", type="filepath", optional=True, label="Hei kënnt Dir Är Sprooch iwwert de Mikro ophuelen"), | |
outputs = gr.outputs.Textbox(label="Output Text"), | |
title="Sproocherkennung fir d'Lëtzebuergescht @uni.lu", | |
description = "Dës App convertéiert Är geschwate Sprooch an de (méi oder manner richegen ;-)) Text!", | |
examples = [["ChamberMeisch.wav"], ["Chamber_Fayot_2005.wav"], ["Erlieft-a-Verzielt.wav"], ["Schnëssen-Beispill"]], theme="default").launch() | |