Spaces:
Running
Running
Create app_llama_index.py
Browse files- app_llama_index.py +52 -0
app_llama_index.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
# from transformers import pipeline
|
3 |
+
# from transformers.utils import logging
|
4 |
+
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
5 |
+
import torch
|
6 |
+
from llama_index.core import VectorStoreIndex
|
7 |
+
from llama_index.core import Document
|
8 |
+
from llama_index.core import Settings
|
9 |
+
from llama_index.llms.huggingface import (
|
10 |
+
HuggingFaceInferenceAPI,
|
11 |
+
HuggingFaceLLM,
|
12 |
+
)
|
13 |
+
|
14 |
+
#system_sr = "Zoveš se U-Chat AI asistent i pomažeš korisniku usluga kompanije United Group. Korisnik postavlja pitanje ili problem, upareno sa dodatnima saznanjima. Na osnovu toga napiši korisniku kratak i ljubazan odgovor koji kompletira njegov zahtev ili mu daje odgovor na pitanje. "
|
15 |
+
# " Ako ne znaš odgovor, reci da ne znaš, ne izmišljaj ga."
|
16 |
+
#system_sr += "Usluge kompanije United Group uključuju i kablovsku mrežu za digitalnu televiziju, pristup internetu, uređaj EON SMART BOX za TV sadržaj, kao i fiksnu telefoniju."
|
17 |
+
|
18 |
+
system_propmpt = "You are a friendly Chatbot."
|
19 |
+
|
20 |
+
# "facebook/blenderbot-400M-distill", facebook/blenderbot-400M-distill , BAAI/bge-small-en-v1.5
|
21 |
+
Settings.llm = HuggingFaceLLM(model_name="stabilityai/stablelm-zephyr-3b",
|
22 |
+
device_map="auto",
|
23 |
+
system_prompt = system_propmpt,
|
24 |
+
context_window=4096,
|
25 |
+
max_new_tokens=256,
|
26 |
+
# stopping_ids=[50278, 50279, 50277, 1, 0],
|
27 |
+
generate_kwargs={"temperature": 0.5, "do_sample": False},
|
28 |
+
# tokenizer_kwargs={"max_length": 4096},
|
29 |
+
tokenizer_name="stabilityai/stablelm-zephyr-3b",
|
30 |
+
)
|
31 |
+
|
32 |
+
Settings.embed_model = HuggingFaceEmbedding(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
33 |
+
documents = [Document(text="Indian parliament elections happened in April-May 2024. BJP Party won."),
|
34 |
+
Document(text="Indian parliament elections happened in April-May 2021. XYZ Party won."),
|
35 |
+
Document(text="Indian parliament elections happened in 2020. ABC Party won."),
|
36 |
+
]
|
37 |
+
index = VectorStoreIndex.from_documents(
|
38 |
+
documents,
|
39 |
+
)
|
40 |
+
|
41 |
+
query_engine = index.as_query_engine()
|
42 |
+
def rag(input_text, file):
|
43 |
+
return query_engine.query(
|
44 |
+
input_text
|
45 |
+
)
|
46 |
+
|
47 |
+
iface = gr.Interface(fn=rag, inputs=[gr.Textbox(label="Question", lines=6), gr.File()],
|
48 |
+
outputs=[gr.Textbox(label="Result", lines=6)],
|
49 |
+
title="Answer my question",
|
50 |
+
description= "CoolChatBot"
|
51 |
+
)
|
52 |
+
iface.launch()
|