user-agent
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -10,24 +10,31 @@ from transformers import pipeline
|
|
10 |
import ast
|
11 |
pipe = pipeline("zero-shot-image-classification", model="patrickjohncyh/fashion-clip")
|
12 |
|
13 |
-
|
|
|
14 |
|
15 |
-
# Open and read the JSON file
|
16 |
-
with open(
|
17 |
-
|
18 |
|
19 |
-
|
|
|
|
|
20 |
|
|
|
|
|
21 |
|
22 |
|
23 |
def shot(input, category):
|
24 |
subColour,mainColour,score = get_colour(ast.literal_eval(str(input)),category)
|
|
|
25 |
return {
|
26 |
"colors":{
|
27 |
"main":mainColour,
|
28 |
"sub":subColour,
|
29 |
"score":round(score*100,2)
|
30 |
}
|
|
|
31 |
}
|
32 |
|
33 |
|
@@ -57,6 +64,43 @@ def get_colour(image_urls, category):
|
|
57 |
|
58 |
return subColour, mainColour, responses[0][0]['score']
|
59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
|
62 |
|
|
|
10 |
import ast
|
11 |
pipe = pipeline("zero-shot-image-classification", model="patrickjohncyh/fashion-clip")
|
12 |
|
13 |
+
color_file_path = 'color_config.json'
|
14 |
+
attributes_file_path = 'attributes_config.json'
|
15 |
|
16 |
+
# Open and read the COLOR JSON file
|
17 |
+
with open(color_file_path, 'r') as file:
|
18 |
+
color_data = json.load(file)
|
19 |
|
20 |
+
# Open and read the ATTRIBUTES JSON file
|
21 |
+
with open(attributes_file_path, 'r') as file:
|
22 |
+
attributes_data = json.load(file)
|
23 |
|
24 |
+
COLOURS_DICT = color_data['color_mapping']
|
25 |
+
ATTRIBUTES_DICT = attributes_data['attribute_mapping']
|
26 |
|
27 |
|
28 |
def shot(input, category):
|
29 |
subColour,mainColour,score = get_colour(ast.literal_eval(str(input)),category)
|
30 |
+
common_result = get_predicted_attributes(ast.literal_eval(str(input)),category)
|
31 |
return {
|
32 |
"colors":{
|
33 |
"main":mainColour,
|
34 |
"sub":subColour,
|
35 |
"score":round(score*100,2)
|
36 |
}
|
37 |
+
"attributes":common_result
|
38 |
}
|
39 |
|
40 |
|
|
|
64 |
|
65 |
return subColour, mainColour, responses[0][0]['score']
|
66 |
|
67 |
+
@spaces.GPU
|
68 |
+
def get_predicted_attributes(image_urls, category):
|
69 |
+
# Get the predicted attributes for the image
|
70 |
+
# attributes = get_category_attributes(category)
|
71 |
+
|
72 |
+
attributes = list(ATTRIBUTES_DICT.get(category,{}).keys())
|
73 |
+
|
74 |
+
# Mapping of possible values per attribute
|
75 |
+
common_result = []
|
76 |
+
for attribute in attributes:
|
77 |
+
# values = get_attribute_values(attribute, category)
|
78 |
+
values = list(ATTRIBUTES_DICT.get(category,{}).get(attribute,{}).keys())
|
79 |
+
|
80 |
+
if len(values) == 0:
|
81 |
+
continue
|
82 |
+
|
83 |
+
# Adjust labels for the pipeline to be in format: "{attr}: {value}, clothing: {category}"
|
84 |
+
attribute = attribute.replace("colartype", "collar").replace("sleevelength", "sleeve length").replace("fabricstyle", "fabric")
|
85 |
+
values = [f"{attribute}: {value}, clothing: {category}" for value in values]
|
86 |
+
|
87 |
+
# Get the predicted values for the attribute
|
88 |
+
responses = pipe(image_urls, candidate_labels=values, device=device)
|
89 |
+
result = [response[0]['label'].split(", clothing:")[0] for response in responses]
|
90 |
+
|
91 |
+
# If attribute is details, then get the top 2 most common labels
|
92 |
+
if attribute == "details":
|
93 |
+
result += [response[1]['label'].split(", clothing:")[0] for response in responses]
|
94 |
+
common_result.append(Counter(result).most_common(2))
|
95 |
+
else:
|
96 |
+
common_result.append(Counter(result).most_common(1))
|
97 |
+
|
98 |
+
# Clean up the results into one long string
|
99 |
+
for i, result in enumerate(common_result):
|
100 |
+
common_result[i] = ", ".join([f"{x[0]}" for x in result])
|
101 |
+
|
102 |
+
return common_result
|
103 |
+
|
104 |
|
105 |
|
106 |
|