File size: 7,737 Bytes
2f8587a 2309882 2f8587a 6012e5c 2f8587a 6012e5c 2f8587a a8f865e 6ca7c50 a8f865e 6ca7c50 a8f865e 6ca7c50 a8f865e 2309882 a8f865e 2309882 a8f865e 2309882 a8f865e 773af00 a8f865e 6ca7c50 a8f865e 6ca7c50 2309882 a8f865e 2309882 773af00 2309882 2f8587a 6012e5c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
import pandas as pd
import gradio as gr
import plotly.express as px
trade_metric_choices = [
"mech calls",
"collateral amount",
"earnings",
"net earnings",
"ROI",
]
tool_metric_choices = ["losses", "wins", "total_request", "win_perc"]
default_trade_metric = "ROI"
default_tool_metric = "win_perc"
HEIGHT = 600
WIDTH = 1000
def plot_trade_details(metric_name: str, trades_df: pd.DataFrame) -> gr.LinePlot:
"""Plots the trade details for the given trade detail."""
column_name = metric_name
if metric_name == "mech calls":
metric_name = "mech_calls"
column_name = "num_mech_calls"
elif metric_name == "ROI":
column_name = "roi"
# this is to filter out the data before 2023-09-01
trades_filtered = trades_df[trades_df["creation_timestamp"] > "2023-09-01"]
trades_filtered = (
trades_filtered.groupby("month_year_week")[column_name]
.quantile([0.25, 0.5, 0.75])
.unstack()
)
trades_filtered.columns = trades_filtered.columns.astype(str)
trades_filtered.reset_index(inplace=True)
trades_filtered.columns = [
"month_year_week",
"25th_percentile",
"50th_percentile",
"75th_percentile",
]
# reformat the data as percentile, date, value
trades_filtered = trades_filtered.melt(
id_vars=["month_year_week"], var_name="percentile", value_name=metric_name
)
return gr.LinePlot(
value=trades_filtered,
x="month_year_week",
y=metric_name,
color="percentile",
show_label=True,
interactive=True,
show_actions_button=True,
tooltip=["month_year_week", "percentile", metric_name],
height=HEIGHT,
width=WIDTH,
)
def get_metrics(
metric_name: str, column_name: str, market_creator: str, trades_df: pd.DataFrame
) -> pd.DataFrame:
# this is to filter out the data before 2023-09-01
trades_filtered = trades_df[trades_df["creation_timestamp"] > "2023-09-01"]
if market_creator != "all":
trades_filtered = trades_filtered.loc[
trades_filtered["market_creator"] == market_creator
]
trades_filtered = (
trades_filtered.groupby("month_year_week", sort=False)[column_name]
.quantile([0.25, 0.5, 0.75])
.unstack()
)
# reformat the data as percentile, date, value
trades_filtered = trades_filtered.melt(
id_vars=["month_year_week"], var_name="percentile", value_name=metric_name
)
trades_filtered.columns = trades_filtered.columns.astype(str)
trades_filtered.reset_index(inplace=True)
trades_filtered.columns = [
"month_year_week",
"25th_percentile",
"50th_percentile",
"75th_percentile",
]
# reformat the data as percentile, date, value
trades_filtered = trades_filtered.melt(
id_vars=["month_year_week"], var_name="percentile", value_name=metric_name
)
return trades_filtered
def get_boxplot_metrics(column_name: str, trades_df: pd.DataFrame) -> pd.DataFrame:
# this is to filter out the data before 2023-09-01
trades_filtered = trades_df[trades_df["creation_timestamp"] > "2023-09-01"]
trades_filtered = trades_filtered[
["creation_timestamp", "month_year_week", "market_creator", column_name]
]
# adding the total
trades_filtered_all = trades_filtered.copy(deep=True)
trades_filtered_all["market_creator"] = "all"
# merging both dataframes
all_filtered_trades = pd.concat(
[trades_filtered, trades_filtered_all], ignore_index=True
)
all_filtered_trades = all_filtered_trades.sort_values(
by="creation_timestamp", ascending=True
)
return all_filtered_trades
def plot2_trade_details(
metric_name: str, market_creator: str, trades_df: pd.DataFrame
) -> gr.Plot:
"""Plots the trade details for the given trade detail."""
