File size: 3,486 Bytes
0af2865
 
 
 
 
 
 
 
 
 
42c983e
 
0af2865
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42c983e
0af2865
 
42c983e
0af2865
 
8e6da30
42c983e
0af2865
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9813d0
 
 
 
0af2865
e9813d0
 
 
 
0af2865
e9813d0
 
 
 
0af2865
e9813d0
 
 
 
 
 
 
 
0af2865
e9813d0
 
0af2865
e9813d0
 
0af2865
e9813d0
 
 
0af2865
 
e6567e0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import streamlit as st
from dotenv import load_dotenv
from PyPDF2 import PdfReader
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings
from langchain.vectorstores import FAISS
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from htmlTemplates import css, bot_template, user_template
from langchain.llms import HuggingFaceHub, LlamaCpp
from huggingface_hub import snapshot_download, hf_hub_download

def get_pdf_text(pdf_docs):
    text = ""
    for pdf in pdf_docs:
        pdf_reader = PdfReader(pdf)
        for page in pdf_reader.pages:
            text += page.extract_text()
    return text


def get_text_chunks(text):
    text_splitter = CharacterTextSplitter(
        separator="\n",
        chunk_size=1000,
        chunk_overlap=200,
        length_function=len
    )
    chunks = text_splitter.split_text(text)
    return chunks


def get_vectorstore(text_chunks):
    embeddings = OpenAIEmbeddings()
    # embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl")
    vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
    return vectorstore


def get_conversation_chain(vectorstore):
    
    repo_name = "IlyaGusev/saiga2_7b_gguf"
    model_name = "model-q2_K.gguf"
    
    snapshot_download(repo_id=repo_name, local_dir=".", allow_patterns=model_name)

    llm = LlamaCpp(model_path=model_name, n_ctx=2048)
    #llm = ChatOpenAI()

    memory = ConversationBufferMemory(
        memory_key='chat_history', return_messages=True)
    conversation_chain = ConversationalRetrievalChain.from_llm(
        llm=llm,
        retriever=vectorstore.as_retriever(),
        memory=memory
    )
    return conversation_chain


def handle_userinput(user_question):
    response = st.session_state.conversation({'question': user_question})
    st.session_state.chat_history = response['chat_history']

    for i, message in enumerate(st.session_state.chat_history):
        if i % 2 == 0:
            st.write(user_template.replace(
                "{{MSG}}", message.content), unsafe_allow_html=True)
        else:
            st.write(bot_template.replace(
                "{{MSG}}", message.content), unsafe_allow_html=True)


load_dotenv()
st.set_page_config(page_title="Chat with multiple PDFs",
                   page_icon=":books:")
st.write(css, unsafe_allow_html=True)

if "conversation" not in st.session_state:
    st.session_state.conversation = None
if "chat_history" not in st.session_state:
    st.session_state.chat_history = None

st.header("Chat with multiple PDFs :books:")
user_question = st.text_input("Ask a question about your documents:")
if user_question:
    handle_userinput(user_question)

with st.sidebar:
    st.subheader("Your documents")
    pdf_docs = st.file_uploader(
        "Upload your PDFs here and click on 'Process'", accept_multiple_files=True)
    if st.button("Process"):
        with st.spinner("Processing"):
            # get pdf text
            raw_text = get_pdf_text(pdf_docs)

            # get the text chunks
            text_chunks = get_text_chunks(raw_text)

            # create vector store
            vectorstore = get_vectorstore(text_chunks)

            # create conversation chain
            st.session_state.conversation = get_conversation_chain(
                vectorstore)