Spaces:
Runtime error
Runtime error
feat: working with twin 🍩🍩s
Browse files
app.py
CHANGED
@@ -66,16 +66,41 @@ st.text(f'{information} mode is ON!\nTarget receipt: {receipt}\n(opening image @
|
|
66 |
image = Image.open(f"./img/receipt-{receipt}.jpg")
|
67 |
st.image(image, caption='Your target receipt')
|
68 |
|
69 |
-
st.text(f'baking the
|
70 |
-
processor = DonutProcessor.from_pretrained("unstructuredio/donut-base-sroie")
|
71 |
-
pretrained_model = VisionEncoderDecoderModel.from_pretrained("unstructuredio/donut-base-sroie")
|
72 |
|
73 |
-
|
74 |
-
|
|
|
|
|
|
|
|
|
75 |
|
76 |
-
|
77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
-
|
80 |
-
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
image = Image.open(f"./img/receipt-{receipt}.jpg")
|
67 |
st.image(image, caption='Your target receipt')
|
68 |
|
69 |
+
st.text(f'baking the 🍩s...')
|
|
|
|
|
70 |
|
71 |
+
if information == 'Receipt Summary':
|
72 |
+
processor = DonutProcessor.from_pretrained("unstructuredio/donut-base-sroie")
|
73 |
+
pretrained_model = VisionEncoderDecoderModel.from_pretrained("unstructuredio/donut-base-sroie")
|
74 |
+
task_prompt = f"<s>"
|
75 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
76 |
+
pretrained_model.to(device)
|
77 |
|
78 |
+
elif information == 'Receipt Menu Details':
|
79 |
+
processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-cord-v2")
|
80 |
+
pretrained_model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-cord-v2")
|
81 |
+
task_prompt = f"<s_cord-v2>"
|
82 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
83 |
+
pretrained_model.to(device)
|
84 |
+
|
85 |
+
else:
|
86 |
+
# st.text(f'NotImplemented: soon you will be able to use it..')
|
87 |
+
processor_a = DonutProcessor.from_pretrained("unstructuredio/donut-base-sroie")
|
88 |
+
processor_b = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-cord-v2")
|
89 |
+
pretrained_model_a = VisionEncoderDecoderModel.from_pretrained("unstructuredio/donut-base-sroie")
|
90 |
+
pretrained_model_b = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-cord-v2")
|
91 |
+
|
92 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
93 |
+
pretrained_model.to(device)
|
94 |
|
95 |
+
if information == 'Extract all!':
|
96 |
+
st.text(f'parsing receipt (extracting all)..')
|
97 |
+
pretrained_model, processor, task_prompt = pretrained_model_a, processor_a, f"<s>"
|
98 |
+
parsed_receipt_info_a = run_prediction(image)
|
99 |
+
pretrained_model, processor, task_prompt = pretrained_model_b, processor_b, f"<s_cord-v2>"
|
100 |
+
parsed_receipt_info_b = run_prediction(image)
|
101 |
+
st.text(f'\nRaw output a:\n{parsed_receipt_info_a}')
|
102 |
+
st.text(f'\nRaw output b:\n{parsed_receipt_info_b}')
|
103 |
+
else:
|
104 |
+
st.text(f'parsing receipt..')
|
105 |
+
parsed_receipt_info = run_prediction(image)
|
106 |
+
st.text(f'\nRaw output:\n{parsed_receipt_info}')
|