Spaces:
Sleeping
Sleeping
Florian
commited on
Commit
·
5b2e6a5
1
Parent(s):
48f630f
first commit
Browse files- .gitignore +1 -0
- app.py +94 -0
- requirements.txt +4 -0
- src/BranchyModel.py +469 -0
- src/utils.py +57 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
model/*
|
app.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Save this as app.py and run with `streamlit run app.py`
|
2 |
+
import streamlit as st
|
3 |
+
import torch
|
4 |
+
import pandas as pd
|
5 |
+
|
6 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
7 |
+
|
8 |
+
from src.utils import generate_next_token, breaking_ties
|
9 |
+
from src.BranchyModel import BranchyModel
|
10 |
+
|
11 |
+
st.title("Multi-Head LLM Demo")
|
12 |
+
|
13 |
+
def add_and_run(token, head):
|
14 |
+
# Update pd with Head and mean of previous heads and actual head
|
15 |
+
head_list = st.session_state["computation_pd"]["Head"].to_list() + [head]
|
16 |
+
mean = sum(head_list) / len(head_list)
|
17 |
+
st.session_state["computation_pd"] = pd.concat([st.session_state["computation_pd"], pd.DataFrame({"Head": [head], "Mean": [mean], "Base model consumption": [st.session_state['head_number']]})], ignore_index=True)
|
18 |
+
|
19 |
+
st.session_state['current_sentence'] += token
|
20 |
+
_, st.session_state['logits'], _, st.session_state['head_tokens'] = generate_next_token(st.session_state.model, st.session_state.tokenizer, st.session_state['current_sentence'])
|
21 |
+
|
22 |
+
def reset():
|
23 |
+
st.session_state['computation_pd'] = pd.DataFrame(columns=["Head", "Mean", "Base model consumption"])
|
24 |
+
st.session_state['current_sentence'] = "The climate in"
|
25 |
+
_, st.session_state['logits'], _, st.session_state['head_tokens'] = generate_next_token(st.session_state.model, st.session_state.tokenizer, st.session_state['current_sentence'])
|
26 |
+
|
27 |
+
@st.cache_resource
|
28 |
+
def load_model(penalty_alpha):
|
29 |
+
penalty_map = {0.1:"model_20240118-144039.bin",
|
30 |
+
0.5:"model_20240118-192548.bin",
|
31 |
+
2:"model_20240118-211943.bin",
|
32 |
+
5:"model_20240118-231333.bin",
|
33 |
+
10:"model_20240119-010725.bin",
|
34 |
+
20:"model_20240119-030115.bin",
|
35 |
+
0:"model_20240119-135506.bin",
|
36 |
+
1:"model_20240119-154900.bin",
|
37 |
+
-20: "model_20240208-072350.bin",
|
38 |
+
-10: "model_20240208-052958.bin",
|
39 |
+
-5: "model_20240208-033606.bin",
|
40 |
+
-2: "model_20240208-014211.bin",
|
41 |
+
-1: "model_20240207-234817.bin",
|
42 |
+
-0.5: "model_20240207-215423.bin",
|
43 |
+
-0.1: "model_20240207-200020.bin"}
|
44 |
+
|
45 |
+
model_str = "susnato/phi-1_5_dev"
|
46 |
+
model = AutoModelForCausalLM.from_pretrained(model_str).to("cuda:1")
|
47 |
+
tokenizer = AutoTokenizer.from_pretrained(model_str)
|
48 |
+
|
49 |
+
branch_locations = list(range(0, 23, 5))
|
50 |
+
model = BranchyModel(branch_locations= branch_locations, model= model).to("cuda:1")
|
51 |
+
|
52 |
+
# Load the specific model based on penalty_alpha
|
53 |
+
model_path = penalty_map.get(penalty_alpha)
|
54 |
+
if model_path:
|
55 |
+
model.load_state_dict(torch.load(model_path, map_location="cuda:1"))
|
56 |
+
else:
|
57 |
+
print("Invalid penalty_alpha. Using default model weights.")
|
58 |
+
|
59 |
+
return model, tokenizer
|
60 |
+
|
61 |
+
|
62 |
+
if "model" not in st.session_state or "tokenizer" not in st.session_state:
|
63 |
+
print("Loading model...")
