valentinrack commited on
Commit
0370b84
1 Parent(s): 7263635

Upload 3 files

Browse files
Files changed (3) hide show
  1. app.py.py +37 -0
  2. requirements.txt.txt +1 -0
  3. snail_learner_1_2.pkl +3 -0
app.py.py ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """app
3
+
4
+ Automatically generated by Colaboratory.
5
+
6
+ Original file is located at
7
+ https://colab.research.google.com/drive/1h6riFrXG5PjYEq3Lj4OM0z3NPXmroaWI
8
+ """
9
+
10
+ import gradio as gr
11
+ from fastai.vision.all import *
12
+
13
+ snail_learner = load_learner('snail_learner_1_2.pkl')
14
+
15
+ labels = snail_learner.dls.vocab
16
+ def predict(img):
17
+ img = PILImage.create(img)
18
+ pred,pred_idx,probs = snail_learner .predict(img)
19
+ return {labels[i]: float(probs[i]) for i in range(len(labels))}
20
+
21
+ title = "Snail or Garden?"
22
+ description = "A snail classifier trained on internet images with fastai and validated in local garden snails pictures."
23
+ article="<p style='text-align: center'><a href='https://valentinrac.com' target='_blank'>Valentin website</a></p>"
24
+ examples = ['snail1.jpg', 'snail2.jpg','slug.jpg','snail93.jpg','snail4.jpg','snail91.jpg','snail_slug2.jpg']
25
+
26
+ iface = gr.Interface(
27
+ fn=predict,
28
+ inputs=gr.Image(),
29
+ outputs=gr.Label(),
30
+ live=True,
31
+ title=title,
32
+ description=description,
33
+ article=article,
34
+ examples=examples,
35
+ )
36
+
37
+ iface.launch(share=True)
requirements.txt.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ fastai
snail_learner_1_2.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:66e4a1138d5485b598d62a887e1aae7eb4a45dc5b8a80907924e9f0834fa3639
3
+ size 46972362