Spaces:
Runtime error
Runtime error
feat: add DonutProcessor and predict method
Browse files
app.py
CHANGED
@@ -2,14 +2,51 @@ import torch
|
|
2 |
import streamlit as st
|
3 |
|
4 |
from PIL import Image
|
5 |
-
from transformers import VisionEncoderDecoderModel, VisionEncoderDecoderConfig
|
6 |
|
7 |
|
8 |
-
def
|
9 |
-
global pretrained_model,
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
task_prompt = f"<s>"
|
15 |
|
@@ -30,10 +67,11 @@ image = Image.open(f"./img/receipt-{receipt}.jpg")
|
|
30 |
st.image(image, caption='Your target receipt')
|
31 |
|
32 |
st.text(f'baking the 🍩...')
|
|
|
33 |
pretrained_model = VisionEncoderDecoderModel.from_pretrained("unstructuredio/donut-base-sroie")
|
34 |
pretrained_model.encoder.to(torch.bfloat16)
|
35 |
pretrained_model.eval()
|
36 |
|
37 |
st.text(f'parsing receipt..')
|
38 |
-
parsed_receipt_info =
|
39 |
st.text(f'\nRaw output:\n{parsed_receipt_info}')
|
|
|
2 |
import streamlit as st
|
3 |
|
4 |
from PIL import Image
|
5 |
+
from transformers import VisionEncoderDecoderModel, VisionEncoderDecoderConfig , DonutProcessor
|
6 |
|
7 |
|
8 |
+
def run_prediction(sample):
|
9 |
+
global pretrained_model, processor, task_prompt
|
10 |
+
if isinstance(sample, dict):
|
11 |
+
# prepare inputs
|
12 |
+
pixel_values = torch.tensor(sample["pixel_values"]).unsqueeze(0)
|
13 |
+
else: # sample is an image
|
14 |
+
# prepare encoder inputs
|
15 |
+
pixel_values = processor(image, return_tensors="pt").pixel_values
|
16 |
+
|
17 |
+
decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids
|
18 |
+
|
19 |
+
# run inference
|
20 |
+
outputs = pretrained_model.generate(
|
21 |
+
pixel_values.to(device),
|
22 |
+
decoder_input_ids=decoder_input_ids.to(device),
|
23 |
+
max_length=pretrained_model.decoder.config.max_position_embeddings,
|
24 |
+
early_stopping=True,
|
25 |
+
pad_token_id=processor.tokenizer.pad_token_id,
|
26 |
+
eos_token_id=processor.tokenizer.eos_token_id,
|
27 |
+
use_cache=True,
|
28 |
+
num_beams=1,
|
29 |
+
bad_words_ids=[[processor.tokenizer.unk_token_id]],
|
30 |
+
return_dict_in_generate=True,
|
31 |
+
)
|
32 |
+
|
33 |
+
# process output
|
34 |
+
prediction = processor.batch_decode(outputs.sequences)[0]
|
35 |
+
|
36 |
+
# post-processing
|
37 |
+
if "cord" in task_prompt:
|
38 |
+
prediction = prediction.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
|
39 |
+
prediction = re.sub(r"<.*?>", "", prediction, count=1).strip() # remove first task start token
|
40 |
+
prediction = processor.token2json(prediction)
|
41 |
+
|
42 |
+
# load reference target
|
43 |
+
if isinstance(sample, dict):
|
44 |
+
target = processor.token2json(sample["target_sequence"])
|
45 |
+
else:
|
46 |
+
target = "<not_provided>"
|
47 |
+
|
48 |
+
return prediction, target
|
49 |
+
|
50 |
|
51 |
task_prompt = f"<s>"
|
52 |
|
|
|
67 |
st.image(image, caption='Your target receipt')
|
68 |
|
69 |
st.text(f'baking the 🍩...')
|
70 |
+
processor = DonutProcessor.from_pretrained("unstructuredio/donut-base-sroie")
|
71 |
pretrained_model = VisionEncoderDecoderModel.from_pretrained("unstructuredio/donut-base-sroie")
|
72 |
pretrained_model.encoder.to(torch.bfloat16)
|
73 |
pretrained_model.eval()
|
74 |
|
75 |
st.text(f'parsing receipt..')
|
76 |
+
parsed_receipt_info = run_prediction(image)
|
77 |
st.text(f'\nRaw output:\n{parsed_receipt_info}')
|