|
64 |
+
st.session_state.model, st.session_state.tokenizer = load_model(penalty_alpha=-2) # Example penalty_alpha
|
65 |
+
st.session_state["head_number"] = len(st.session_state.model.branch_locations) + 1
|
66 |
+
print(f"Head number: {st.session_state['head_number']}")
|
67 |
+
# Session state to store the current sentence
|
68 |
+
if 'current_sentence' not in st.session_state:
|
69 |
+
reset()
|
70 |
+
|
71 |
+
# Create a container to hold the buttons
|
72 |
+
cols = st.columns(len(st.session_state.head_tokens)) # Create a column for each token
|
73 |
+
|
74 |
+
# Iterate through each head token and create a button in a separate column
|
75 |
+
for i, (col, token) in enumerate(zip(cols, st.session_state.head_tokens)):
|
76 |
+
col.button(f"{st.session_state['head_tokens'][i]}",
|
77 |
+
key=f"head_{i}",
|
78 |
+
use_container_width=True,
|
79 |
+
on_click=add_and_run,
|
80 |
+
args=(st.session_state['head_tokens'][i], i))
|
81 |
+
|
82 |
+
|
83 |
+
# Display the current sentence
|
84 |
+
st.markdown(f"{st.session_state['current_sentence']}")
|
85 |
+
|
86 |
+
# Reset button to start over
|
87 |
+
st.button('Reset', on_click=reset)
|
88 |
+
|
89 |
+
if 'computation_pd' in st.session_state:
|
90 |
+
st.line_chart(st.session_state['computation_pd'])
|
91 |
+
# get last element from a pd
|
92 |
+
saved_budget = 100 - ((st.session_state["computation_pd"]["Mean"].iloc[-1] * 100) / st.session_state["computation_pd"]["Base model consumption"].iloc[-1])
|
93 |
+
st.markdown(f"You saved **{saved_budget:.2f}%** of the base model consumption.")
|
94 |
+
#st.write(st.session_state['computation_pd'])
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit==1.31.0
|
2 |
+
torch==2.0.1
|
3 |
+
pandas==2.0.3
|
4 |
+
transformers==4.36.0
|
src/BranchyModel.py
ADDED
@@ -0,0 +1,469 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List, Optional
|
2 |
+
from dataclasses import dataclass
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from torch import nn
|
6 |
+
from torch.nn import functional as F
|
7 |
+
from transformers import PreTrainedModel
|
8 |
+
from transformers.cache_utils import Cache, DynamicCache
|
9 |
+
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
|
10 |
+
from transformers.utils import ModelOutput
|
11 |
+
|
12 |
+
|
13 |
+
@dataclass
|
14 |
+
class CausalBranchyLLMOutputWithPast(ModelOutput):
|
15 |
+
loss: Optional[torch.Tensor] = None
|
16 |
+
lm_loss: Optional[torch.Tensor] = None
|
17 |
+
head_loss: Optional[torch.Tensor] = None
|
18 |
+
logits: torch.Tensor = None
|
19 |
+
head_outputs: Optional[torch.Tensor] = None
|
20 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
|
21 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
22 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
23 |
+
|
24 |
+
class Branch(nn.Module):
|
25 |
+
def __init__(self, config):
|
26 |
+
super().__init__()
|
27 |
+
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
28 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=True)
|
29 |
+
|
30 |
+
def forward(self, x):
|
31 |
+
x = self.layernorm(x)
|
32 |
+
x = self.lm_head(x)
|
33 |
+
return x
|
34 |
+
|
35 |
+
class BranchyModel(PreTrainedModel):
|
36 |
+
"""
|
37 |
+
This class is a wrapper for transformer models with added functionality for branchy networks.
|
38 |
+
It uses BranchyConfig to initialize a model and later will be extended to add branches.
|
39 |
+
|
40 |
+
Args:
|
41 |
+
branch_locations (List[int]): The locations of the branches in the model.
|
42 |
+
starts indexing from 0. Branch 0 is after layer 0.
|
43 |
+
model (PreTrainedModel): The underlying transformer model to wrap.
