Spaces:
Running
Running
File size: 9,719 Bytes
c46e62c eac7abb 2ff5a83 eac7abb 6200eb1 10634ae e81181e e3c7652 7750c4a 5f10bb4 cf46755 7750c4a 73e6552 4f66cb8 9349c88 ee3408d 4f66cb8 5a8431a 9349c88 5a8431a 9349c88 4f66cb8 5a8431a 4f66cb8 73e6552 5b0a950 4f66cb8 5831362 0d6c0da eff544a 4f66cb8 73e6552 4f66cb8 8bda472 16937bb 8bda472 16937bb 9686f63 7750c4a eac7abb f443a92 90fc8a2 eac7abb 9349c88 eac7abb 9349c88 eac7abb f443a92 eac7abb b24691a 61f786b 5b0a950 1254e13 5b0a950 1e82d0f 5b0a950 f9183b0 1e82d0f 5b0a950 59241c3 5b0a950 f8e268e 9a88af5 494caf3 0c3d0b8 a6c802a 494caf3 5f10bb4 0c3d0b8 0b9036a 0c3d0b8 494caf3 0c3d0b8 f94dbca 81b3ebc 13939ef 950aabc 0c3d0b8 7603764 13939ef 5831362 13939ef 5831362 13939ef 5831362 13939ef 5831362 13939ef fc12cd6 f053903 5b0a950 d4e20bb 567ed85 183919d 4944264 0e0ce96 d8a0832 31f8aa4 58195fb 9349c88 1a23014 183919d 5f834f9 b6c3de6 01d4994 bfe143d 183919d 31f8aa4 9349c88 58195fb b6c3de6 0e0ce96 1a23014 183919d 0e0ce96 534531a 1e82d0f 534531a eac7abb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
import gradio as gr
# from transformers import pipeline
# from transformers.utils import logging
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from llama_index.vector_stores.chroma import ChromaVectorStore
from llama_index.core import StorageContext
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
import torch
from llama_index.core import (
VectorStoreIndex,
Document,
Settings,
)
from llama_index.llms.huggingface import (HuggingFaceLLM, HuggingFaceInferenceAPI, )
from llama_index.core.base.llms.types import ChatMessage
from huggingface_hub import login
import chromadb as chromadb
from chromadb.utils import embedding_functions
import shutil
import os
from io import StringIO
#
last = 0
CHROMA_DATA_PATH = "chroma_data/"
EMBED_MODEL = "sentence-transformers/all-MiniLM-L6-v2" #"BAAI/bge-m3"
LLM_NAME = "mistralai/Mistral-Nemo-Instruct-2407"
# all-MiniLM-L6-v2
CHUNK_SIZE = 800
CHUNK_OVERLAP = 50
max_results = 3
min_len = 40
min_distance = 0.35
max_distance = 0.6
temperature = 0.6
max_tokens=5100
top_p=0.85
top_k=1000
frequency_penalty=0.0
repetition_penalty=1.12
presence_penalty=0.15
jezik = "srpski"
cs = "s0"
system_sr = "Zoveš se U-Chat AI asistent i pomažeš odgovorima korisniku usluga kompanije United Group. Korisnik postavlja pitanje ili problem na koji očekuje rešenje. "
" Ako ne znaš odgovor, reci da ne znaš, ne izmišljaj ga."
