Spaces:
Runtime error
Runtime error
import torch as th | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from .nn import timestep_embedding | |
from .unet import UNetModel | |
from .xf import LayerNorm, Transformer, convert_module_to_f16 | |
class Text2ImUNet(UNetModel): | |
""" | |
A UNetModel that conditions on text with an encoding transformer. | |
Expects an extra kwarg `tokens` of text. | |
:param text_ctx: number of text tokens to expect. | |
:param xf_width: width of the transformer. | |
:param xf_layers: depth of the transformer. | |
:param xf_heads: heads in the transformer. | |
:param xf_final_ln: use a LayerNorm after the output layer. | |
:param tokenizer: the text tokenizer for sampling/vocab size. | |
""" | |
def __init__( | |
self, | |
text_ctx, | |
xf_width, | |
xf_layers, | |
xf_heads, | |
xf_final_ln, | |
tokenizer, | |
*args, | |
cache_text_emb=False, | |
xf_ar=0.0, | |
xf_padding=False, | |
share_unemb=False, | |
**kwargs, | |
): | |
self.text_ctx = text_ctx | |
self.xf_width = xf_width | |
self.xf_ar = xf_ar | |
self.xf_padding = xf_padding | |
self.tokenizer = tokenizer | |
if not xf_width: | |
super().__init__(*args, **kwargs, encoder_channels=None) | |
else: | |
super().__init__(*args, **kwargs, encoder_channels=xf_width) | |
if self.xf_width: | |
self.transformer = Transformer( | |
text_ctx, | |
xf_width, | |
xf_layers, | |
xf_heads, | |
) | |
if xf_final_ln: | |
self.final_ln = LayerNorm(xf_width) | |
else: | |
self.final_ln = None | |
self.token_embedding = nn.Embedding(self.tokenizer.n_vocab, xf_width) | |
self.positional_embedding = nn.Parameter(th.empty(text_ctx, xf_width, dtype=th.float32)) | |
self.transformer_proj = nn.Linear(xf_width, self.model_channels * 4) | |
if self.xf_padding: | |
self.padding_embedding = nn.Parameter( | |
th.empty(text_ctx, xf_width, dtype=th.float32) | |
) | |
if self.xf_ar: | |
self.unemb = nn.Linear(xf_width, self.tokenizer.n_vocab) | |
if share_unemb: | |
self.unemb.weight = self.token_embedding.weight | |
self.cache_text_emb = cache_text_emb | |
self.cache = None | |
def convert_to_fp16(self): | |
super().convert_to_fp16() | |
if self.xf_width: | |
self.transformer.apply(convert_module_to_f16) | |
self.transformer_proj.to(th.float16) | |
self.token_embedding.to(th.float16) | |
self.positional_embedding.to(th.float16) | |
if self.xf_padding: | |
self.padding_embedding.to(th.float16) | |
if self.xf_ar: | |
self.unemb.to(th.float16) | |
def get_text_emb(self, tokens, mask): | |
assert tokens is not None | |
if self.cache_text_emb and self.cache is not None: | |
assert ( | |
tokens == self.cache["tokens"] | |
).all(), f"Tokens {tokens.cpu().numpy().tolist()} do not match cache {self.cache['tokens'].cpu().numpy().tolist()}" | |
return self.cache | |
xf_in = self.token_embedding(tokens.long()) | |
xf_in = xf_in + self.positional_embedding[None] | |
if self.xf_padding: | |
assert mask is not None | |
xf_in = th.where(mask[..., None], xf_in, self.padding_embedding[None]) | |
xf_out = self.transformer(xf_in.to(self.dtype)) | |
if self.final_ln is not None: | |
xf_out = self.final_ln(xf_out) | |
xf_proj = self.transformer_proj(xf_out[:, -1]) | |
xf_out = xf_out.permute(0, 2, 1) # NLC -> NCL | |
outputs = dict(xf_proj=xf_proj, xf_out=xf_out) | |
if self.cache_text_emb: | |
self.cache = dict( | |
tokens=tokens, | |
xf_proj=xf_proj.detach(), | |
xf_out=xf_out.detach() if xf_out is not None else None, | |
