# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from omegaconf import DictConfig from . import builders, musicgen from einops import rearrange from torch.nn import functional as F from ..modules.conditioners import SegmentWithAttributes import torch import numpy as np import random import typing as tp import math import flashy class MagnetSolver(musicgen.MusicGenSolver): """Solver for MAGNeT - Masked Audio Generation using a single Non-autoregressive Transformer https://arxiv.org/abs/2401.04577. """ def __init__(self, cfg: DictConfig): super().__init__(cfg) # initialize generation parameters by config self.generation_params = { 'use_sampling': self.cfg.generate.lm.use_sampling, 'temp': self.cfg.generate.lm.temp, 'top_k': self.cfg.generate.lm.top_k, 'top_p': self.cfg.generate.lm.top_p, 'max_cfg_coef': self.cfg.generate.lm.max_cfg_coef, 'min_cfg_coef': self.cfg.generate.lm.min_cfg_coef, 'decoding_steps': list(self.cfg.generate.lm.decoding_steps), 'anneal_temp': self.cfg.generate.lm.anneal_temp, 'span_scoring': self.cfg.generate.lm.span_scoring, 'span_arrangement': self.cfg.generate.lm.span_arrangement } sequence_len = int(cfg.dataset.segment_duration * self.compression_model.frame_rate) self.mean_maskrate_to_u = torch.tensor(self._calc_mean_maskrate_to_u_LUT(sequence_len), device=self.device) self.ce_per_codebook = [torch.log(torch.tensor(self.compression_model.cardinality, device=self.device)) for _ in range(cfg.transformer_lm.n_q)] def build_model(self) -> None: self.cfg.transformer_lm.segment_duration = self.cfg.dataset.segment_duration self.cfg.transformer_lm.span_len = self.cfg.masking.span_len assert self.cfg.efficient_attention_backend == "xformers", "MAGNeT v1 models support only xformers backend." super().build_model() def _calc_mean_maskrate_to_u_LUT(self, T: int): """ Create a Look Up Table (LUT) transforming a discrete masking percentage m in 0,1,...,100 to u, the number of overlapping spans of length L to place s.t. the masking rate is approximately m/float(100). It first creates the inverse transformation, of the masking rate as function of u, using the expression choose(T - L, u) / choose(T, u), where L is the atomic span length used during masking. See https://arxiv.org/abs/2401.04577, appendix C, for the mean mask rate derivation. We leverage the fact that: choose(T - L, u) / choose(T, u) = Prod_{j = 0}^{u - 1}((T - L - j)/(T - j)) in the provided implementation, in order to avoid overflow. Args: T (float): Sequence length. Returns: (List) A LUT transforming m in 0,1,...,100 to u, s.t. the masking rate of the span-L mask is approximately m/float(100). """ L = self.cfg.masking.span_len u2mean = [0.0] # mean mask rate is 0.0 for u = 0 v = (T - L) / float(T) for u in range(1, T): u2mean.append(1 - v) v *= (T - L - u) / (T - u) # Overflow-safe implementation of choose(T - L, u) / choose(T, u). mean2u = [] for maskperc in range(101): maskrate = maskperc / float(100) u = int(np.searchsorted(u2mean, maskrate)) mean2u.append(u) return mean2u def _non_spans_mask(self, mask_probs: torch.Tensor, B: int, T: int, device: torch.device) -> torch.Tensor: """ Construct a boolean mask of shape [B, T, 1], with masking rates defined by mask_probs. The masked tokens are singletons, placed uniformly at random. Args: mask_probs (torch.Tensor): The desired masking rate per sample, of shape [B,] B (int): Batch size. T (int): Sequence length. device (torch.device): device of the output tensor Returns: (torch.Tensor): A mask of shape [B, T] """ num_token_masked = (T * mask_probs).round().clamp(min=1) batch_randperm = torch.rand((B, T), device=device).argsort(dim=-1) return batch_randperm < rearrange(num_token_masked, 'b -> b 1') def _spans_mask(self, mask_probs: torch.Tensor, B: int, T: int, device: torch.device) -> torch.Tensor: """ Construct a spans mask with masking rates defined by mask_probs, where the atomic span length ( > 1 ) is defined by cfg.masking.span_len. Args: mask_probs (torch.Tensor): The desired masking rate per sample, of shape [B,] B (int): Batch size. T (int): Sequence length. device (torch.device): device of the output tensor Returns: (torch.Tensor): A spans mask of shape [B, T] """ rounded_probs = torch.round(100 * mask_probs).long() k = self.mean_maskrate_to_u[rounded_probs].clamp(min=1) # k is the number of span starts # sample random span starts batch_randperm = torch.rand((B, T), device=device).argsort(dim=-1) mask = batch_randperm < rearrange(k, 'b -> b 1') B, T = mask.shape shifted_mask = mask.clone() for _ in range(self.cfg.masking.span_len - 1): shifted_mask = torch.concat((torch.full((B, 1), False, device=device), shifted_mask[:, :-1]), dim=1) mask = torch.logical_or(mask, shifted_mask) return mask def _get_mask(self, mask_probs: torch.Tensor, B: int, T: int, device: torch.device) -> torch.Tensor: """ Construct a boolean mask with masking rates defined by mask_probs, and atomic span length defined by cfg.masking.span_len. Args: mask_probs (torch.Tensor): The