Spaces:
Sleeping
Sleeping
File size: 1,332 Bytes
c46e62c 0f35e9a ebc1fba c46e62c ebc1fba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
import gradio as gr
from transformers import pipeline
from transformers.utils import logging
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
import torch
from llama_index.core import VectorStoreIndex
from llama_index.core import Document
from llama_index.core import Settings
from llama_index.llms.huggingface import (
HuggingFaceInferenceAPI,
HuggingFaceLLM,
)
Settings.llm = HuggingFaceLLM(model_name="facebook/blenderbot-400M-distill",
device_map="cpu",
context_window=128,
tokenizer_name="facebook/blenderbot-400M-distill"
)
Settings.embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5")
documents = [Document(text="Indian parliament elections happened in April-May 2024. BJP Party won.")]
index = VectorStoreIndex.from_documents(
documents,
)
query_engine = index.as_query_engine()
def rag(input_text, file):
return query_engine.query(
input_text
)
iface = gr.Interface(fn=rag, inputs=[gr.Textbox(label="Question", lines=6), gr.File()],
outputs=[gr.Textbox(label="Result", lines=6)],
title="Answer my question",
description= "CoolChatBot"
)
iface.launch() |