Spaces:
Sleeping
Sleeping
File size: 8,264 Bytes
c46e62c eac7abb 2ff5a83 eac7abb 18214a7 e3c7652 7750c4a 5f10bb4 cf46755 7750c4a 73e6552 4f66cb8 73e6552 5b0a950 4f66cb8 eff544a 4f66cb8 73e6552 4f66cb8 8bda472 16937bb 8bda472 16937bb 9686f63 7750c4a eac7abb f443a92 91dc355 eac7abb f443a92 eac7abb b24691a 61f786b 5b0a950 1254e13 5b0a950 1e82d0f 5b0a950 1e82d0f 5b0a950 183919d 9a88af5 73e6552 b4f6b6b 5f10bb4 a6d68c1 0b9036a 84416f7 eea5965 1da1b16 f94dbca 81b3ebc 950aabc 1da1b16 eff544a 183919d 36a46fb eff544a 183919d eff544a 183919d eff544a 183919d 36a46fb eff544a 183919d f053903 5b0a950 81b3ebc 183919d a8a7a4b f94dbca fc34ca5 e21ffc2 183919d af6492b 183919d fc34ca5 a8a7a4b 183919d 534531a 1e82d0f 534531a eac7abb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
import gradio as gr
# from transformers import pipeline
# from transformers.utils import logging
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from llama_index.vector_stores.chroma import ChromaVectorStore
from llama_index.core import StorageContext
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
import torch
from llama_index.core import VectorStoreIndex
from llama_index.core import Document
from llama_index.core import Settings
from llama_index.llms.huggingface import (HuggingFaceInferenceAPI, HuggingFaceLLM, )
from huggingface_hub import login
import chromadb as chromadb
from chromadb.utils import embedding_functions
import shutil
import os
from io import StringIO
#
last = 0
CHROMA_DATA_PATH = "chroma_data/"
EMBED_MODEL = "BAAI/bge-m3"
# all-MiniLM-L6-v2
CHUNK_SIZE = 800
CHUNK_OVERLAP = 50
max_results = 3
min_len = 40
min_distance = 0.35
max_distance = 0.6
temperature = 0.55
max_tokens=3072
top_p=0.8
frequency_penalty=0.0
presence_penalty=0.15
jezik = "srpski"
cs = "s0"
system_sr = "Zoveš se U-Chat AI asistent i pomažeš korisniku usluga kompanije United Group. Korisnik postavlja pitanje ili problem, upareno sa dodatnima saznanjima. Na osnovu toga napiši korisniku kratak i ljubazan odgovor koji kompletira njegov zahtev ili mu daje odgovor na pitanje. "
# " Ako ne znaš odgovor, reci da ne znaš, ne izmišljaj ga."
system_sr += "Usluge kompanije United Group uključuju i kablovsku mrežu za digitalnu televiziju, pristup internetu, uređaj EON SMART BOX za TV sadržaj, kao i fiksnu telefoniju. "
chroma_client = chromadb.PersistentClient(CHROMA_DATA_PATH)
embedding_func = embedding_functions.SentenceTransformerEmbeddingFunction(
model_name=EMBED_MODEL
)
collection = chroma_client.get_or_create_collection(
name="chroma_data",
embedding_function=embedding_func,
metadata={"hnsw:space": "cosine"},
)
last = collection.count()
#
HF_TOKEN = "wncSKewozDfuZCXCyFbYbAMHgUrfcrumkc"
#
login(token=("hf_" + HF_TOKEN))
system_propmpt = system_sr
# "facebook/blenderbot-400M-distill", facebook/blenderbot-400M-distill, stabilityai/stablelm-zephyr-3b, BAAI/bge-small-en-v1.5
Settings.llm = HuggingFaceInferenceAPI(model_name="mistralai/Mistral-Nemo-Instruct-2407",
device_map="auto",
system_prompt = system_propmpt,
context_window=4096,
max_new_tokens=256,
# stopping_ids=[50278, 50279, 50277, 1, 0],
generate_kwargs={"temperature": 0.5, "do_sample": False},
# tokenizer_kwargs={"max_length": 4096},
tokenizer_name="mistralai/Mistral-Nemo-Instruct-2407",
)
# "BAAI/bge-m3"
Settings.embed_model = HuggingFaceEmbedding(model_name="sentence-transformers/all-MiniLM-L6-v2")
#documents = [Document(text="Indian parliament elections happened in April-May 2024. BJP Party won."),
# ]
#index = VectorStoreIndex.from_documents(
# documents,
#)
vector_store = ChromaVectorStore(chroma_collection=collection)
index = VectorStoreIndex.from_vector_store(vector_store, embed_model=Settings.embed_model)
query_engine = index.as_query_engine(
similarity_top_k=3,
vector_store_query_mode="default",
# filters=MetadataFilters(
# filters=[
# ExactMatchFilter(key="state", value=cs),
# ]
# ),
alpha=None,
doc_ids=None,
)
