Spaces:
Running
Running
import gradio as gr | |
from transformers import pipeline | |
from transformers.utils import logging | |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding | |
import torch | |
from llama_index.core import VectorStoreIndex | |
from llama_index.core import Document | |
from llama_index.core import Settings | |
from llama_index.llms.huggingface import ( | |
HuggingFaceInferenceAPI, | |
HuggingFaceLLM, | |
) | |
Settings.llm = HuggingFaceLLM(model_name="facebook/blenderbot-400M-distill", | |
device_map="cpu", | |
context_window=128, | |
tokenizer_name="facebook/blenderbot-400M-distill" | |
) | |
Settings.embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5") | |
documents = [Document(text="Indian parliament elections happened in April-May 2024. BJP Party won.")] | |
index = VectorStoreIndex.from_documents( | |
documents, | |
) | |
query_engine = index.as_query_engine() | |
def rag(input_text, file): | |
return query_engine.query( | |
input_text | |
) | |
iface = gr.Interface(fn=rag, inputs=[gr.Textbox(label="Question", lines=6), gr.File()], | |
outputs=[gr.Textbox(label="Result", lines=6)], | |
title="Answer my question", | |
description= "CoolChatBot" | |
) | |
iface.launch() |