|
44 |
+
|
45 |
+
Returns:
|
46 |
+
A model instance with the given configuration.
|
47 |
+
"""
|
48 |
+
|
49 |
+
def __init__(self, branch_locations, model, loss_type="kl_div", penality_weight=None):
|
50 |
+
super().__init__(model.config)
|
51 |
+
# Initialize the base transformer model
|
52 |
+
self.model = model
|
53 |
+
self.branch_locations = branch_locations
|
54 |
+
self.loss_type = loss_type
|
55 |
+
self.penality_weight = penality_weight
|
56 |
+
if self.loss_type == "penalized_cross_entropy":
|
57 |
+
assert self.penality_weight is not None, "penality_weight must be provided for penalized_cross_entropy loss"
|
58 |
+
# Get details on layering inside the model
|
59 |
+
if hasattr(self.model.config, "n_layer") or hasattr(
|
60 |
+
self.model.config, "num_hidden_layers"
|
61 |
+
): # If there is no n_layer in the config, there might be ways to get it from the model itself
|
62 |
+
self.num_layers = (
|
63 |
+
self.model.config.n_layer
|
64 |
+
if hasattr(self.model.config, "n_layer")
|
65 |
+
else self.model.config.num_hidden_layers
|
66 |
+
)
|
67 |
+
else:
|
68 |
+
raise ValueError("cannot find n_layer in config")
|
69 |
+
# if no branch locations are specified, branch at every layer
|
70 |
+
if self.branch_locations is None:
|
71 |
+
self.branch_locations = list(range(self.num_layers - 1))
|
72 |
+
|
73 |
+
assert self.num_layers > 0, "The number of layers must be greater than 0"
|
74 |
+
assert (
|
75 |
+
len(self.branch_locations) < self.num_layers
|
76 |
+
), "The number of branches must be less than the number of layers"
|
77 |
+
assert all(
|
78 |
+
[0 <= i < self.num_layers for i in self.branch_locations]
|
79 |
+
), "The branch locations must be between 0 and num_layers"
|
80 |
+
|
81 |
+
|
82 |
+
# Make sure the base model is frozen
|
83 |
+
for param in self.model.parameters():
|
84 |
+
param.requires_grad = False
|
85 |
+
|
86 |
+
# Instantiate heads. Default: heads are copies of the lm_head
|
87 |
+
self.model.heads = torch.nn.ModuleList(
|
88 |
+
[
|
89 |
+
Branch(self.model.config) for _ in range(len(self.branch_locations))
|
90 |
+
]
|
91 |
+
)
|
92 |
+
|
93 |
+
# initialize heads
|
94 |
+
for head in self.model.heads:
|
95 |
+
head.apply(self.model._init_weights)
|
96 |
+
# Make them trainable
|
97 |
+
for param in head.parameters():
|
98 |
+
param.requires_grad = True
|
99 |
+
|
100 |
+
self.post_init()
|
101 |
+
|
102 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.prepare_inputs_for_generation
|
103 |
+
def prepare_inputs_for_generation(
|
104 |
+
self,
|
105 |
+
input_ids,
|
106 |
+
past_key_values=None,
|
107 |
+
attention_mask=None,
|
108 |
+
inputs_embeds=None,
|
109 |
+
**kwargs,
|
110 |
+
):
|
111 |
+
if past_key_values is not None:
|
112 |
+
if isinstance(past_key_values, Cache):
|
113 |
+
cache_length = past_key_values.get_seq_length()
|
114 |
+
past_length = past_key_values.seen_tokens
|
115 |
+
max_cache_length = past_key_values.get_max_length()
|
116 |
+
else:
|
117 |
+
cache_length = past_length = past_key_values[0][0].shape[2]
|
118 |
+
max_cache_length = None
|
119 |
+
|
120 |
+
# Keep only the unprocessed tokens:
|
121 |
+
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
122 |
+
# some of the inputs are exclusivelly passed as part of the cache (e.g. when passing input_embeds as
|
123 |
+
# input)
|
124 |
+
if (
|
125 |
+
attention_mask is not None
|
126 |
+
and attention_mask.shape[1] > input_ids.shape[1]
|
127 |
+
):
