File size: 21,162 Bytes
33c2824
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a70d19
33c2824
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ebcaba
ff88bd1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
import logging
import gradio as gr
import torch
import numpy as np
import pandas as pd
from transformers import AutoTokenizer, AutoModel
import re
from nltk.tokenize import sent_tokenize
import fitz  # PyMuPDF
from tqdm import tqdm
import os
import uuid
import requests
from sentence_transformers import CrossEncoder
import faiss
import nltk

# Download NLTK data
nltk.download('punkt')
nltk.download('punkt_tab')

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Ensure the uploads folder exists
UPLOAD_FOLDER = 'uploads'
os.makedirs(UPLOAD_FOLDER, exist_ok=True)

# Load embedding models and tokenizers
EMBEDDING_MODEL_NAME = "sentence-transformers/all-mpnet-base-v2"
embedding_tokenizer = AutoTokenizer.from_pretrained(EMBEDDING_MODEL_NAME)
embedding_model = AutoModel.from_pretrained(EMBEDDING_MODEL_NAME)

# Load CrossEncoder for reranking
rerank_model = CrossEncoder("mixedbread-ai/mxbai-rerank-large-v1")

# Load Hugging Face API tokens from environment variables
HF_API_TOKEN = os.getenv("HF_API_TOKEN")  # Unified token for all models

# Define Hugging Face API URLs
MISTRAL_API_URL = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.3"
PHI_API_URL = "https://api-inference.huggingface.co/models/microsoft/Phi-3.5-mini-instruct"
QWEN_API_URL = 'https://api-inference.huggingface.co/models/Qwen/Qwen2.5-72B-Instruct'

# Initialize global variables to store current DataFrame and embeddings
current_df = None
current_embeddings = None

# Helper function to check allowed file extensions
def allowed_file(filename):
    return '.' in filename and filename.rsplit('.', 1)[1].lower() == 'pdf'

# PDF Processing Functions
def open_and_read_pdf(pdf_path):
    doc = fitz.open(pdf_path)
    pages_and_texts = []
    for page_num, page in tqdm(enumerate(doc), total=len(doc), desc="Reading PDF Pages"):
        text = page.get_text()
        pages_and_texts.append({"page_number": page_num + 1, "text": text})
    return pages_and_texts

def clean_text(text):
    # Remove numbers surrounded by spaces or newlines
    text = re.sub(r"(\s*\n*\s*\d+\s*\n*\s*)", " ", text)
    # Replace " \n" with a single space
    text = re.sub(r" \n", " ", text)
    # Remove extra spaces
    text = re.sub(r"\s+", " ", text).strip()
    return text

def split_into_paragraphs(pages_and_texts):
    paragraph_delimiter = r"(?:\s*\n\s*\n\s*|\s{2,}\n)"
    combined_text = ""
    page_boundaries = []
    for page_data in pages_and_texts:
        start_idx = len(combined_text)
        combined_text += page_data["text"]
        page_boundaries.append((start_idx, len(combined_text), page_data["page_number"]))
    paragraphs = re.split(paragraph_delimiter, combined_text)
    paragraph_data = []
    for paragraph in paragraphs:
        cleaned_paragraph = clean_text(paragraph)
        if not cleaned_paragraph:
            continue
        if len(paragraph.split(" ")) < 20:
            continue
        paragraph_start_idx = combined_text.find(paragraph)
        paragraph_end_idx = paragraph_start_idx + len(paragraph)
        pages_spanned = set()
        for start, end, page_number in page_boundaries:
            if paragraph_start_idx < end and paragraph_end_idx > start:
                pages_spanned.add(page_number)
        paragraph_data.append({
            "page_number": sorted(pages_spanned),
            "char_count": len(cleaned_paragraph),
            "word_count": len(cleaned_paragraph.split(" ")),
            "sentence_count": len(sent_tokenize(cleaned_paragraph)),
            "text": cleaned_paragraph
        })
    return pd.DataFrame(paragraph_data)

