cyberosa commited on
Commit
7c506a2
·
verified ·
1 Parent(s): da3b15a

Update README.md

Browse files

Updating README file with more information about the repo and the files.

Files changed (1) hide show
  1. README.md +37 -0
README.md CHANGED
@@ -9,5 +9,42 @@ app_file: app.py
9
  pinned: false
10
  license: apache-2.0
11
  ---
 
 
12
 
13
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  pinned: false
10
  license: apache-2.0
11
  ---
12
+ # About this space
13
+ This HF space is a 'Gradio' based space with the configuration above.
14
 
15
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
16
+
17
+ # Cloning the space repo
18
+ `git clone https://huggingface.co/spaces/valory/olas-prediction-leaderboard`
19
+
20
+ # Updating the space repo
21
+ Update the space like any github repo
22
+ Make sure you have git-lfs (since the CSVs are big and need LFS to push)
23
+ Use similar `git` functions to push
24
+
25
+ # Re-starting the space repo
26
+ There are two ways:
27
+ 1. Push a small commit
28
+ 2. Use the `Restart this space` from the [settings](https://huggingface.co/spaces/valory/olas-prediction-leaderboard/settings) page
29
+
30
+ # Running the benchmark to contribute with new data
31
+ Run the benchmark locally using this [repo](https://github.com/valory-xyz/olas-predict-benchmark)
32
+ Please see the readme on the repo on how to run
33
+ Copy the relevant row/columns from `summary.csv` in the results folder
34
+ Paste the CSV in the root of the `olas-prediction-leaderboard` HF space repo as `formatted_data.csv`
35
+ Add the changes and push using `git add, commit, and push` commands
36
+ Note: you just need to add the new data as a new row in the csv file. One row per model/tool.
37
+
38
+ # Scripts of the repository
39
+ ## app.py
40
+ Starts the gradio app
41
+ Also, kickstart the start.py
42
+ There are 4 tabs:
43
+ 1. Benchmark Leaderboard: Shows the benchmark data
44
+ 2. About: Some FAQs
45
+ 3. Contribute: Some details on how to contribute
46
+ 4. Run the benchmark: Run the benchmark on any tools. You will have to provide your api keys
47
+
48
+ ## start.py
49
+ Setups the necessary things including - Olas-predict-benchmark repo, mech repo, and the required datasets for running the benchmark
50
+