|
128 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
129 |
+
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
130 |
+
# input_ids based on the past_length.
|
131 |
+
elif past_length < input_ids.shape[1]:
|
132 |
+
input_ids = input_ids[:, past_length:]
|
133 |
+
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
134 |
+
|
135 |
+
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
136 |
+
if (
|
137 |
+
max_cache_length is not None
|
138 |
+
and attention_mask is not None
|
139 |
+
and cache_length + input_ids.shape[1] > max_cache_length
|
140 |
+
):
|
141 |
+
attention_mask = attention_mask[:, -max_cache_length:]
|
142 |
+
|
143 |
+
position_ids = kwargs.get("position_ids", None)
|
144 |
+
if attention_mask is not None and position_ids is None:
|
145 |
+
# create position_ids on the fly for batch generation
|
146 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
147 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
148 |
+
if past_key_values:
|
149 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
150 |
+
|
151 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
152 |
+
if inputs_embeds is not None and past_key_values is None:
|
153 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
154 |
+
else:
|
155 |
+
model_inputs = {"input_ids": input_ids}
|
156 |
+
|
157 |
+
model_inputs.update(
|
158 |
+
{
|
159 |
+
"position_ids": position_ids,
|
160 |
+
"past_key_values": past_key_values,
|
161 |
+
"use_cache": kwargs.get("use_cache"),
|
162 |
+
"attention_mask": attention_mask,
|
163 |
+
"fixed_output_head": kwargs.get("fixed_output_head", None),
|
164 |
+
}
|
165 |
+
)
|
166 |
+
return model_inputs
|
167 |
+
|
168 |
+
def compute_self_supervision_loss(
|
169 |
+
self,
|
170 |
+
aux_logits: torch.Tensor,
|
171 |
+
lm_logits: torch.Tensor,
|
172 |
+
return_per_head: bool = False,
|
173 |
+
) -> Dict[str, torch.Tensor]:
|
174 |
+
last_aux_logits = aux_logits[..., -1, :]
|
175 |
+
last_lm_logits = lm_logits[..., -1, :]
|
176 |
+
|
177 |
+
repeated_last_lm_logits = last_lm_logits.repeat(
|
178 |
+
last_aux_logits.shape[0], 1, 1, 1
|
179 |
+
)
|
180 |
+
losses = []
|
181 |
+
# Can be useful to have detailed loss per head for comparison of performance
|
182 |
+
if return_per_head:
|
183 |
+
for head_logit in last_aux_logits:
|
184 |
+
if self.loss_type == "kl_div":
|
185 |
+
losses.append(
|
186 |
+
nn.KLDivLoss(reduction="batchmean")(
|
187 |
+
F.log_softmax(head_logit, dim=-1),
|
188 |
+
F.softmax(last_lm_logits, dim=-1),
|
189 |
+
)
|
190 |
+
)
|
191 |
+
elif self.loss_type == "cross_entropy":
|
192 |
+
losses.append(
|
193 |
+
nn.CrossEntropyLoss(reduction="mean")(
|
194 |
+
head_logit, torch.argmax(last_lm_logits, dim=-1)
|
195 |
+
)
|
196 |
+
)
|
197 |
+
elif self.loss_type == "penalized_cross_entropy":
|
198 |
+
ce_loss = nn.CrossEntropyLoss(reduction="mean")(
|
199 |
+
head_logit, torch.argmax(last_lm_logits, dim=-1)
|
200 |
+
)
|
201 |
+
probas = F.softmax(head_logit, dim=-1)
|
202 |
+
entropy = torch.mean(-torch.sum(probas * torch.log(probas + 1e-8), dim=-1))
|
203 |
+
#losses.append(ce_loss - self.penality_weight * (1.0 / (1.0 + entropy)))
|
204 |
+
losses.append(ce_loss - self.penality_weight * entropy)
|
205 |
+
else:
|
206 |
+
raise ValueError(
|
207 |
+
"The loss type must be either kl_div or cross_entropy"
|
208 |
+
)
|
209 |
+
loss = torch.stack(losses, dim=0).mean(dim=-1)
|
210 |
+
else:
|
211 |
+
# Compute the KL divergence between the last auxiliary head and the last LM head
|
212 |
+