system_sr += "Usluge kompanije United Group uključuju i kablovsku mrežu za digitalnu televiziju, pristup internetu, uređaj EON SMART BOX za TV sadržaj, kao i fiksnu telefoniju. "
chroma_client = chromadb.PersistentClient(CHROMA_DATA_PATH)
embedding_func = embedding_functions.SentenceTransformerEmbeddingFunction(
model_name=EMBED_MODEL
)
collection = chroma_client.get_or_create_collection(
name="chroma_data",
embedding_function=embedding_func,
metadata={"hnsw:space": "cosine"},
)
last = collection.count()
#
HF_TOKEN = "wncSKewozDfuZCXCyFbYbAMHgUrfcrumkc"
#
login(token=("hf_" + HF_TOKEN))
system_propmpt = system_sr
# "facebook/blenderbot-400M-distill", facebook/blenderbot-400M-distill, stabilityai/stablelm-zephyr-3b, BAAI/bge-small-en-v1.5
Settings.llm = HuggingFaceInferenceAPI(model_name=LLM_NAME,
device_map="auto",
system_prompt = system_propmpt,
context_window=5100,
max_new_tokens=3072,
# stopping_ids=[50278, 50279, 50277, 1, 0],
generate_kwargs={"temperature": temperature, "top_p":top_p, "repetition_penalty": repetition_penalty,
"presence_penalty": presence_penalty, "frequency_penalty": frequency_penalty,
"top_k": top_k, "do_sample": False},
# tokenizer_kwargs={"max_length": 4096},
tokenizer_name="mistralai/Mistral-Nemo-Instruct-2407",
)
# "BAAI/bge-m3"
Settings.embed_model = HuggingFaceEmbedding(model_name="sentence-transformers/all-MiniLM-L6-v2")
#documents = [Document(text="Indian parliament elections happened in April-May 2024. BJP Party won."),
# ]
#index = VectorStoreIndex.from_documents(
# documents,
#)
vector_store = ChromaVectorStore(chroma_collection=collection)
index = VectorStoreIndex.from_vector_store(vector_store, embed_model=Settings.embed_model)
query_engine = index.as_query_engine(
similarity_top_k=3,
vector_store_query_mode="default",
# filters=MetadataFilters(
# filters=[
# ExactMatchFilter(key="state", value=cs),
# ]
# ),
alpha=None,
doc_ids=None,
)
chat_engine = index.as_chat_engine(chat_mode="condense_question", verbose=True)
def upload_file(filepath):
documents = SimpleDirectoryReader(filepath).load_data()
index = VectorStoreIndex.from_documents(documents)
#query_engine = index.as_query_engine()
#condense_question condense_plus_context
chat_engine = index.as_chat_engine(chat_mode="best", verbose=True)
return filepath
def resetChat():
chat_engine.reset()
print("Restarted!!!")
return True
def rag(input_text, history, jezik, file):
# if (btn):
# resetChat()
# print(history, input_text)
## if (file):
documents = []
#!!! for f in file:
#!!! documents += SimpleDirectoryReader(f).load_data()
# f = file + "*.pdf"
## pathname = os.path.dirname
# shutil.copyfile(file.name, path)
## print("pathname=", pathname)
## print("basename=", os.path.basename(file))
## print("filename=", file.name)
## documents = SimpleDirectoryReader(file).load_data()
#!!! index2 = VectorStoreIndex.from_documents(documents)
## query_engine = index2.as_query_engine()
# return query_engine.query(input_text)
# return history.append({"role": "assistant", "content": query_engine.query(input_text)})
## return history + [[input_text, query_engine.query(input_text)]]
# collection.add(
# documents=documents,
# ids=[f"id{last+i}" for i in range(len(documents))],
# metadatas=[{"state": "s0", "next": "s0", "used": False, "source": 'None', "page": -1, "lang": jezik } for i in range(len(documents)) ]
# )
## else:
query_results = collection.query(
query_texts = [ input_text ],
n_results = max_results,
where = { "lang": jezik },
#where = { "$and": [ {"lang": jezik}, {"page": { "$nin": [ -1 ]}}]},
#where = { "$and": [ {"$and": [ { "$or": [ {"state": self.cs }, { "page": { "$nin": [ -1 ] } } ] } , { "used": False } ] } ,
# {"lang": jezik } ] },
)
o_jezik = "N/A"
match jezik:
case 'hrvatski':
o_jezik = 'na hrvatskom jeziku, gramatički točno.'