chat_engine = index.as_chat_engine(chat_mode="condense_question", verbose=True)
def upload_file(filepath):
documents = SimpleDirectoryReader(filepath).load_data()
index = VectorStoreIndex.from_documents(documents)
#query_engine = index.as_query_engine()
chat_engine = index.as_chat_engine(chat_mode="condense_question", verbose=True)
return filepath
def resetChat():
chat_engine.reset()
return True
def rag(input_text, history, jezik, file):
# if (btn):
# resetChat()
if (file):
# documents = []
# for f in file:
# documents += SimpleDirectoryReader(f).load_data()
# f = file + "*.pdf"
pathname = os.path.dirname
# shutil.copyfile(file.name, path)
print("pathname=", pathname)
print("basename=", os.path.basename(file))
print("filename=", file.name)
documents = SimpleDirectoryReader(file.name).load_data()
index2 = VectorStoreIndex.from_documents(documents)
query_engine = index2.as_query_engine()
# return query_engine.query(input_text)
# return history.append({"role": "assistant", "content": query_engine.query(input_text)})
return history.append(
ChatMessage(role="assistant",
content=query_engine.query(input_text)
)
# collection.add(
# documents=documents,
# ids=[f"id{last+i}" for i in range(len(documents))],
# metadatas=[{"state": "s0", "next": "s0", "used": False, "source": 'None', "page": -1, "lang": jezik } for i in range(len(documents)) ]
# )
else:
o_jezik = "N/A"
match jezik:
case 'hrvatski':
o_jezik = 'na hrvatskom jeziku'
Settings.llm.system_prompt = system_sr + "Call centar telefon je 095 1000 444 za privatne i 095 1000 500 za poslovne korisnike. Stranica podrške je <https://tele mach.hr/podrska>." + "Odgovaraj " + o_jezik
case 'slovenski':
o_jezik = 'v slovenščini'
Settings.llm.system_prompt = system_sr + "Call centar i pomoč za fizične uporabnike: 070 700 700.stran za podporo je <https://telemach.si/pomoc>. " + "Odgovor " + o_jezik
case 'srpski':
o_jezik = 'na srpskom jeziku'
Settings.llm.system_prompt = system_sr + "Call centar telefon je 19900 za sve korisnike. Stranica podrške je <https://sbb.rs/podrska/>. " + "Odgovaraj " + o_jezik
case 'makedonski':
o_jezik = 'на македонски јазикот'
Settings.llm.system_prompt = system_sr + "Stranica podrške je https://mn.nettvplus.com/me/podrska/ za NetTV. " + "Oдговори " + o_jezik
case 'Eksperimentalna opcija':
o_jezik = 'N/A'
Settings.llm.system_prompt = system_sr + "Call centar telefon je 12755 za Crnu Goru, 0800 31111 za BIH, 070 700 700 u Sloveniji, 19900 u Srbiji, 095 1000 444 za hrvatske korisnike. "
# if (o_jezik!='N/A'):
# input_text += " - odgovori " + o_jezik + "."
# return query_engine.query(input_text)
return history.append(
ChatMessage(role="assistant",
content=chat_engine.chat(input_text)}
)
# Interface
# gr.Textbox(label="Pitanje:", lines=6),
# outputs=[gr.Textbox(label="Odgovor:", lines=6)],
iface = gr.ChatInterface(rag,
title="UChat",
description="Postavite pitanje ili opišite problem koji imate",
chatbot=gr.Chatbot(ChatMessage(role="assistant", content="Kako Vam mogu pomoći?"), type='messages', label="Uchat", height=300),
textbox=gr.Textbox(placeholder="Pitanje ili opis problema", container=False, scale=7),
theme="soft",
# examples=["Ne radi mi internet", "Koje usluge imam na raspologanju?", "Ne radi mi daljinski upravljač, šta da radim?"],
# cache_examples=True,
retry_btn=None,
undo_btn="Briši prethodno",
clear_btn="Briši sve",
additional_inputs = [gr.Dropdown(["slovenski", "hrvatski", "srpski", "makedonski", "Eksperimentalna opcija"], value="srpski", label="Jezik", info="N/A"),
gr.File()]
)
#with gr.Blocks() as iface:
# gr.Markdown("Uchat")
# file_out = gr.File()
# with gr.Row():
# with gr.Column(scale=1):
# inp = gr.Textbox(label="Pitanje:", lines=6)
# u = gr.UploadButton("Upload a file", file_count="single")
# with gr.Column(scale=1):
# out = gr.Textbox(label="Odgovor:", lines=6)
# sub = gr.Button("Pokreni")
#
# u.upload(upload_file, u, file_out)
# sub.click(rag, inp, out)
iface.launch() |