desired masking rate per sample, of shape [B,] B (int): Batch size. T (int): Sequence length. device (torch.device): device of the output tensor Returns: (torch.Tensor): A boolean tensor of shape [B, T] """ if self.cfg.masking.span_len <= 1: return self._non_spans_mask(mask_probs, B, T, device) return self._spans_mask(mask_probs, B, T, device) def _compute_cross_entropy_magnet(self, logits: torch.Tensor, targets: torch.Tensor, mask: torch.Tensor, stage: torch.Tensor) -> torch.Tensor: """ Compute cross entropy between multi-codebook targets and model's logits. The cross entropy is computed only on a specific codebook, defined by the stage argument. Valid timesteps for each codebook are pulled from the mask, where invalid timesteps are set to 0. Args: logits (torch.Tensor): Model's logits of shape [B, K, T, card]. targets (torch.Tensor): Target codes, of shape [B, K, T]. mask (torch.Tensor): Mask for valid target codes, of shape [B, K, T]. stage (torch.Tensor): The codebook (idx) that is being optimized, as a scalar tensor. Returns: ce (torch.Tensor): Cross entropy of the codebook that is being optimized. """ assert logits.shape[:-1] == targets.shape assert mask.shape == targets.shape ce = torch.zeros([], device=targets.device) logits_k = logits[:, stage, ...].contiguous().view(-1, logits.size(-1)) # [B x T, card] targets_k = targets[:, stage, ...].contiguous().view(-1) # [B x T] mask_k = mask[:, stage, ...].contiguous().view(-1) # [B x T] IGNORE_IDX = -1 targets_k[~mask_k] = IGNORE_IDX q_ce = F.cross_entropy(logits_k, targets_k, ignore_index=IGNORE_IDX) ce += q_ce return ce def run_step(self, idx: int, batch: tp.Tuple[torch.Tensor, tp.List[SegmentWithAttributes]], metrics: dict) -> dict: """Perform one training or valid step on a given batch.""" check_synchronization_points = idx == 1 and self.device == 'cuda' condition_tensors, audio_tokens, padding_mask = self._prepare_tokens_and_attributes( batch, check_synchronization_points) self.deadlock_detect.update('tokens_and_conditions') if check_synchronization_points: torch.cuda.set_sync_debug_mode('warn') B, K, T = audio_tokens.shape device = self.device # Choose the stage (codebook idx) for update, uniformly at random. stage_ = random.randint(0, K - 1) stage = torch.full((1, ), stage_, device=device) # masking rand_time = torch.zeros((B,), device=device).float().uniform_(0, 1) rand_mask_probs = torch.cos(rand_time * math.pi * 0.5) # stage mask stage_mask = self._get_mask(rand_mask_probs, B, T, device) # [B, T] stage_mask = stage_mask.unsqueeze(1) # [B, 1, T] # Keep all preceding codebooks. mask = torch.full((B, K, T), False, device=device) mask[:, stage, :] = stage_mask # Mask all codebooks larger than stage_ mask_id = self.model.special_token_id mask[:, (stage_+1):, :] = torch.full((B, K - stage_ - 1, T), True, device=device) input_tokens = torch.where(mask, mask_id, audio_tokens) # Take loss only on the chosen stage, and only on the masked tokens. loss_mask = torch.full((B, K, T), False, device=device) loss_mask[:, stage, :] = stage_mask with self.autocast: model_output = self.model.compute_predictions(input_tokens, [], condition_tensors, stage=stage_) logits = model_output.logits loss_mask &= padding_mask ce = self._compute_cross_entropy_magnet(logits, audio_tokens, loss_mask, stage) loss = ce self.deadlock_detect.update('loss') if check_synchronization_points: torch.cuda.set_sync_debug_mode('default') if self.is_training: metrics['lr'] = self.optimizer.param_groups[0]['lr'] if self.scaler is not None: loss = self.scaler.scale(loss) self.deadlock_detect.update('scale') if self.cfg.fsdp.use: loss.backward() flashy.distrib.average_tensors(self.model.buffers()) elif self.cfg.optim.eager_sync: with flashy.distrib.eager_sync_model(self.model): loss.backward() else: # this should always be slower but can be useful # for weird use cases like multiple backwards. loss.backward() flashy.distrib.sync_model(self.model) self.deadlock_detect.update('backward') if self.scaler is not None: self.scaler.unscale_(self.optimizer) if self.cfg.optim.max_norm: if self.cfg.fsdp.use: metrics['grad_norm'] = self.model.clip_grad_norm_(self.cfg.optim.max_norm) # type: ignore else: metrics['grad_norm'] = torch.nn.utils.clip_grad_norm_( self.model.parameters(), self.cfg.optim.max_norm ) if self.scaler is None: self.optimizer.step() else: self.scaler.step(self.optimizer) self.scaler.update() if self.lr_scheduler: self.lr_scheduler.step() self.optimizer.zero_grad() self.deadlock_detect.update('optim') if self.scaler is not None: scale = self.scaler.get_scale() metrics['grad_scale'] = scale if not loss.isfinite().all(): raise RuntimeError("Model probably diverged.") metrics['ce'] = ce metrics['ppl'] = torch.exp(ce) return metrics class AudioMagnetSolver(MagnetSolver): """Solver for audio-MAGNeT. A MAGNeT model for sound generation. More information can be found in the MAGNeT model card. """ DATASET_TYPE: builders.DatasetType = builders.DatasetType.SOUND