if metric_name == "mech calls":
metric_name = "mech_calls"
column_name = "num_mech_calls"
yaxis_title = "Nr of mech calls per trade"
elif metric_name == "ROI":
column_name = "roi"
yaxis_title = "ROI (net profit/cost)"
elif metric_name == "collateral amount":
metric_name = "collateral_amount"
column_name = metric_name
yaxis_title = "Collateral amount per trade (xDAI)"
elif metric_name == "net earnings":
metric_name = "net_earnings"
column_name = metric_name
yaxis_title = "Net profit per trade (xDAI)"
else: # earnings
column_name = metric_name
yaxis_title = "Gross profit per trade (xDAI)"
trades_filtered = get_metrics(metric_name, column_name, market_creator, trades_df)
fig = px.line(
trades_filtered, x="month_year_week", y=metric_name, color="percentile"
)
fig.update_layout(
xaxis_title="Week",
yaxis_title=yaxis_title,
legend=dict(yanchor="top", y=0.5),
)
fig.update_xaxes(tickformat="%b %d\n%Y")
return gr.Plot(
value=fig,
)
def plot_trade_metrics(
metric_name: str, trades_df: pd.DataFrame, height: int = None, width: int = None
) -> gr.Plot:
"""Plots the trade metrics."""
if metric_name == "mech calls":
metric_name = "mech_calls"
column_name = "num_mech_calls"
yaxis_title = "Nr of mech calls per trade"
elif metric_name == "ROI":
column_name = "roi"
yaxis_title = "ROI (net profit/cost)"
elif metric_name == "collateral amount":
metric_name = "collateral_amount"
column_name = metric_name
yaxis_title = "Collateral amount per trade (xDAI)"
elif metric_name == "net earnings":
metric_name = "net_earnings"
column_name = metric_name
yaxis_title = "Net profit per trade (xDAI)"
else: # earnings
column_name = metric_name
yaxis_title = "Gross profit per trade (xDAI)"
trades_filtered = get_boxplot_metrics(column_name, trades_df)
fig = px.box(
trades_filtered,
x="month_year_week",
y=column_name,
color="market_creator",
color_discrete_sequence=["goldenrod", "darkgreen", "purple"],
)
fig.update_traces(boxmean=True)
fig.update_layout(
xaxis_title="Week",
yaxis_title=yaxis_title,
legend=dict(yanchor="top", y=0.5),
)
fig.update_xaxes(tickformat="%b %d\n%Y")
if height is not None:
fig.update_layout(width=WIDTH, height=HEIGHT)
return gr.Plot(
value=fig,
)
def plot_average_roi_per_market_by_week(trades_df: pd.DataFrame) -> gr.LinePlot:
mean_roi_per_market_by_week = (
trades_df.groupby(["market_creator", "month_year_week"])["roi"]
.mean()
.reset_index()
)
mean_roi_per_market_by_week.rename(columns={"roi": "mean_roi"}, inplace=True)
return gr.LinePlot(
value=mean_roi_per_market_by_week,
x="month_year_week",
y="ROI",
color="market_creator",
show_label=True,
interactive=True,
show_actions_button=True,
tooltip=["month_year_week", "market_creator", "mean_roi"],
height=HEIGHT,
width=WIDTH,
)
def plot_tool_metrics(wins_df: pd.DataFrame, winning_selector: str) -> gr.Plot:
print("under construction")
if winning_selector == "losses":
yaxis_title = "Nr of mech calls per trade"
elif winning_selector == "win_perc":
column_name = "roi"
yaxis_title = "ROI (net profit/cost)"
elif winning_selector == "wins":
yaxis_title = "Collateral amount per trade (xDAI)"
else: # "total_request"
column_name = metric_name
yaxis_title = "Gross profit per trade (xDAI)"
|