if self.loss_type == "kl_div":
|
213 |
+
loss = nn.KLDivLoss(reduction="batchmean")(
|
214 |
+
F.log_softmax(last_aux_logits.view(-1, self.config.vocab_size), dim=-1),
|
215 |
+
F.softmax(
|
216 |
+
repeated_last_lm_logits.view(-1, self.config.vocab_size), dim=-1
|
217 |
+
),
|
218 |
+
)
|
219 |
+
elif self.loss_type == "cross_entropy":
|
220 |
+
loss = nn.CrossEntropyLoss(reduction="mean")(
|
221 |
+
last_aux_logits.view(-1, self.config.vocab_size),
|
222 |
+
torch.argmax(
|
223 |
+
repeated_last_lm_logits.view(-1, self.config.vocab_size), dim=-1
|
224 |
+
),
|
225 |
+
)
|
226 |
+
elif self.loss_type == "penalized_cross_entropy":
|
227 |
+
ce_loss = nn.CrossEntropyLoss(reduction="mean")(
|
228 |
+
last_aux_logits.view(-1, self.config.vocab_size),
|
229 |
+
torch.argmax(
|
230 |
+
repeated_last_lm_logits.view(-1, self.config.vocab_size), dim=-1
|
231 |
+
),
|
232 |
+
)
|
233 |
+
probas = F.softmax(
|
234 |
+
last_aux_logits.view(-1, self.config.vocab_size), dim=-1
|
235 |
+
)
|
236 |
+
entropy = torch.mean(-torch.sum(probas * torch.log(probas + 1e-8), dim=-1))
|
237 |
+
loss = ce_loss + self.penality_weight * entropy
|
238 |
+
else:
|
239 |
+
raise ValueError(
|
240 |
+
"The loss type must be either kl_div or cross_entropy"
|
241 |
+
)
|
242 |
+
if return_per_head:
|
243 |
+
return {"loss": loss, "aux_loss": torch.stack(losses)}
|
244 |
+
else:
|
245 |
+
return {"loss": loss, "aux_loss": None}
|
246 |
+
|
247 |
+
def forward(
|
248 |
+
self,
|
249 |
+
input_ids: torch.LongTensor = None,
|
250 |
+
attention_mask: Optional[torch.Tensor] = None,
|
251 |
+
position_ids: Optional[torch.LongTensor] = None,
|
252 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
253 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
254 |
+
labels: Optional[torch.LongTensor] = None,
|
255 |
+
use_cache: Optional[bool] = None,
|
256 |
+
output_attentions: Optional[bool] = None,
|
257 |
+
output_hidden_states: Optional[bool] = None,
|
258 |
+
return_dict: Optional[bool] = None,
|
259 |
+
self_supervision: Optional[bool] = None,
|
260 |
+
fixed_output_head: Optional[int] = None,
|
261 |
+
):
|
262 |
+
output_attentions = (
|
263 |
+
output_attentions
|
264 |
+
if output_attentions is not None
|
265 |
+
else self.config.output_attentions
|
266 |
+
)
|
267 |
+
return_dict = (
|
268 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
269 |
+
)
|
270 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
271 |
+
|
272 |
+
if self_supervision:
|
273 |
+
output_hidden_states = True
|
274 |
+
return self.forward_for_training(
|
275 |
+
input_ids=input_ids,
|
276 |
+
attention_mask=attention_mask,
|
277 |
+
position_ids=position_ids,
|
278 |
+
past_key_values=past_key_values,
|
279 |
+
inputs_embeds=inputs_embeds,
|
280 |
+
labels=labels,
|
281 |
+
use_cache=use_cache,
|
282 |
+
output_attentions=output_attentions,
|
283 |
+
output_hidden_states=output_hidden_states,
|
284 |
+
return_dict=return_dict,
|
285 |
+
)
|
286 |
+
else:
|
287 |
+
return self.forward_for_inference(
|
288 |
+
input_ids=input_ids,
|
289 |
+
attention_mask=attention_mask,
|
290 |
+
position_ids=position_ids,
|
291 |
+
past_key_values=past_key_values,
|
292 |
+
inputs_embeds=inputs_embeds,
|
293 |
+
use_cache=use_cache,
|
294 |
+
return_dict=return_dict,
|
295 |
+
fixed_output_head=fixed_output_head,
|
296 |
+
)
|
297 |
+
|
298 |
+
def forward_for_inference(
|
299 |
+
self,
|
300 |
+
input_ids: torch.LongTensor = None,
|
301 |
+
attention_mask: Optional[torch.Tensor] = None,
|
302 |
+
