mrfakename
commited on
Create cog.py
Browse files
cog.py
ADDED
@@ -0,0 +1,181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Prediction interface for Cog ⚙️
|
2 |
+
# https://cog.run/python
|
3 |
+
|
4 |
+
from cog import BasePredictor, Input, Path
|
5 |
+
|
6 |
+
import os
|
7 |
+
import re
|
8 |
+
import torch
|
9 |
+
import torchaudio
|
10 |
+
import gradio as gr
|
11 |
+
import numpy as np
|
12 |
+
import tempfile
|
13 |
+
from einops import rearrange
|
14 |
+
from ema_pytorch import EMA
|
15 |
+
from vocos import Vocos
|
16 |
+
from pydub import AudioSegment
|
17 |
+
from model import CFM, UNetT, DiT, MMDiT
|
18 |
+
from cached_path import cached_path
|
19 |
+
from model.utils import (
|
20 |
+
get_tokenizer,
|
21 |
+
convert_char_to_pinyin,
|
22 |
+
save_spectrogram,
|
23 |
+
)
|
24 |
+
from transformers import pipeline
|
25 |
+
import librosa
|
26 |
+
|
27 |
+
device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
28 |
+
|
29 |
+
target_sample_rate = 24000
|
30 |
+
n_mel_channels = 100
|
31 |
+
hop_length = 256
|
32 |
+
target_rms = 0.1
|
33 |
+
nfe_step = 32 # 16, 32
|
34 |
+
cfg_strength = 2.0
|
35 |
+
ode_method = 'euler'
|
36 |
+
sway_sampling_coef = -1.0
|
37 |
+
speed = 1.0
|
38 |
+
# fix_duration = 27 # None or float (duration in seconds)
|
39 |
+
fix_duration = None
|
40 |
+
|
41 |
+
|
42 |
+
class Predictor(BasePredictor):
|
43 |
+
def load_model(exp_name, model_cls, model_cfg, ckpt_step):
|
44 |
+
checkpoint = torch.load(str(cached_path(f"hf://SWivid/F5-TTS/{exp_name}/model_{ckpt_step}.pt")), map_location=device)
|
45 |
+
vocab_char_map, vocab_size = get_tokenizer("Emilia_ZH_EN", "pinyin")
|
46 |
+
model = CFM(
|
47 |
+
transformer=model_cls(
|
48 |
+
**model_cfg,
|
49 |
+
text_num_embeds=vocab_size,
|
50 |
+
mel_dim=n_mel_channels
|
51 |
+
),
|
52 |
+
mel_spec_kwargs=dict(
|
53 |
+
target_sample_rate=target_sample_rate,
|
54 |
+
n_mel_channels=n_mel_channels,
|
55 |
+
hop_length=hop_length,
|
56 |
+
),
|
57 |
+
odeint_kwargs=dict(
|
58 |
+
method=ode_method,
|
59 |
+
),
|
60 |
+
vocab_char_map=vocab_char_map,
|
61 |
+
).to(device)
|
62 |
+
|
63 |
+
ema_model = EMA(model, include_online_model=False).to(device)
|
64 |
+
ema_model.load_state_dict(checkpoint['ema_model_state_dict'])
|
65 |
+
ema_model.copy_params_from_ema_to_model()
|
66 |
+
|
67 |
+
return ema_model, model
|
68 |
+
def setup(self) -> None:
|
69 |
+
"""Load the model into memory to make running multiple predictions efficient"""
|
70 |
+
# self.model = torch.load("./weights.pth")
|
71 |
+
print("Loading Whisper model...")
|
72 |
+
self.pipe = pipeline(
|
73 |
+
"automatic-speech-recognition",
|
74 |
+
model="openai/whisper-large-v3-turbo",
|
75 |
+
torch_dtype=torch.float16,
|
76 |
+
device=device,
|
77 |
+
)
|
78 |
+
print("Loading F5-TTS model...")
|
79 |
+
|
80 |
+
F5TTS_model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
|
81 |
+
self.F5TTS_ema_model, self.F5TTS_base_model = self.load_model("F5TTS_Base", DiT, F5TTS_model_cfg, 1200000)
|
82 |
+
|
83 |
+
|
84 |
+
def predict(
|
85 |
+
self,
|
86 |
+
gen_text: str = Input(description="Text to generate"),
|
87 |
+
ref_audio_orig: Path = Input(description="Reference audio"),
|
88 |
+
remove_silence: bool = Input(description="Remove silences", default=True),
|
89 |
+
) -> Path:
|
90 |
+
"""Run a single prediction on the model"""
|
91 |
+
model_choice = "F5-TTS"
|
92 |
+
print(gen_text)
|
93 |
+
if len(gen_text) > 200:
|
94 |
+
raise gr.Error("Please keep your text under 200 chars.")