def split_into_chunks(pages_and_texts, chunk_size):
    combined_text = ""
    page_boundaries = []
    for page_data in pages_and_texts:
        start_idx = len(combined_text)
        combined_text += page_data["text"]
        page_boundaries.append((start_idx, len(combined_text), page_data["page_number"]))
    chunks = [combined_text[i:i + chunk_size] for i in range(0, len(combined_text), chunk_size)]
    chunk_data = []
    for chunk in chunks:
        cleaned_chunk = clean_text(chunk)
        if not cleaned_chunk:
            continue
        chunk_start_idx = combined_text.find(chunk)
        chunk_end_idx = chunk_start_idx + len(chunk)
        pages_spanned = set()
        for start, end, page_number in page_boundaries:
            if chunk_start_idx < end and chunk_end_idx > start:
                pages_spanned.add(page_number)
        chunk_data.append({
            "page_number": sorted(pages_spanned),
            "char_count": len(cleaned_chunk),
            "word_count": len(cleaned_chunk.split(" ")),
            "sentence_count": len(sent_tokenize(cleaned_chunk)),
            "text": cleaned_chunk
        })
    return pd.DataFrame(chunk_data)

def split_into_sentences(pages_and_texts, num_sentences=10):
    combined_text = ""
    page_boundaries = []
    for page_data in pages_and_texts:
        start_idx = len(combined_text)
        combined_text += page_data["text"]
        page_boundaries.append((start_idx, len(combined_text), page_data["page_number"]))
    sentence_boundary_pattern = r'(?<=[.!?])(?=\s|\n)'
    sentences = re.split(sentence_boundary_pattern, combined_text)
    chunks = ["".join(sentences[i:i + num_sentences]) for i in range(0, len(sentences), num_sentences)]
    chunk_data = []
    for chunk in chunks:
        cleaned_chunk = clean_text(chunk)
        if not cleaned_chunk:
            continue
        chunk_start_idx = combined_text.find(chunk)
        chunk_end_idx = chunk_start_idx + len(chunk)
        pages_spanned = set()
        for start, end, page_number in page_boundaries:
            if chunk_start_idx < end and chunk_end_idx > start:
                pages_spanned.add(page_number)
        chunk_data.append({
            "page_number": sorted(pages_spanned),
            "char_count": len(cleaned_chunk),
            "word_count": len(cleaned_chunk.split(" ")),
            "sentence_count": len(sent_tokenize(cleaned_chunk)),
            "text": cleaned_chunk
        })
    return pd.DataFrame(chunk_data)

def split_into_pages(pages_and_texts):
    pages_data = []
    for page_data in pages_and_texts:
        cleaned_page = clean_text(page_data["text"])
        pages_data.append({
            "page_number": page_data["page_number"],
            "char_count": len(cleaned_page),
            "word_count": len(cleaned_page.split(" ")),
            "sentence_count": len(sent_tokenize(cleaned_page)),
            "text": cleaned_page
        })
    return pd.DataFrame(pages_data)

def create_df_from_pdf(pdf_path, method="sentence", fixed_size=512, num_sentences=10):
    pages_and_texts = open_and_read_pdf(pdf_path)
    if method == "paragraph":
        df = split_into_paragraphs(pages_and_texts)
    elif method == "fixed":
        df = split_into_chunks(pages_and_texts, fixed_size)
    elif method == "sentence":
        df = split_into_sentences(pages_and_texts, num_sentences)
    elif method == "page":
        df = split_into_pages(pages_and_texts)
    else:
        raise ValueError("Unsupported splitting method.")
    return df

def get_text_embedding(model, tokenizer, text):
    inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512)
    with torch.no_grad():
        outputs = model(**inputs)
    return outputs.last_hidden_state.mean(dim=1).numpy()[0]

def retrieve_top_k_similar(query, embeddings, embedding_model, embedding_tokenizer, top_k=5, method="cosine"):
    query_embedding = get_text_embedding(embedding_model, embedding_tokenizer, query)
    if method == "cosine":
        query_tensor = torch.tensor(query_embedding)
        similarity = torch.nn.functional.cosine_similarity(embeddings, query_tensor, dim=-1)
        similarity_top_k = torch.topk(similarity, k=top_k)
        return similarity_top_k.values.numpy(), similarity_top_k.indices.numpy()
    elif method == "faiss":
        d = embeddings.shape[1]
        index = faiss.IndexFlatL2(d)
        index.add(embeddings.numpy())
        query_embedding_reshaped = query_embedding.reshape(1, -1).astype('float32')
        D, I = index.search(query_embedding_reshaped, k=top_k)
        return D.reshape(-1), I.reshape(-1)
    else:
        raise ValueError("Unsupported similarity method.")