position_ids: Optional[torch.LongTensor] = None,
|
303 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
304 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
305 |
+
use_cache: Optional[bool] = None,
|
306 |
+
return_dict: Optional[bool] = None,
|
307 |
+
fixed_output_head: Optional[int] = None,
|
308 |
+
):
|
309 |
+
if fixed_output_head not in self.branch_locations and fixed_output_head is not None and fixed_output_head != -1:
|
310 |
+
raise ValueError(
|
311 |
+
"The fixed output head must be one of the branch locations"
|
312 |
+
)
|
313 |
+
# retrieve input_ids and inputs_embeds
|
314 |
+
if input_ids is not None and inputs_embeds is not None:
|
315 |
+
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
316 |
+
elif input_ids is not None:
|
317 |
+
batch_size, seq_length = input_ids.shape
|
318 |
+
elif inputs_embeds is not None:
|
319 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
320 |
+
else:
|
321 |
+
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
322 |
+
|
323 |
+
past_key_values_length = 0
|
324 |
+
|
325 |
+
if use_cache:
|
326 |
+
use_legacy_cache = not isinstance(past_key_values, Cache)
|
327 |
+
if use_legacy_cache:
|
328 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
329 |
+
past_key_values_length = past_key_values.get_usable_length(seq_length)
|
330 |
+
|
331 |
+
if position_ids is None:
|
332 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
333 |
+
position_ids = torch.arange(
|
334 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
335 |
+
)
|
336 |
+
position_ids = position_ids.unsqueeze(0)
|
337 |
+
|
338 |
+
if inputs_embeds is None:
|
339 |
+
inputs_embeds = self.model.model.embed_tokens(input_ids)
|
340 |
+
|
341 |
+
inputs_embeds = self.model.model.embed_dropout(inputs_embeds)
|
342 |
+
|
343 |
+
# Attention mask.
|
344 |
+
if self.model.model._use_flash_attention_2:
|
345 |
+
# 2d mask is passed through the layers
|
346 |
+
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
347 |
+
else:
|
348 |
+
# 4d mask is passed through the layers
|
349 |
+
attention_mask = _prepare_4d_causal_attention_mask(
|
350 |
+
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
351 |
+
)
|
352 |
+
all_head_logits = []
|
353 |
+
hidden_states = inputs_embeds
|
354 |
+
is_early_exited = False
|
355 |
+
for layer_idx, decoder_layer in enumerate(self.model.model.layers):
|
356 |
+
layer_outputs = decoder_layer(
|
357 |
+
hidden_states,
|
358 |
+
attention_mask=attention_mask,
|
359 |
+
position_ids=position_ids,
|
360 |
+
past_key_value=past_key_values,
|
361 |
+
use_cache=use_cache,
|
362 |
+
)
|
363 |
+
|
364 |
+
hidden_states = layer_outputs[0]
|
365 |
+
|
366 |
+
if use_cache:
|
367 |
+
next_decoder_cache = layer_outputs[1]
|
368 |
+
|
369 |
+
if fixed_output_head is not None and layer_idx == fixed_output_head:
|
370 |
+
# find postion of layer idx in branch_locations
|
371 |
+
branch_idx = self.branch_locations.index(layer_idx)
|
372 |
+
logits = self.model.heads[branch_idx](hidden_states)
|
373 |
+
is_early_exited = True
|
374 |
+
break
|
375 |
+
elif fixed_output_head == -1 and layer_idx in self.branch_locations:
|
376 |
+
# -1 means output all heads
|
377 |
+
branch_idx = self.branch_locations.index(layer_idx)
|
378 |
+
logits = self.model.heads[branch_idx](hidden_states)
|
379 |
+
all_head_logits.append(logits)
|
380 |
+
|
381 |
+
if not is_early_exited:
|
382 |
+
hidden_states = self.model.model.final_layernorm(hidden_states)
|
383 |
+
logits = self.model.lm_head(hidden_states)
|
384 |
