user-agent commited on
Commit
b1532b0
1 Parent(s): ca2d13e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -4
app.py CHANGED
@@ -1,3 +1,4 @@
 
1
  import json
2
  import spaces
3
  import requests
@@ -6,14 +7,19 @@ import gradio as gr
6
  from PIL import Image
7
  from io import BytesIO
8
  from turtle import title
9
- from transformers import pipeline
10
- import ast
11
  from collections import Counter
 
 
 
12
 
13
  pipe = pipeline("zero-shot-image-classification", model="patrickjohncyh/fashion-clip")
14
 
15
  color_file_path = 'color_config.json'
16
  attributes_file_path = 'attributes_config.json'
 
 
 
17
 
18
  # Open and read the COLOR JSON file
19
  with open(color_file_path, 'r') as file:
@@ -36,7 +42,8 @@ def shot(input, category):
36
  "sub":subColour,
37
  "score":round(score*100,2)
38
  },
39
- "attributes":common_result
 
40
  }
41
 
42
 
@@ -119,7 +126,7 @@ def get_openAI_tags(image_urls):
119
  for image in image_urls:
120
  imageList.append({"type": "image_url", "image_url": {"url": image}})
121
 
122
- return client.chat.completions.create(
123
  model="gpt-4o",
124
  messages=[
125
  {
@@ -142,6 +149,8 @@ def get_openAI_tags(image_urls):
142
  frequency_penalty=0,
143
  presence_penalty=0
144
  )
 
 
145
 
146
  # Define the Gradio interface with the updated components
147
  iface = gr.Interface(
 
1
+ import ast
2
  import json
3
  import spaces
4
  import requests
 
7
  from PIL import Image
8
  from io import BytesIO
9
  from turtle import title
10
+ from openai import OpenAI
 
11
  from collections import Counter
12
+ from transformers import pipeline
13
+
14
+ client = OpenAI()
15
 
16
  pipe = pipeline("zero-shot-image-classification", model="patrickjohncyh/fashion-clip")
17
 
18
  color_file_path = 'color_config.json'
19
  attributes_file_path = 'attributes_config.json'
20
+ import os
21
+ OPENAIKEY = os.getenv("OPENAI_KEY")
22
+
23
 
24
  # Open and read the COLOR JSON file
25
  with open(color_file_path, 'r') as file:
 
42
  "sub":subColour,
43
  "score":round(score*100,2)
44
  },
45
+ "attributes":common_result,
46
+ "image_mapping":openai_parsed_response
47
  }
48
 
49
 
 
126
  for image in image_urls:
127
  imageList.append({"type": "image_url", "image_url": {"url": image}})
128
 
129
+ openai_response = client.chat.completions.create(
130
  model="gpt-4o",
131
  messages=[
132
  {
 
149
  frequency_penalty=0,
150
  presence_penalty=0
151
  )
152
+ response= json.loads(openai_response.choices[0].message.content)
153
+ return response
154
 
155
  # Define the Gradio interface with the updated components
156
  iface = gr.Interface(