# Templates
template1 = """Instruct:You are my tutor. Your task is to give me answers and explanations to my questions about the topic based on the context I provide. Think carefully about the answer by extracting relevant passages from the context before answering my question. Don’t return your thoughts, only the answer. Make sure your responses are detailed and as explanatory as possible. Optionally quote from the context, citing the page. Do not use your previous knowledge to answer the question.

Following are the examples:


QA Example 1
Context:
Page 1: "Water scarcity affects over 2 billion people worldwide due to climate change and poor resource management."
Page 2: "Desalination is a key technological solution but comes with challenges such as high energy costs and environmental concerns."
Query:
What are the main solutions to water scarcity?
Answer:
Desalination is a significant solution, as noted on Page 2, but it has challenges like high energy costs and environmental impact. Other approaches, such as improved resource management (Page 1), are also critical.

QA Example 2
Context:
Page 1: "Photosynthesis is the process by which plants convert sunlight into energy, primarily occurring in the chloroplasts."
Page 2: "The process consists of light-dependent reactions and the Calvin cycle, where glucose is synthesized."
Query:
What is glucose?
Answer:
Unfortunately, the context provided does not contain the answer to your inquiry.

Context Pages:
Page {page1}: {context1}
Page {page2}: {context2}
Page {page3}: {context3}

Query:
{query}

Please ensure that your answer is complete, ends at the end of a sentence, and does not trail off."""

template2 = """Instruct:You are a knowledgeable tutor. Answer the query below only using the given context. Pick the context you find most valuable. You are allowed to use more than one context. If you are not sure about the answer say that you don’t know the answer.

Context Pages:
Page {page1} : {context1}
Page {page2}: {context2}
Page {page3}: {context3}

Query:
{query}

Guidelines for Response:
Provide a detailed, explanatory answer, but do not make it too long.
Optionally quote from the context if helpful, citing the page.
Specify which pages support your response.
Only use the context to answer and do not answer the question if the answer is not in the context. 
If the context does not contain the answer, say that you cannot deduce the answer from the context.

Please ensure that your answer is complete, ends at the end of a sentence, and does not trail off."""

templates = [template1, template2]

def get_items_for_prompt(query, df, indices):
    required_columns = ["page_number", "text"]
    for col in required_columns:
        if col not in df.columns:
            raise KeyError(f"Required column '{col}' not found in DataFrame.")
    
    if len(indices) < 3:
        raise ValueError("Not enough indices to generate prompts. Ensure top_k >= 3.")
    
    dict1 = {
        "query": query,
        "page1": df["page_number"].iloc[indices[0]],
        "page2": df["page_number"].iloc[indices[1]],
        "page3": df["page_number"].iloc[indices[2]],
        "context1": df["text"].iloc[indices[0]],
        "context2": df["text"].iloc[indices[1]],
        "context3": df["text"].iloc[indices[2]]
    }
    return dict1

def generate_prompts(query, indices, df, templates):
    dict1 = get_items_for_prompt(query, df, indices)
    prompts = [
        template.format(
            page1=dict1["page1"],
            page2=dict1["page2"],
            page3=dict1["page3"],
            context1=dict1["context1"],
            context2=dict1["context2"],
            context3=dict1["context3"],
            query=dict1["query"]
        )
        for template in templates
    ]
    return prompts

def query_hf_mistral(prompt, api_url=MISTRAL_API_URL):
    headers = {"Authorization": f"Bearer {HF_API_TOKEN}"}
    formatted_prompt = "<s>[INST]" + prompt + " [/INST] Model answer</s>"
    payload = {
        "inputs": formatted_prompt,
        "parameters": {
            "max_new_tokens": 500,
            "temperature": 0.2,
            "return_full_text": False
        }
    }
    response = requests.post(api_url, headers=headers, json=payload)

    if response.status_code != 200:
        raise Exception(f"Mistral API request failed with status code {response.status_code}: {response.text}")

    response_data = response.json()
    if isinstance(response_data, list):
        return response_data[0].get("generated_text", "No response available.")
    else:
        return response_data.get("generated_text", "No response available.")

