Dabs's picture
more examples
057813a
raw
history blame
854 Bytes
import gradio as gr
from transformers import pipeline
import numpy as np
from PIL import Image
pipe = pipeline("zero-shot-image-classification", model="openai/clip-vit-base-patch32")
images="dog.jpg"
def shot(image, labels_text):
PIL_image = Image.fromarray(np.uint8(image)).convert('RGB')
labels = labels_text.split(",")
res = pipe(images=PIL_image,
candidate_labels=labels,
hypothesis_template= "This is a photo of a {}")
return {dic["label"]: dic["score"] for dic in res}
iface = gr.Interface(shot, ["image", "text"], "label", examples=[["dog.jpg", "dog,cat,bird"],
["germany.jpg", "germany,belgium,colombia"],
["colombia.jpg", "germany,belgium,colombia"]])
iface.launch()