Settings.llm.system_prompt = system_sr + "Call centar telefon je 095 1000 444 za privatne i 095 1000 500 za poslovne korisnike. Stranica podrške je <https://tele mach.hr/podrska>." + "Odgovaraj " + o_jezik
case 'slovenski':
o_jezik = 'v slovenščini, slovnično pravilen.'
Settings.llm.system_prompt = system_sr + "Call centar i pomoč za fizične uporabnike: 070 700 700.stran za podporo je <https://telemach.si/pomoc>. " + "Odgovor " + o_jezik
case 'srpski':
o_jezik = 'na srpskom jeziku, gramatički ispravno.'
Settings.llm.system_prompt = system_sr + "Call centar telefon je 19900 za sve korisnike. Stranica podrške je <https://sbb.rs/podrska/>. " + "Odgovaraj " + o_jezik
case 'makedonski':
o_jezik = 'на македонски јазикот граматички точно.'
Settings.llm.system_prompt = system_sr + "Stranica podrške je https://mn.nettvplus.com/me/podrska/ za NetTV. " + "Oдговори " + o_jezik
case 'Eksperimentalna opcija':
o_jezik = 'N/A'
Settings.llm.system_prompt = system_sr + "Call centar telefon je 12755 za Crnu Goru, 0800 31111 za BIH, 070 700 700 u Sloveniji, 19900 u Srbiji, 095 1000 444 za hrvatske korisnike. Odgovori na jeziku istom kao i u postavljenom pitanju ili problemu korisnika."
# if (o_jezik!='N/A'):
# input_text += " - odgovori " + o_jezik + "."
# return query_engine.query(input_text)
response = chat_engine.chat(input_text).response
return response
# Interface
# gr.Textbox(label="Pitanje:", lines=6),
# outputs=[gr.Textbox(label="Odgovor:", lines=6)],
# ChatMessage(role="assistant", content="Kako Vam mogu pomoći?")
with gr.Blocks() as iface:
ichat = gr.ChatInterface(rag,
title="UChat",
description="Postavite pitanje ili opišite problem koji imate - nakon promene jezika ili pre početka nove sesije sa agentom pritisnite dugme 'Briši sve - razgovor ispočetka'",
chatbot=gr.Chatbot(placeholder="Kako Vam mogu pomoći?", type="tuples", label="Agent podrške", height=350),
textbox=gr.Textbox(placeholder="Pitanje ili opis problema", container=False, scale=7),
autofocus = True,
theme="soft",
examples = [
["Ne radi mi internet", "srpski", ],
["Možete li mi popraviti kompjuter koji koristi internet?", "srpski", ],
["Ne radi mi daljinski upravljač, šta da radim?", "srpski", ],
["EON daljinski upravljalnik mi ne deluje, kaj naj naredim?", "slovenski", ],
["Мојот кабелски прием не работи, што треба да направам?", "makedonski", ],
],
cache_examples=False,
retry_btn=None,
undo_btn=None,
clear_btn="Briši sve - razgovor ispočetka",
additional_inputs = [gr.Dropdown(["slovenski", "hrvatski", "srpski", "makedonski", "Eksperimentalna opcija"], value="srpski", label="Jezik", info="komunikacije"),
# gr.File()
],
additional_inputs_accordion="Jezik i ostale opcije",
)
ichat.clear_btn.click(resetChat)
#with gr.Blocks() as iface:
# gr.Markdown("Uchat")
# file_out = gr.File()
# with gr.Row():
# with gr.Column(scale=1):
# inp = gr.Textbox(label="Pitanje:", lines=6)
# u = gr.UploadButton("Upload a file", file_count="single")
# with gr.Column(scale=1):
# out = gr.Textbox(label="Odgovor:", lines=6)
# sub = gr.Button("Pokreni")
#
# u.upload(upload_file, u, file_out)
# sub.click(rag, inp, out)
iface.launch() |