File size: 8,295 Bytes
c46e62c
eac7abb
 
2ff5a83
 
 
eac7abb
 
 
 
18214a7
 
e3c7652
7750c4a
 
5f10bb4
 
cf46755
7750c4a
 
73e6552
4f66cb8
 
 
 
 
 
 
 
 
 
 
 
 
 
73e6552
5b0a950
4f66cb8
 
 
eff544a
4f66cb8
 
 
 
 
 
 
 
 
 
 
73e6552
4f66cb8
8bda472
16937bb
8bda472
16937bb
9686f63
7750c4a
eac7abb
f443a92
91dc355
eac7abb
 
 
 
 
 
 
f443a92
eac7abb
b24691a
 
61f786b
 
 
 
 
 
 
5b0a950
 
 
 
 
 
 
 
 
 
1254e13
5b0a950
1e82d0f
 
 
 
5b0a950
 
1e82d0f
 
5b0a950
 
 
 
183919d
9a88af5
 
f6b1404
73e6552
b4f6b6b
 
 
5f10bb4
a6d68c1
0b9036a
84416f7
 
 
eea5965
1da1b16
 
f94dbca
81b3ebc
 
 
 
 
950aabc
 
 
 
 
1da1b16
eff544a
 
 
 
183919d
36a46fb
eff544a
183919d
eff544a
 
183919d
eff544a
 
183919d
36a46fb
eff544a
183919d
f053903
 
5b0a950
81b3ebc
 
 
 
183919d
 
 
a8a7a4b
f94dbca
fc34ca5
e21ffc2
183919d
 
af6492b
 
183919d
 
fc34ca5
a8a7a4b
 
183919d
534531a
1e82d0f
 
 
 
 
 
 
 
 
 
 
 
 
534531a
eac7abb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import gradio as gr
# from transformers import pipeline
# from transformers.utils import logging
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from llama_index.vector_stores.chroma import ChromaVectorStore
from llama_index.core import StorageContext
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
import torch
from llama_index.core import VectorStoreIndex
from llama_index.core import Document
from llama_index.core import Settings 
from llama_index.llms.huggingface import (HuggingFaceInferenceAPI, HuggingFaceLLM, )
from huggingface_hub import login
import chromadb as chromadb
from chromadb.utils import embedding_functions
import shutil
import os
from io import StringIO
#

last = 0
CHROMA_DATA_PATH = "chroma_data/"
EMBED_MODEL = "BAAI/bge-m3"
# all-MiniLM-L6-v2
CHUNK_SIZE = 800
CHUNK_OVERLAP = 50
max_results = 3
min_len = 40
min_distance = 0.35
max_distance = 0.6
temperature = 0.55
max_tokens=3072
top_p=0.8
frequency_penalty=0.0
presence_penalty=0.15
jezik = "srpski"
cs = "s0"

system_sr = "Zoveš se U-Chat AI asistent i pomažeš korisniku usluga kompanije United Group. Korisnik postavlja pitanje ili problem, upareno sa dodatnima saznanjima. Na osnovu toga napiši korisniku kratak i ljubazan odgovor koji kompletira njegov zahtev ili mu daje odgovor na pitanje. "
# " Ako ne znaš odgovor, reci da ne znaš, ne izmišljaj ga."
system_sr += "Usluge kompanije United Group uključuju i kablovsku mrežu za digitalnu televiziju, pristup internetu, uređaj EON SMART BOX za TV sadržaj, kao i fiksnu telefoniju. "

chroma_client = chromadb.PersistentClient(CHROMA_DATA_PATH)
embedding_func = embedding_functions.SentenceTransformerEmbeddingFunction(
        model_name=EMBED_MODEL
    )

collection = chroma_client.get_or_create_collection(
        name="chroma_data",
        embedding_function=embedding_func,
        metadata={"hnsw:space": "cosine"},
    )
last = collection.count()

#
HF_TOKEN = "wncSKewozDfuZCXCyFbYbAMHgUrfcrumkc"
#
login(token=("hf_" + HF_TOKEN))

system_propmpt = system_sr

# "facebook/blenderbot-400M-distill",  facebook/blenderbot-400M-distill, stabilityai/stablelm-zephyr-3b, BAAI/bge-small-en-v1.5
Settings.llm = HuggingFaceInferenceAPI(model_name="mistralai/Mistral-Nemo-Instruct-2407",
                              device_map="auto",
                              system_prompt = system_propmpt,
                              context_window=4096,
                              max_new_tokens=256,
#                              stopping_ids=[50278, 50279, 50277, 1, 0],
                              generate_kwargs={"temperature": 0.5, "do_sample": False},
#                              tokenizer_kwargs={"max_length": 4096},
                              tokenizer_name="mistralai/Mistral-Nemo-Instruct-2407", 
                             )
# "BAAI/bge-m3"
Settings.embed_model = HuggingFaceEmbedding(model_name="sentence-transformers/all-MiniLM-L6-v2")
#documents = [Document(text="Indian parliament elections happened in April-May 2024. BJP Party won."),
#            ]
#index = VectorStoreIndex.from_documents(
#    documents,
#)
vector_store = ChromaVectorStore(chroma_collection=collection)
index = VectorStoreIndex.from_vector_store(vector_store, embed_model=Settings.embed_model)
query_engine = index.as_query_engine(
    similarity_top_k=3,
    vector_store_query_mode="default",
#    filters=MetadataFilters(
#        filters=[
#            ExactMatchFilter(key="state", value=cs),
#        ]
#    ),
    alpha=None,
    doc_ids=None,
)
chat_engine = index.as_chat_engine(chat_mode="condense_question", verbose=True)