) | |
return outputs | |
def del_cache(self): | |
self.cache = None | |
def forward(self, x, timesteps, tokens=None, mask=None): | |
hs = [] | |
emb = self.time_embed(timestep_embedding(timesteps, self.model_channels)) | |
if self.xf_width: | |
text_outputs = self.get_text_emb(tokens, mask) | |
xf_proj, xf_out = text_outputs["xf_proj"], text_outputs["xf_out"] | |
emb = emb + xf_proj.to(emb) | |
else: | |
xf_out = None | |
h = x.type(self.dtype) | |
for module in self.input_blocks: | |
h = module(h, emb, xf_out) | |
hs.append(h) | |
h = self.middle_block(h, emb, xf_out) | |
for module in self.output_blocks: | |
h = th.cat([h, hs.pop()], dim=1) | |
h = module(h, emb, xf_out) | |
h = h.type(x.dtype) | |
h = self.out(h) | |
return h | |
class SuperResText2ImUNet(Text2ImUNet): | |
""" | |
A text2im model that performs super-resolution. | |
Expects an extra kwarg `low_res` to condition on a low-resolution image. | |
""" | |
def __init__(self, *args, **kwargs): | |
if "in_channels" in kwargs: | |
kwargs = dict(kwargs) | |
kwargs["in_channels"] = kwargs["in_channels"] * 2 | |
else: | |
# Curse you, Python. Or really, just curse positional arguments :|. | |
args = list(args) | |
args[1] = args[1] * 2 | |
super().__init__(*args, **kwargs) | |
def forward(self, x, timesteps, low_res=None, **kwargs): | |
_, _, new_height, new_width = x.shape | |
upsampled = F.interpolate( | |
low_res, (new_height, new_width), mode="bilinear", align_corners=False | |
) | |
x = th.cat([x, upsampled], dim=1) | |
return super().forward(x, timesteps, **kwargs) | |
class InpaintText2ImUNet(Text2ImUNet): | |
""" | |
A text2im model which can perform inpainting. | |
""" | |
def __init__(self, *args, **kwargs): | |
if "in_channels" in kwargs: | |
kwargs = dict(kwargs) | |
kwargs["in_channels"] = kwargs["in_channels"] * 2 + 1 | |
else: | |
# Curse you, Python. Or really, just curse positional arguments :|. | |
args = list(args) | |
args[1] = args[1] * 2 + 1 | |
super().__init__(*args, **kwargs) | |
def forward(self, x, timesteps, inpaint_image=None, inpaint_mask=None, **kwargs): | |
if inpaint_image is None: | |
inpaint_image = th.zeros_like(x) | |
if inpaint_mask is None: | |
inpaint_mask = th.zeros_like(x[:, :1]) | |
return super().forward( | |
th.cat([x, inpaint_image * inpaint_mask, inpaint_mask], dim=1), | |
timesteps, | |
**kwargs, | |
) | |
class SuperResInpaintText2ImUnet(Text2ImUNet): | |
""" | |
A text2im model which can perform both upsampling and inpainting. | |
""" | |
def __init__(self, *args, **kwargs): | |
if "in_channels" in kwargs: | |
kwargs = dict(kwargs) | |
kwargs["in_channels"] = kwargs["in_channels"] * 3 + 1 | |
else: | |
# Curse you, Python. Or really, just curse positional arguments :|. | |
args = list(args) | |
args[1] = args[1] * 3 + 1 | |
super().__init__(*args, **kwargs) | |
def forward( | |
self, | |
x, | |
timesteps, | |
inpaint_image=None, | |
inpaint_mask=None, | |
low_res=None, | |
**kwargs, | |
): | |
if inpaint_image is None: | |
inpaint_image = th.zeros_like(x) | |
if inpaint_mask is None: | |
inpaint_mask = th.zeros_like(x[:, :1]) | |
_, _, new_height, new_width = x.shape | |
upsampled = F.interpolate( | |
low_res, (new_height, new_width), mode="bilinear", align_corners=False | |
) | |
return super().forward( | |
th.cat([x, inpaint_image * inpaint_mask, inpaint_mask, upsampled], dim=1), | |
timesteps, | |
**kwargs, | |
) | |