File size: 3,700 Bytes
7cc82ad
f1e930a
7cc82ad
 
 
 
 
 
 
 
f1e930a
 
f2683ae
f1e930a
 
 
 
 
 
5d7959c
f1e930a
5d7959c
 
 
f1e930a
 
 
 
 
 
 
 
5d7959c
 
 
 
 
 
 
 
 
 
 
f1e930a
 
7cc82ad
 
f1e930a
 
 
 
 
 
5d7959c
 
 
 
 
 
 
 
 
 
 
f1e930a
e5e84e9
7cc82ad
 
 
 
 
 
 
 
f2683ae
7cc82ad
 
 
f1e930a
 
 
 
 
 
 
 
 
 
7cc82ad
 
e5e84e9
 
f1e930a
 
 
5d7959c
 
 
 
f1e930a
 
f2683ae
f1e930a
 
e5e84e9
7cc82ad
f2683ae
16388cf
 
 
f2683ae
e5e84e9
7cc82ad
16388cf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import multiprocessing
import argparse
import threading
import ssl
import time
import sys
import functools

from multiprocessing import Process, Manager, Value, Queue

from whisper_live.trt_server import TranscriptionServer
from llm_service import MistralTensorRTLLM
from tts_service import WhisperSpeechTTS


def parse_arguments():
    parser = argparse.ArgumentParser()
    parser.add_argument('--whisper_tensorrt_path',
                        type=str,
                        default="/root/TensorRT-LLM/examples/whisper/whisper_small_en",
                        help='Whisper TensorRT model path')
    parser.add_argument('--mistral',
                        action="store_true",
                        help='Mistral')
    parser.add_argument('--mistral_tensorrt_path',
                        type=str,
                        default=None,
                        help='Mistral TensorRT model path')
    parser.add_argument('--mistral_tokenizer_path',
                        type=str,
                        default="teknium/OpenHermes-2.5-Mistral-7B",
                        help='Mistral TensorRT model path')
    parser.add_argument('--phi',
                        action="store_true",
                        help='Phi')
    parser.add_argument('--phi_tensorrt_path',
                        type=str,
                        default="/root/TensorRT-LLM/examples/phi/phi_engine",
                        help='Phi TensorRT model path')
    parser.add_argument('--phi_tokenizer_path',
                        type=str,
                        default="/root/TensorRT-LLM/examples/phi/phi-2",
                        help='Phi Tokenizer path')
    return parser.parse_args()


if __name__ == "__main__":
    args = parse_arguments()
    if not args.whisper_tensorrt_path:
        raise ValueError("Please provide whisper_tensorrt_path to run the pipeline.")
        import sys
        sys.exit(0)
    
    if args.mistral:
        if not args.mistral_tensorrt_path or not args.mistral_tokenizer_path:
            raise ValueError("Please provide mistral_tensorrt_path and mistral_tokenizer_path to run the pipeline.")
            import sys
            sys.exit(0)

    if args.phi:
        if not args.phi_tensorrt_path or not args.phi_tokenizer_path:
            raise ValueError("Please provide phi_tensorrt_path and phi_tokenizer_path to run the pipeline.")
            import sys
            sys.exit(0)

    multiprocessing.set_start_method('spawn')
    
    lock = multiprocessing.Lock()
    
    manager = Manager()
    shared_output = manager.list()

    transcription_queue = Queue()
    llm_queue = Queue()
    audio_queue = Queue()


    whisper_server = TranscriptionServer()
    whisper_process = multiprocessing.Process(
        target=whisper_server.run,
        args=(
            "0.0.0.0",
            6006,
            transcription_queue,
            llm_queue,
            args.whisper_tensorrt_path
        )
    )
    whisper_process.start()

    llm_provider = MistralTensorRTLLM()
    # llm_provider = MistralTensorRTLLMProvider()
    llm_process = multiprocessing.Process(
        target=llm_provider.run,
        args=(
            # args.mistral_tensorrt_path,
            # args.mistral_tokenizer_path,
            args.phi_tensorrt_path,
            args.phi_tokenizer_path,
            transcription_queue,
            llm_queue,
            audio_queue,
        )
    )
    llm_process.start()

    # audio process
    tts_runner = WhisperSpeechTTS()
    tts_process = multiprocessing.Process(target=tts_runner.run, args=("0.0.0.0", 8888, audio_queue))
    tts_process.start()

    llm_process.join()
    whisper_process.join()
    tts_process.join()