def query_hf_phi(prompt, api_url=PHI_API_URL):
    headers = {"Authorization": f"Bearer {HF_API_TOKEN}"}
    formatted_prompt = prompt + "\n\nOutput:"
    payload = {
        "inputs": formatted_prompt,
        "parameters": {
            "max_new_tokens": 500,
            "temperature": 0.2,
            "return_full_text": False
        }
    }
    response = requests.post(api_url, headers=headers, json=payload)

    if response.status_code != 200:
        raise Exception(f"Phi API request failed with status code {response.status_code}: {response.text}")

    response_data = response.json()
    if isinstance(response_data, list):
        return response_data[0].get("generated_text", "No response available.")
    else:
        return response_data.get("generated_text", "No response available.")

def query_hf_qwen(prompt, api_url=QWEN_API_URL):
    headers = {"Authorization": f"Bearer {HF_API_TOKEN}"}
    formatted_prompt = "<|im_start|>system\n" + prompt + "<|im_end|>\n<|im_start|>user\n<|im_end|>\n<|im_start|>assistant\n"
    payload = {
        "inputs": formatted_prompt,
        "parameters": {
            "max_new_tokens": 500,
            "temperature": 0.2,
            "return_full_text": False
        }
    }
    response = requests.post(api_url, headers=headers, json=payload)

    if response.status_code != 200:
        raise Exception(f"Qwen API request failed with status code {response.status_code}: {response.text}")

    response_data = response.json()
    if isinstance(response_data, list):
        return response_data[0].get("generated_text", "No response available.")
    else:
        return response_data.get("generated_text", "No response available.")

def evaluate_prompts(prompts, model_functions):
    results = []
    for i, prompt in enumerate(prompts):
        for func in model_functions:
            try:
                response = func(prompt)
            except Exception as e:
                response = f"Error: {str(e)}"
            results.append({
                "prompt_number": i + 1,
                "model_function": func.__name__,
                "response": response
            })
    return results

def ensure_complete_sentence(text):
    if re.search(r'[.!?]$', text.strip()):
        return text
    else:
        return text + "."

# Gradio UI Functions
def handle_file_upload(file):
    global current_df, current_embeddings

    # Check if no file was provided
    if not file:
        return "No file selected."

    # If the file is bytes (e.g. from an in-memory upload)
    if isinstance(file, bytes):
        logger.info("File received as raw bytes, no name provided.")
        # Generate a filename for the uploaded file
        filename = f"{uuid.uuid4()}_uploaded_file.pdf"
        file_path = os.path.join(UPLOAD_FOLDER, filename)

        try:
            with open(file_path, "wb") as f_out:
                f_out.write(file)
            logger.info(f"File saved to {file_path}")
        except Exception as e:
            logger.error(f"Error saving file: {e}")
            return f"Error saving file: {str(e)}"
    else:
        # If it's not bytes, then it might be a dict-like object.
        # Attempt to treat it as a dictionary with 'name' and 'data' keys
        if not isinstance(file, dict) or "name" not in file or "data" not in file:
            return "Invalid file structure. Expected a dict with 'name' and 'data'."
        
        logger.info(f"Received file info: {file}")
        base_name = os.path.basename(file["name"])
        filename = f"{uuid.uuid4()}_{base_name}"
        file_path = os.path.join(UPLOAD_FOLDER, filename)

        try:
            with open(file_path, "wb") as f_out:
                f_out.write(file["data"])
            logger.info(f"File saved to {file_path}")
        except Exception as e:
            logger.error(f"Error saving file: {e}")
            return f"Error saving file: {str(e)}"

