File size: 6,981 Bytes
891b88f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import math
from abc import ABC, abstractmethod
from itertools import product
from typing import Any, Optional

import attr
import numpy as np
import torch


@attr.s
class AttentionMask(ABC):
    query_context_size: int = attr.ib(validator=lambda i, a, x: x >= 1)  # type: ignore
    key_context_size: int = attr.ib(validator=lambda i, a, x: x >= 1)  # type: ignore
    block_size: int = attr.ib(validator=lambda i, a, x: x >= 1)  # type: ignore
    n_head: int = attr.ib(validator=lambda i, a, x: x >= 1)  # type: ignore
    is_head_specific: bool = attr.ib(default=False)
    n_query_pad: int = attr.ib(default=0)
    n_key_pad: int = attr.ib(default=0)

    def __attrs_post_init__(self) -> None:
        if self.query_context_size % self.block_size != 0:
            raise ValueError()
        if self.key_context_size % self.block_size != 0:
            raise ValueError()
        if self.n_query_pad >= self.query_context_size:
            raise ValueError()
        if self.n_key_pad >= self.key_context_size:
            raise ValueError()

        self.n_query_block = self.query_context_size // self.block_size
        self.n_key_block = self.key_context_size // self.block_size
        self.first_pad_query_block_idx = self.n_query_block - int(
            math.ceil(self.n_query_pad / self.block_size)
        )
        self.first_pad_key_block_idx = self.n_key_block - int(
            math.ceil(self.n_key_pad / self.block_size)
        )

    def _make_global_layout(self) -> None:
        if not self.is_head_specific:
            m = np.ones([self.n_query_block, self.n_key_block], dtype=np.bool)
            r = product(*[range(n) for n in m.shape])

            for qb, kb in r:
                m[qb, kb] = np.any(self.block_layout(None, 0, qb, kb, 0))
        else:
            m = np.ones([self.n_head, self.n_query_block, self.n_key_block], dtype=np.bool)
            r = product(*[range(n) for n in m.shape])

            for h, qb, kb in r:
                m[h, qb, kb] = np.any(self.block_layout(None, h, qb, kb, 0))

        self.global_layout = m

    @abstractmethod
    def _block_layout(
        self, blk_shape: Any, head_idx: int, query_idx: int, key_idx: int, blk_idx: int
    ) -> np.ndarray:
        raise NotImplementedError()

    def block_layout(
        self, blk_shape: Any, head_idx: int, query_idx: int, key_idx: int, blk_idx: int
    ) -> np.ndarray:
        """
        `query_idx`, `key_idx` are block-level, zero-based indices.
        """

        m = np.ones([self.block_size, self.block_size], dtype=np.bool)

        if query_idx >= self.first_pad_query_block_idx:
            n_pad = min(
                self.block_size,
                (query_idx + 1) * self.block_size - (self.query_context_size - self.n_query_pad),
            )
            assert n_pad > 0
            m[self.block_size - n_pad :] = False
        if key_idx >= self.first_pad_key_block_idx:
            n_pad = min(
                self.block_size,
                (key_idx + 1) * self.block_size - (self.key_context_size - self.n_key_pad),
            )
            assert n_pad > 0
            m[:, self.block_size - n_pad :] = False

        return m & self._block_layout(blk_shape, head_idx, query_idx, key_idx, blk_idx)


@attr.s
class DenseAttentionMask(AttentionMask):
    def __attrs_post_init__(self) -> None:
        super().__attrs_post_init__()

        self.global_layout = np.ones([self.n_query_block, self.n_key_block], dtype=np.bool)
        n_zero_query_blocks = self.n_query_pad // self.block_size
        n_zero_key_blocks = self.n_key_pad // self.block_size
        self.global_layout[self.n_query_block - n_zero_query_blocks :] = False
        self.global_layout[:, self.n_key_block - n_zero_key_blocks :] = False

    def _block_layout(
        self, blk_shape: Any, head_idx: int, query_idx: int, key_idx: int, blk_idx: int
    ) -> np.ndarray:
        return np.ones([self.block_size, self.block_size], dtype=np.bool)


@attr.s
class DenseCausalAttentionMask(AttentionMask):
    def __attrs_post_init__(self) -> None:
        super().__attrs_post_init__()

        self.global_layout = np.tril(np.ones([self.n_query_block, self.n_key_block], dtype=np.bool))
        n_zero_query_blocks = self.n_query_pad // self.block_size
        n_zero_key_blocks = self.n_key_pad // self.block_size
        self.global_layout[self.n_query_block - n_zero_query_blocks :] = False
        self.global_layout[:, self.n_key_block - n_zero_key_blocks :] = False

    def _block_layout(
        self, blk_shape: Any, head_idx: int, query_idx: int, key_idx: int, blk_idx: int
    ) -> np.ndarray:
        if query_idx > key_idx:
            return np.ones(2 * [self.block_size], dtype=np.bool)
        elif query_idx < key_idx:
            return np.zeros(2 * [self.block_size], dtype=np.bool)
        else:
            return np.tril(np.ones(2 * [self.block_size], dtype=np.bool))


@attr.s(eq=False, repr=False)
class AttentionInfo:
    n_heads: int = attr.ib()
    ctx_blks_q: int = attr.ib()
    ctx_blks_k: int = attr.ib()
    block_size: int = attr.ib()
    pytorch_attn_bias: Optional[torch.Tensor] = attr.ib()


def to_attention_info(d: AttentionMask) -> AttentionInfo:
    return AttentionInfo(
        n_heads=d.n_head,
        ctx_blks_q=d.n_query_block,
        ctx_blks_k=d.n_key_block,
        block_size=d.block_size,
        pytorch_attn_bias=None,
    )


def make_full_layout(d: AttentionMask) -> np.ndarray:
    """
    Returns the `context_size x context_size` layout matrix described by `d`. If the layout is dependent on the index of
    the attention head, a `attention_head x context_size x context_size` layout matrix is returned instead.
    """

    if not d.is_head_specific:
        u = np.reshape(d.global_layout, [d.n_query_block, d.n_key_block, 1, 1])
        r = product(range(d.n_query_block), range(d.n_key_block))
        v = np.array([d.block_layout(None, 0, i, j, 0) for i, j in r])
        v = np.reshape(v, [d.n_query_block, d.n_key_block, d.block_size, d.block_size])

        w = u * v
        w = np.transpose(w, [0, 2, 1, 3])
        w = np.reshape(w, [d.query_context_size, d.key_context_size])
        return w
    else:
        if len(d.global_layout.shape) == 2:
            u = np.reshape(d.global_layout, [1, d.n_query_block, d.n_key_block, 1, 1])
            u = np.tile(u, [d.n_head, 1, 1, 1, 1])
        elif len(d.global_layout.shape) == 3:
            u = np.reshape(d.global_layout, [d.n_head, d.n_query_block, d.n_key_block, 1, 1])
        else:
            raise RuntimeError()

        s = product(range(d.n_head), range(d.n_query_block), range(d.n_key_block))
        v = np.array([d.block_layout(None, i, j, k, 0) for i, j, k in s])
        v = np.reshape(v, [d.n_head, d.n_query_block, d.n_key_block, d.block_size, d.block_size])

        w = u * v
        w = np.transpose(w, [0, 1, 3, 2, 4])
        w = np.reshape(w, [d.n_head, d.query_context_size, d.key_context_size])
        return w