Spaces:
Runtime error
Runtime error
import start | |
import gradio as gr | |
import pandas as pd | |
from glob import glob | |
from pathlib import Path | |
from tabs.dashboard import df | |
from tabs.faq import ( | |
about_olas_predict_benchmark, | |
about_olas_predict, | |
about_the_dataset, | |
about_the_tools | |
) | |
from tabs.howto_benchmark import how_to_run | |
from tabs.run_benchmark import run_benchmark_main | |
demo = gr.Blocks() | |
def run_benchmark_gradio(tool_name, model_name, num_questions, openai_api_key, anthropic_api_key, openrouter_api_key): | |
"""Run the benchmark using inputs.""" | |
if tool_name is None: | |
return "Please enter the name of your tool." | |
if openai_api_key is None and anthropic_api_key is None and openrouter_api_key is None: | |
return "Please enter either OpenAI or Anthropic or OpenRouter API key." | |
result = run_benchmark_main(tool_name, model_name, num_questions, openai_api_key, anthropic_api_key, openrouter_api_key) | |
if result == 'completed': | |
# get the results file in the results directory | |
fns = glob('results/*.csv') | |
print(f"Number of files in results directory: {len(fns)}") | |
# convert to Path | |
files = [Path(file) for file in fns] | |
# get results and summary files | |
results_files = [file for file in files if 'results' in file.name] | |
# the other file is the summary file | |
summary_files = [file for file in files if 'summary' in file.name] | |
print(results_files, summary_files) | |
# get the path with results | |
results_df = pd.read_csv(results_files[0]) | |
summary_df = pd.read_csv(summary_files[0]) | |
# make sure all df float values are rounded to 4 decimal places | |
results_df = results_df.round(4) | |
summary_df = summary_df.round(4) | |
return gr.Dataframe(value=results_df), gr.Dataframe(value=summary_df) | |
return gr.Textbox(label="Benchmark Result", value=result, interactive=False), gr.Textbox(label="Summary", value="") | |
with demo: | |
gr.HTML("<h1>Olas Predict Benchmark</hjson>") | |
gr.Markdown("Leaderboard showing the performance of Olas Predict tools on the Autocast dataset and overview of the project.") | |
with gr.Tabs() as tabs: | |
# first tab - leaderboard | |
with gr.TabItem("π Benchmark Leaderboard", id=0): | |
gr.components.Dataframe( | |
value=df, | |
) | |
# second tab - about | |
with gr.TabItem("βΉοΈ About"): | |
with gr.Row(): | |
with gr.Accordion("About the Benchmark", open=False): | |
gr.Markdown(about_olas_predict_benchmark) | |
with gr.Row(): | |
with gr.Accordion("About the Tools", open=False): | |
gr.Markdown(about_the_tools) | |
with gr.Row(): | |
with gr.Accordion("About the Autocast Dataset", open=False): | |
gr.Markdown(about_the_dataset) | |
with gr.Row(): | |
with gr.Accordion("About Olas", open=False): | |
gr.Markdown(about_olas_predict) | |
# third tab - how to run the benchmark | |
with gr.TabItem("π Contribute"): | |
gr.Markdown(how_to_run) | |
def update_dropdown(tool): | |
if "claude" in tool: | |
return ["claude-3-haiku-20240307", "claude-3-sonnet-20240229", "claude-3-opus-20240229"] | |
else: | |
return ["gpt-3.5-turbo-0125", "gpt-4-0125-preview"] | |
# fourth tab - run the benchmark | |
with gr.TabItem("π₯ Run the Benchmark"): | |
with gr.Row(): | |
tool_name = gr.Dropdown( | |
[ | |
"prediction-offline", | |
"prediction-online", | |
# "prediction-online-summarized-info", | |
# "prediction-offline-sme", | |
# "prediction-online-sme", | |
'prediction-request-rag', | |
'prediction-request-reasoning', | |
"prediction-url-cot-claude", | |
# "prediction-request-rag-cohere", | |
# "prediction-with-research-conservative", | |
# "prediction-with-research-bold", | |
], label="Tool Name", info="Choose the tool to run") | |
model_name = gr.Dropdown([ | |
"gpt-3.5-turbo-0125", | |
"gpt-4-0125-preview" | |
"claude-3-haiku-20240307", | |
"claude-3-sonnet-20240229", | |
"claude-3-opus-20240229", | |
"databricks/dbrx-instruct:nitro", | |
"nousresearch/nous-hermes-2-mixtral-8x7b-sft", | |
# "cohere/command-r-plus", | |
], label="Model Name", info="Choose the model to use") | |
with gr.Row(): | |
openai_api_key = gr.Textbox(label="OpenAI API Key", placeholder="Enter your OpenAI API key here", type="password") | |
anthropic_api_key = gr.Textbox(label="Anthropic API Key", placeholder="Enter your Anthropic API key here", type="password") | |
openrouter_api_key = gr.Textbox(label="OpenRouter API Key", placeholder="Enter your OpenRouter API key here", type="password") | |
with gr.Row(): | |
num_questions = gr.Slider( | |
minimum=1, | |
maximum=340, | |
value=10, | |
label="Number of questions to run the benchmark on", | |
) | |
with gr.Row(): | |
run_button = gr.Button("Run Benchmark") | |
with gr.Row(): | |
with gr.Accordion("Results", open=True): | |
result = gr.Dataframe() | |
with gr.Row(): | |
with gr.Accordion("Summary", open=False): | |
summary = gr.Dataframe() | |
run_button.click(run_benchmark_gradio, | |
inputs=[tool_name, model_name, num_questions, openai_api_key, anthropic_api_key, openrouter_api_key], | |
outputs=[result, summary]) | |
demo.queue(default_concurrency_limit=40).launch() |