|
95 |
+
gr.Info("Converting audio...")
|
96 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
|
97 |
+
aseg = AudioSegment.from_file(ref_audio_orig)
|
98 |
+
audio_duration = len(aseg)
|
99 |
+
if audio_duration > 15000:
|
100 |
+
gr.Warning("Audio is over 15s, clipping to only first 15s.")
|
101 |
+
aseg = aseg[:15000]
|
102 |
+
aseg.export(f.name, format="wav")
|
103 |
+
ref_audio = f.name
|
104 |
+
ema_model = self.F5TTS_ema_model
|
105 |
+
base_model = self.F5TTS_base_model
|
106 |
+
|
107 |
+
if not ref_text.strip():
|
108 |
+
gr.Info("No reference text provided, transcribing reference audio...")
|
109 |
+
ref_text = outputs = self.pipe(
|
110 |
+
ref_audio,
|
111 |
+
chunk_length_s=30,
|
112 |
+
batch_size=128,
|
113 |
+
generate_kwargs={"task": "transcribe"},
|
114 |
+
return_timestamps=False,
|
115 |
+
)['text'].strip()
|
116 |
+
gr.Info("Finished transcription")
|
117 |
+
else:
|
118 |
+
gr.Info("Using custom reference text...")
|
119 |
+
audio, sr = torchaudio.load(ref_audio)
|
120 |
+
|
121 |
+
rms = torch.sqrt(torch.mean(torch.square(audio)))
|
122 |
+
if rms < target_rms:
|
123 |
+
audio = audio * target_rms / rms
|
124 |
+
if sr != target_sample_rate:
|
125 |
+
resampler = torchaudio.transforms.Resample(sr, target_sample_rate)
|
126 |
+
audio = resampler(audio)
|
127 |
+
audio = audio.to(device)
|
128 |
+
|
129 |
+
# Prepare the text
|
130 |
+
text_list = [ref_text + gen_text]
|
131 |
+
final_text_list = convert_char_to_pinyin(text_list)
|
132 |
+
|
133 |
+
# Calculate duration
|
134 |
+
ref_audio_len = audio.shape[-1] // hop_length
|
135 |
+
# if fix_duration is not None:
|
136 |
+
# duration = int(fix_duration * target_sample_rate / hop_length)
|
137 |
+
# else:
|
138 |
+
zh_pause_punc = r"。,、;:?!"
|
139 |
+
ref_text_len = len(ref_text) + len(re.findall(zh_pause_punc, ref_text))
|
140 |
+
gen_text_len = len(gen_text) + len(re.findall(zh_pause_punc, gen_text))
|
141 |
+
duration = ref_audio_len + int(ref_audio_len / ref_text_len * gen_text_len / speed)
|
142 |
+
|
143 |
+
# inference
|
144 |
+
gr.Info(f"Generating audio using F5-TTS")
|
145 |
+
with torch.inference_mode():
|
146 |
+
generated, _ = base_model.sample(
|
147 |
+
cond=audio,
|
148 |
+
text=final_text_list,
|
149 |
+
duration=duration,
|
150 |
+
steps=nfe_step,
|
151 |
+
cfg_strength=cfg_strength,
|
152 |
+
sway_sampling_coef=sway_sampling_coef,
|
153 |
+
)
|
154 |
+
|
155 |
+
generated = generated[:, ref_audio_len:, :]
|
156 |
+
generated_mel_spec = rearrange(generated, '1 n d -> 1 d n')
|
157 |
+
gr.Info("Running vocoder")
|
158 |
+
vocos = Vocos.from_pretrained("charactr/vocos-mel-24khz")
|
159 |
+
generated_wave = vocos.decode(generated_mel_spec.cpu())
|
160 |
+
if rms < target_rms:
|
161 |
+
generated_wave = generated_wave * rms / target_rms
|
162 |
+
|
163 |
+
# wav -> numpy
|
164 |
+
generated_wave = generated_wave.squeeze().cpu().numpy()
|
165 |
+
|
166 |
+
if remove_silence:
|
167 |
+
gr.Info("Removing audio silences... This may take a moment")
|
168 |
+
non_silent_intervals = librosa.effects.split(generated_wave, top_db=30)
|
169 |
+
non_silent_wave = np.array([])
|
170 |
+
for interval in non_silent_intervals:
|
171 |
+
start, end = interval
|
172 |
+
non_silent_wave = np.concatenate([non_silent_wave, generated_wave[start:end]])
|
173 |
+
generated_wave = non_silent_wave
|
174 |
+
|
175 |
+
|
176 |
+
# spectogram
|
177 |
+
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp_wav:
|
178 |
+
wav_path = tmp_wav.name
|
179 |
+
torchaudio.save(wav_path, torch.tensor(generated_wave), target_sample_rate)
|
180 |
+
|
181 |
+
return wav_path
|