File size: 6,229 Bytes
b9093ab
891b88f
 
b9093ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
929245f
b9093ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
581138f
b9093ab
 
 
 
 
 
 
 
 
 
 
929245f
 
b9093ab
 
581138f
b9093ab
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196

import os
os.system('pip install -e .')
import gradio as gr

import base64
from io import BytesIO
# from fastapi import FastAPI

from PIL import Image
import torch as th

from glide_text2im.download import load_checkpoint
from glide_text2im.model_creation import (
    create_model_and_diffusion,
    model_and_diffusion_defaults,
    model_and_diffusion_defaults_upsampler
)

# print("Loading models...")
# app = FastAPI()

# This notebook supports both CPU and GPU.
# On CPU, generating one sample may take on the order of 20 minutes.
# On a GPU, it should be under a minute.

has_cuda = th.cuda.is_available()
device = th.device('cpu' if not has_cuda else 'cuda')

# Create base model.
options = model_and_diffusion_defaults()
options['use_fp16'] = has_cuda
options['timestep_respacing'] = '100' # use 100 diffusion steps for fast sampling
model, diffusion = create_model_and_diffusion(**options)
model.eval()
if has_cuda:
    model.convert_to_fp16()
model.to(device)
model.load_state_dict(load_checkpoint('base', device))
print('total base parameters', sum(x.numel() for x in model.parameters()))

# Create upsampler model.
options_up = model_and_diffusion_defaults_upsampler()
options_up['use_fp16'] = has_cuda
options_up['timestep_respacing'] = 'fast27' # use 27 diffusion steps for very fast sampling
model_up, diffusion_up = create_model_and_diffusion(**options_up)
model_up.eval()
if has_cuda:
    model_up.convert_to_fp16()
model_up.to(device)
model_up.load_state_dict(load_checkpoint('upsample', device))
print('total upsampler parameters', sum(x.numel() for x in model_up.parameters()))


def get_images(batch: th.Tensor):
    """ Display a batch of images inline. """
    scaled = ((batch + 1)*127.5).round().clamp(0,255).to(th.uint8).cpu()
    reshaped = scaled.permute(2, 0, 3, 1).reshape([batch.shape[2], -1, 3])
    return Image.fromarray(reshaped.numpy())


# Create a classifier-free guidance sampling function
guidance_scale = 3.0

def model_fn(x_t, ts, **kwargs):
    half = x_t[: len(x_t) // 2]
    combined = th.cat([half, half], dim=0)
    model_out = model(combined, ts, **kwargs)
    eps, rest = model_out[:, :3], model_out[:, 3:]
    cond_eps, uncond_eps = th.split(eps, len(eps) // 2, dim=0)
    half_eps = uncond_eps + guidance_scale * (cond_eps - uncond_eps)
    eps = th.cat([half_eps, half_eps], dim=0)
    return th.cat([eps, rest], dim=1)


# @app.get("/")
def read_root():
    return {"glide!"}

# @app.get("/{generate}")
def sample(prompt):
    # Sampling parameters
    batch_size = 1

    # Tune this parameter to control the sharpness of 256x256 images.
    # A value of 1.0 is sharper, but sometimes results in grainy artifacts.
    upsample_temp = 0.997

    ##############################
    # Sample from the base model #
    ##############################

    # Create the text tokens to feed to the model.
    tokens = model.tokenizer.encode(prompt)
    tokens, mask = model.tokenizer.padded_tokens_and_mask(
        tokens, options['text_ctx']
    )

    # Create the classifier-free guidance tokens (empty)
    full_batch_size = batch_size * 2
    uncond_tokens, uncond_mask = model.tokenizer.padded_tokens_and_mask(
        [], options['text_ctx']
    )

    # Pack the tokens together into model kwargs.
    model_kwargs = dict(
        tokens=th.tensor(
            [tokens] * batch_size + [uncond_tokens] * batch_size, device=device
        ),
        mask=th.tensor(
            [mask] * batch_size + [uncond_mask] * batch_size,
            dtype=th.bool,
            device=device,
        ),
    )

    # Sample from the base model.
    model.del_cache()
    samples = diffusion.p_sample_loop(
        model_fn,
        (full_batch_size, 3, options["image_size"], options["image_size"]),
        device=device,
        clip_denoised=True,
        progress=True,
        model_kwargs=model_kwargs,
        cond_fn=None,
    )[:batch_size]
    model.del_cache()


    ##############################
    # Upsample the 64x64 samples #
    ##############################

    tokens = model_up.tokenizer.encode(prompt)
    tokens, mask = model_up.tokenizer.padded_tokens_and_mask(
        tokens, options_up['text_ctx']
    )

    # Create the model conditioning dict.
    model_kwargs = dict(
        # Low-res image to upsample.
        low_res=((samples+1)*127.5).round()/127.5 - 1,

        # Text tokens
        tokens=th.tensor(
            [tokens] * batch_size, device=device
        ),
        mask=th.tensor(
            [mask] * batch_size,
            dtype=th.bool,
            device=device,
        ),
    )

    # Sample from the base model.
    model_up.del_cache()
    up_shape = (batch_size, 3, options_up["image_size"], options_up["image_size"])
    up_samples = diffusion_up.ddim_sample_loop(
        model_up,
        up_shape,
        noise=th.randn(up_shape, device=device) * upsample_temp,
        device=device,
        clip_denoised=True,
        progress=True,
        model_kwargs=model_kwargs,
        cond_fn=None,
    )[:batch_size]
    model_up.del_cache()

    # Show the output
    image = get_images(up_samples)
    # image = to_base64(image)
    # return {"image": image}
    return image


def to_base64(pil_image):
    buffered = BytesIO()
    pil_image.save(buffered, format="JPEG")
    return base64.b64encode(buffered.getvalue())

title = "Interactive demo: glide-text2im"
description = "Demo for OpenAI's GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models."
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2112.10741'>GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models</a> | <a href='https://github.com/openai/glide-text2im/'>Official Repo</a></p>"
examples =["an oil painting of a corgi"]

iface = gr.Interface(fn=sample, 
                     inputs=gr.inputs.Textbox(label='What would you like to see?'), 
                     outputs=gr.outputs.Image(type="pil", label="Model input + completions"),
                     title=title,
                     description=description,
                     article=article,
                     examples=examples,
                     enable_queue=True)
iface.launch(debug=True)