+
if fixed_output_head == -1:
|
385 |
+
all_head_logits.append(logits)
|
386 |
+
all_head_logits = torch.stack(all_head_logits, dim=0)
|
387 |
+
next_cache = None
|
388 |
+
if use_cache:
|
389 |
+
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
|
390 |
+
if not return_dict:
|
391 |
+
return tuple(v for v in [logits, next_cache] if v is not None)
|
392 |
+
|
393 |
+
return CausalBranchyLLMOutputWithPast(
|
394 |
+
logits=logits,
|
395 |
+
head_outputs=all_head_logits,
|
396 |
+
past_key_values=next_cache,
|
397 |
+
)
|
398 |
+
|
399 |
+
def forward_for_training(
|
400 |
+
self,
|
401 |
+
input_ids: torch.LongTensor = None,
|
402 |
+
attention_mask: Optional[torch.Tensor] = None,
|
403 |
+
position_ids: Optional[torch.LongTensor] = None,
|
404 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
405 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
406 |
+
labels: Optional[torch.LongTensor] = None,
|
407 |
+
use_cache: Optional[bool] = None,
|
408 |
+
output_attentions: Optional[bool] = None,
|
409 |
+
output_hidden_states: Optional[bool] = None,
|
410 |
+
return_dict: Optional[bool] = None,
|
411 |
+
):
|
412 |
+
|
413 |
+
if not output_hidden_states:
|
414 |
+
raise ValueError("output_hidden_states must be True for BranchyLLM")
|
415 |
+
if labels is not None:
|
416 |
+
raise NotImplementedError("BranchyLLM only supports self-supervision")
|
417 |
+
outputs = self.model(
|
418 |
+
input_ids=input_ids,
|
419 |
+
attention_mask=attention_mask,
|
420 |
+
position_ids=position_ids,
|
421 |
+
past_key_values=past_key_values,
|
422 |
+
inputs_embeds=inputs_embeds,
|
423 |
+
use_cache=use_cache,
|
424 |
+
output_attentions=output_attentions,
|
425 |
+
output_hidden_states=output_hidden_states,
|
426 |
+
return_dict=return_dict,
|
427 |
+
)
|
428 |
+
if not hasattr(outputs, "hidden_states") or outputs.hidden_states is None:
|
429 |
+
raise ValueError("The model must return hidden states")
|
430 |
+
hidden_states = outputs.hidden_states
|
431 |
+
|
432 |
+
|
433 |
+
heads_logits = []
|
434 |
+
for i, branch in enumerate(self.branch_locations):
|
435 |
+
heads_logits.append(
|
436 |
+
self.model.heads[i](
|
437 |
+
hidden_states[branch]
|
438 |
+
)
|
439 |
+
)
|
440 |
+
lm_logits = self.model.lm_head(hidden_states[-1])
|
441 |
+
|
442 |
+
heads_logits = torch.stack(heads_logits, dim=0).float()
|
443 |
+
lm_logits = lm_logits.float()
|
444 |
+
logits = torch.cat([heads_logits, lm_logits.unsqueeze(0)], dim=0)
|
445 |
+
|
446 |
+
loss = None
|
447 |
+
lm_loss = None
|
448 |
+
aux_loss = None
|
449 |
+
|
450 |
+
losses = self.compute_self_supervision_loss(
|
451 |
+
heads_logits, lm_logits, return_per_head=True
|
452 |
+
)
|
453 |
+
loss = losses["loss"]
|
454 |
+
if losses["aux_loss"] is not None:
|
455 |
+
aux_loss = losses["aux_loss"]
|
456 |
+
|
457 |
+
if not return_dict:
|
458 |
+
output = (logits,) + outputs[1:]
|
459 |
+
return ((loss, aux_loss, lm_loss) + output) if loss is not None else output
|
460 |
+
|
461 |
+
return CausalBranchyLLMOutputWithPast(
|
462 |
+
loss=loss,
|
463 |
+
lm_loss=lm_loss,
|
464 |
+
head_loss=aux_loss,
|
465 |
+
logits=logits,
|
466 |
+
past_key_values=outputs.past_key_values,
|
467 |
+
hidden_states=outputs.hidden_states,
|
468 |
+
attentions=outputs.attentions,
|
469 |
+
)
|
src/utils.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
def generate_next_token(model, tokenizer, input, method='greedy'):
|
4 |
+
"""
|
5 |
+
Generate the next token of a sequence using the given model and tokenizer.