def upload_file(filepath):
    documents = SimpleDirectoryReader(filepath).load_data()
    index = VectorStoreIndex.from_documents(documents)
    #query_engine = index.as_query_engine()
    chat_engine = index.as_chat_engine(chat_mode="condense_question", verbose=True)
    return filepath

def resetChat():
    chat_engine.reset()
    return True

def rag(input_text, history, jezik, file):
#    if (btn):
#        resetChat()
    print(history, input_text)
    if (file):
#        documents = []
#        for f in file:
#            documents += SimpleDirectoryReader(f).load_data()
#        f = file + "*.pdf"
        pathname = os.path.dirname
#        shutil.copyfile(file.name, path)
        print("pathname=", pathname)
        print("basename=", os.path.basename(file))
        print("filename=", file.name)        
        documents = SimpleDirectoryReader(file.name).load_data()
        index2 = VectorStoreIndex.from_documents(documents)
        query_engine = index2.as_query_engine()
#        return query_engine.query(input_text)
#        return history.append({"role": "assistant", "content": query_engine.query(input_text)})
        return history.append(
            ChatMessage(role="assistant",
                    content=query_engine.query(input_text)
        )
#        collection.add(
#            documents=documents,
#        ids=[f"id{last+i}" for i in range(len(documents))],
#        metadatas=[{"state": "s0", "next": "s0", "used": False, "source": 'None', "page": -1, "lang": jezik } for i in range(len(documents)) ]
#    )
    else:
        o_jezik = "N/A"
        match jezik:
            case 'hrvatski':
                o_jezik = 'na hrvatskom jeziku'
                Settings.llm.system_prompt = system_sr + "Call centar telefon je 095 1000 444 za privatne i 095 1000 500 za poslovne korisnike. Stranica podrške je <https://tele mach.hr/podrska>." + "Odgovaraj " + o_jezik
            case 'slovenski':
                o_jezik = 'v slovenščini'
                Settings.llm.system_prompt = system_sr + "Call centar i pomoč za fizične uporabnike: 070 700 700.stran za podporo je <https://telemach.si/pomoc>. " + "Odgovor " + o_jezik
            case 'srpski':
                o_jezik = 'na srpskom jeziku'
                Settings.llm.system_prompt = system_sr + "Call centar telefon je 19900 za sve korisnike. Stranica podrške je <https://sbb.rs/podrska/>. " + "Odgovaraj " + o_jezik
            case 'makedonski':
                o_jezik = 'на македонски јазикот'
                Settings.llm.system_prompt = system_sr + "Stranica podrške je https://mn.nettvplus.com/me/podrska/ za NetTV. " + "Oдговори " + o_jezik
            case 'Eksperimentalna opcija':
                o_jezik = 'N/A'
                Settings.llm.system_prompt = system_sr + "Call centar telefon je 12755 za Crnu Goru, 0800 31111 za BIH, 070 700 700 u Sloveniji, 19900 u Srbiji, 095 1000 444 za hrvatske korisnike. "
#        if (o_jezik!='N/A'):
#            input_text += " - odgovori " + o_jezik + "."
#        return query_engine.query(input_text)
        return history.append(
            ChatMessage(role="assistant",
                    content=chat_engine.chat(input_text)}
        )
# Interface
# gr.Textbox(label="Pitanje:", lines=6),
# outputs=[gr.Textbox(label="Odgovor:", lines=6)], 
iface = gr.ChatInterface(rag,        
        title="UChat",
        description="Postavite pitanje ili opišite problem koji imate",
        chatbot=gr.Chatbot(ChatMessage(role="assistant", content="Kako Vam mogu pomoći?"), type='messages', label="Uchat", height=300),
        textbox=gr.Textbox(placeholder="Pitanje ili opis problema", container=False, scale=7),
        theme="soft",
#        examples=["Ne radi mi internet", "Koje usluge imam na raspologanju?", "Ne radi mi daljinski upravljač, šta da radim?"],
#        cache_examples=True,
        retry_btn=None,
        undo_btn="Briši prethodno",
        clear_btn="Briši sve",
        additional_inputs = [gr.Dropdown(["slovenski", "hrvatski", "srpski", "makedonski", "Eksperimentalna opcija"], value="srpski", label="Jezik", info="N/A"),
                             gr.File()]
    )

#with gr.Blocks() as iface:
#    gr.Markdown("Uchat")
#    file_out = gr.File()
#    with gr.Row():
#        with gr.Column(scale=1):
#            inp = gr.Textbox(label="Pitanje:", lines=6)
#            u = gr.UploadButton("Upload a file", file_count="single")
#        with gr.Column(scale=1):
#            out = gr.Textbox(label="Odgovor:", lines=6)
#            sub = gr.Button("Pokreni")
#
#    u.upload(upload_file, u, file_out)
#    sub.click(rag, inp, out)
    
iface.launch()