valeriylo commited on
Commit
4a0d0a3
·
1 Parent(s): 68b3b1a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -6
app.py CHANGED
@@ -31,8 +31,8 @@ def get_pdf_text(pdf_docs):
31
 
32
  def get_text_chunks(text):
33
  text_splitter = CharacterTextSplitter(separator="\n",
34
- chunk_size=500, # 1000
35
- chunk_overlap=30, # 200
36
  length_function=len
37
  )
38
  chunks = text_splitter.split_text(text)
@@ -43,13 +43,14 @@ def get_text_chunks(text):
43
  def get_vectorstore(text_chunks):
44
  #embeddings = OpenAIEmbeddings()
45
  embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl")
46
- # embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/paraphrase-multilingual-mpnet-base-v2")
47
  vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
48
 
49
  return vectorstore
50
 
51
 
52
  def get_conversation_chain(vectorstore, model_name):
 
53
  llm = LlamaCpp(model_path=model_name,
54
  temperature=0.1,
55
  top_k=30,
@@ -62,10 +63,12 @@ def get_conversation_chain(vectorstore, model_name):
62
 
63
  #llm = ChatOpenAI()
64
 
65
- memory = ConversationBufferMemory(memory_key='chat_history', input_key='question', output_key='answer', return_messages=True)
 
 
 
66
 
67
  conversation_chain = ConversationalRetrievalChain.from_llm(llm=llm,
68
- # condense_question_prompt=CONDENSE_QUESTION_PROMPT,
69
  retriever=vectorstore.as_retriever(),
70
  memory=memory,
71
  return_source_documents=True
@@ -75,6 +78,7 @@ def get_conversation_chain(vectorstore, model_name):
75
 
76
 
77
  def handle_userinput(user_question):
 
78
  response = st.session_state.conversation({'question': user_question})
79
 
80
  st.session_state.chat_history = response['chat_history']
@@ -111,7 +115,7 @@ if "chat_history" not in st.session_state:
111
  st.session_state.chat_history = None
112
 
113
  st.header("Chat with multiple PDFs :books:")
114
- user_question = st.text_input("Ask a question about your documents:")
115
 
116
  if user_question:
117
  handle_userinput(user_question)
 
31
 
32
  def get_text_chunks(text):
33
  text_splitter = CharacterTextSplitter(separator="\n",
34
+ chunk_size=1000, # 1000
35
+ chunk_overlap=200, # 200
36
  length_function=len
37
  )
38
  chunks = text_splitter.split_text(text)
 
43
  def get_vectorstore(text_chunks):
44
  #embeddings = OpenAIEmbeddings()
45
  embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl")
46
+ #embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/paraphrase-multilingual-mpnet-base-v2")
47
  vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
48
 
49
  return vectorstore
50
 
51
 
52
  def get_conversation_chain(vectorstore, model_name):
53
+
54
  llm = LlamaCpp(model_path=model_name,
55
  temperature=0.1,
56
  top_k=30,
 
63
 
64
  #llm = ChatOpenAI()
65
 
66
+ memory = ConversationBufferMemory(memory_key='chat_history',
67
+ input_key='question',
68
+ output_key='answer',
69
+ return_messages=True)
70
 
71
  conversation_chain = ConversationalRetrievalChain.from_llm(llm=llm,
 
72
  retriever=vectorstore.as_retriever(),
73
  memory=memory,
74
  return_source_documents=True
 
78
 
79
 
80
  def handle_userinput(user_question):
81
+
82
  response = st.session_state.conversation({'question': user_question})
83
 
84
  st.session_state.chat_history = response['chat_history']
 
115
  st.session_state.chat_history = None
116
 
117
  st.header("Chat with multiple PDFs :books:")
118
+ user_question = st.text_input("Ask a question about your documents: ")
119
 
120
  if user_question:
121
  handle_userinput(user_question)