|
6 |
+
Specific for multi branched models.
|
7 |
+
Only output token from last head.
|
8 |
+
|
9 |
+
Args:
|
10 |
+
model (torch.nn.Module): The model to use for generation.
|
11 |
+
tokenizer (transformers.PreTrainedTokenizer): The tokenizer to use for generation.
|
12 |
+
input (str): The input text to generate from.
|
13 |
+
|
14 |
+
Returns:
|
15 |
+
token (str): The next token in the sequence.
|
16 |
+
logits (torch.Tensor): The logits of the next token. of shape[Head, vocab_size]
|
17 |
+
new_sequence (str): The new sequence after adding the next token.
|
18 |
+
"""
|
19 |
+
device = model.device
|
20 |
+
input_ids = tokenizer.encode(input, return_tensors="pt").to(device)
|
21 |
+
model.eval()
|
22 |
+
logits = model(input_ids, fixed_output_head=-1).head_outputs[..., -1, :].squeeze(1) # squeeze batch dimension as it is 1 new shape is (head_count, vocab_size)
|
23 |
+
if logits == []:
|
24 |
+
raise ValueError("Model does not have head_outputs")
|
25 |
+
if method == 'greedy':
|
26 |
+
head_tokens = torch.argmax(logits, dim=-1)
|
27 |
+
elif method == 'sample':
|
28 |
+
head_tokens = torch.multinomial(torch.nn.functional.softmax(logits, dim=-1), num_samples=1)
|
29 |
+
elif method == 'top_k':
|
30 |
+
k = 5
|
31 |
+
top_k = torch.topk(logits, k, dim=-1)
|
32 |
+
top_k_logits, top_k_indices = top_k.values, top_k.indices
|
33 |
+
top_k_probs = torch.nn.functional.softmax(top_k_logits, dim=-1)
|
34 |
+
head_tokens = top_k_indices[torch.arange(top_k_probs.shape[0]), torch.multinomial(top_k_probs, num_samples=1).squeeze()]
|
35 |
+
elif method == 'top_p':
|
36 |
+
# logits is of shape [batch, vocab_size]
|
37 |
+
p = 0.9
|
38 |
+
probs = torch.nn.functional.softmax(logits, dim=-1)
|
39 |
+
sorted_probs, sorted_indices = torch.sort(probs, descending=True, dim=-1)
|
40 |
+
cumulative_probs = torch.cumsum(sorted_probs, dim=-1)
|
41 |
+
sorted_indices_to_remove = cumulative_probs > p
|
42 |
+
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
|
43 |
+
sorted_indices_to_remove[..., 0] = 0
|
44 |
+
indices_to_remove = sorted_indices[sorted_indices_to_remove]
|
45 |
+
tmp_logits = logits.clone()
|
46 |
+
for i in range(logits.shape[0]):
|
47 |
+
tmp_logits[i, indices_to_remove[i]] = float('-inf')
|
48 |
+
head_tokens = torch.multinomial(torch.nn.functional.softmax(tmp_logits, dim=-1), num_samples=1).squeeze()
|
49 |
+
else:
|
50 |
+
raise ValueError(f"Unknown method: {method}")
|
51 |
+
head_tokens = tokenizer.batch_decode(head_tokens) # Treat head dim as batch dim
|
52 |
+
new_sequence = input + head_tokens[-1]
|
53 |
+
return head_tokens[-1], logits, new_sequence, head_tokens
|
54 |
+
|
55 |
+
|
56 |
+
def breaking_ties(tensor):
|
57 |
+
return torch.sub(torch.topk(tensor, 2, dim=-1).values[..., 0], torch.topk(tensor, 2, dim=-1).values[..., 1]).squeeze()
|