    # Process the saved file to create embeddings
    try:
        # Create a DataFrame from the PDF
        df = create_df_from_pdf(file_path, method="sentence")
        logger.info(f"Number of chunks created from PDF: {len(df)}")

        # Generate embeddings for each text chunk in the DataFrame
        embeddings = []
        for _, row in tqdm(df.iterrows(), total=df.shape[0], desc="Generating embeddings"):
            text_chunk = row.get("text", "")
            emb = get_text_embedding(embedding_model, embedding_tokenizer, text_chunk)
            embeddings.append(emb)
        embeddings = np.array(embeddings, dtype='float32')

        # Store results globally
        current_df = df.copy()
        current_df["embedding"] = list(embeddings)
        current_embeddings = torch.tensor(current_df["embedding"].tolist())

        return "File successfully uploaded and processed."
    except Exception as e:
        logger.error(f"Error during file processing: {e}")
        return f"Error: {str(e)}"

def handle_query_input(query_text, top_k=3, method="faiss"):
    global current_df, current_embeddings
    if current_df is None or current_embeddings is None:
        return "No PDF uploaded. Please upload a PDF first."
    if not query_text:
        return "Query is required."

    try:
        similarity_scores, indices = retrieve_top_k_similar(
            query_text,
            current_embeddings,
            embedding_model,
            embedding_tokenizer,
            top_k=top_k,
            method=method
        )
        
        if len(indices) < 3:
            raise ValueError(f"Requested top_k=3 but only {len(indices)} chunks available.")
        
        # Rerank using CrossEncoder
        docs = current_df["text"].iloc[indices].tolist()
        reranked = rerank_model.predict([(query_text, doc) for doc in docs])
        reranked_indices = np.argsort(-reranked)[:top_k]  # Descending order
        final_indices = indices[reranked_indices]
        
        # Generate prompts
        prompts = generate_prompts(query_text, final_indices, current_df, templates)
        
        model_functions = [query_hf_mistral, query_hf_phi, query_hf_qwen]
        responses = evaluate_prompts(prompts, model_functions)
        
        # Beautify and structure the result output
        formatted_response = "<h2 style='color: #333; border-bottom: 1px solid #ccc;'>Query Results</h2>"
        for res in responses:
            prompt_num = res["prompt_number"]
            model_func = res["model_function"].replace("_", " ").title()
            response_text = ensure_complete_sentence(res["response"])
            formatted_response += f"""
            <div style='background: #f9f9f9; border-radius: 5px; padding: 10px; margin: 10px 0;'>
                <h3 style='margin-bottom:5px;'>Prompt {prompt_num} - {model_func}</h3>
                <p style='margin:0;'>{response_text}</p>
            </div>
            """
        
        return formatted_response
    except KeyError as ke:
        logger.error(f"KeyError: {ke}")
        return str(ke)
    except ValueError as ve:
        logger.error(f"ValueError: {ve}")
        return str(ve)
    except Exception as e:
        logger.error(f"An unexpected error occurred: {e}")
        return "An internal error occurred."


# Build Gradio Interface
with gr.Blocks() as demo:
    gr.Markdown("# PDF Query System")
    gr.Markdown("Upload a PDF and then ask questions about it.")
    
    with gr.Row():
        with gr.Column():
            file_input = gr.File(label="Upload PDF", file_types=[".pdf"], type="binary")
            upload_button = gr.Button("Process PDF")
            upload_status = gr.Textbox(label="Upload Status", interactive=False)
        
        with gr.Column():
            query_input = gr.Textbox(label="Enter your query:")
            submit_query_button = gr.Button("Submit Query")
            results_output = gr.HTML(label="Results", elem_id="results")
    
    upload_button.click(fn=handle_file_upload, inputs=file_input, outputs=upload_status)
    submit_query_button.click(fn=handle_query_input, inputs=[query_input], outputs=results_output, show_progress=True)

# Run Gradio app
# demo.launch(server_name="0.0.0.0", server_port=5001)
demo.launch()