rosacastillo's picture
new data and staking labeling
30c8ea3
raw
history blame
20.1 kB
# -*- coding: utf-8 -*-
# ------------------------------------------------------------------------------
#
# Copyright 2023 Valory AG
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# ------------------------------------------------------------------------------
import time
import requests
import datetime
import pandas as pd
from collections import defaultdict
from typing import Any
from string import Template
from enum import Enum
from tqdm import tqdm
import numpy as np
import os
from pathlib import Path
from get_mech_info import DATETIME_60_DAYS_AGO
from utils import SUBGRAPH_API_KEY, wei_to_unit, convert_hex_to_int, _to_content
from queries import omen_xdai_trades_query, conditional_tokens_gc_user_query
from staking import label_trades_by_staking
QUERY_BATCH_SIZE = 1000
DUST_THRESHOLD = 10000000000000
INVALID_ANSWER = -1
FPMM_QS_CREATOR = "0x89c5cc945dd550bcffb72fe42bff002429f46fec"
FPMM_PEARL_CREATOR = "0xFfc8029154ECD55ABED15BD428bA596E7D23f557"
DEFAULT_FROM_DATE = "1970-01-01T00:00:00"
DEFAULT_TO_DATE = "2038-01-19T03:14:07"
DEFAULT_FROM_TIMESTAMP = 0
DEFAULT_60_DAYS_AGO_TIMESTAMP = (DATETIME_60_DAYS_AGO).timestamp()
DEFAULT_TO_TIMESTAMP = 2147483647 # around year 2038
WXDAI_CONTRACT_ADDRESS = "0xe91D153E0b41518A2Ce8Dd3D7944Fa863463a97d"
DEFAULT_MECH_FEE = 0.01
DUST_THRESHOLD = 10000000000000
SCRIPTS_DIR = Path(__file__).parent
ROOT_DIR = SCRIPTS_DIR.parent
DATA_DIR = ROOT_DIR / "data"
class MarketState(Enum):
"""Market state"""
OPEN = 1
PENDING = 2
FINALIZING = 3
ARBITRATING = 4
CLOSED = 5
def __str__(self) -> str:
"""Prints the market status."""
return self.name.capitalize()
class MarketAttribute(Enum):
"""Attribute"""
NUM_TRADES = "Num_trades"
WINNER_TRADES = "Winner_trades"
NUM_REDEEMED = "Num_redeemed"
INVESTMENT = "Investment"
FEES = "Fees"
MECH_CALLS = "Mech_calls"
MECH_FEES = "Mech_fees"
EARNINGS = "Earnings"
NET_EARNINGS = "Net_earnings"
REDEMPTIONS = "Redemptions"
ROI = "ROI"
def __str__(self) -> str:
"""Prints the attribute."""
return self.value
def __repr__(self) -> str:
"""Prints the attribute representation."""
return self.name
@staticmethod
def argparse(s: str) -> "MarketAttribute":
"""Performs string conversion to MarketAttribute."""
try:
return MarketAttribute[s.upper()]
except KeyError as e:
raise ValueError(f"Invalid MarketAttribute: {s}") from e
ALL_TRADES_STATS_DF_COLS = [
"trader_address",
"market_creator",
"trade_id",
"creation_timestamp",
"title",
"market_status",
"collateral_amount",
"outcome_index",
"trade_fee_amount",
"outcomes_tokens_traded",
"current_answer",
"is_invalid",
"winning_trade",
"earnings",
"redeemed",
"redeemed_amount",
"num_mech_calls",
"mech_fee_amount",
"net_earnings",
"roi",
]
SUMMARY_STATS_DF_COLS = [
"trader_address",
"num_trades",
"num_winning_trades",
"num_redeemed",
"total_investment",
"total_trade_fees",
"num_mech_calls",
"total_mech_fees",
"total_earnings",
"total_redeemed_amount",
"total_net_earnings",
"total_net_earnings_wo_mech_fees",
"total_roi",
"total_roi_wo_mech_fees",
"mean_mech_calls_per_trade",
"mean_mech_fee_amount_per_trade",
]
headers = {
"Accept": "application/json, multipart/mixed",
"Content-Type": "application/json",
}
def _query_omen_xdai_subgraph(
trader_category: str,
from_timestamp: float,
to_timestamp: float,
fpmm_from_timestamp: float,
fpmm_to_timestamp: float,
) -> dict[str, Any]:
"""Query the subgraph."""
OMEN_SUBGRAPH_URL = Template(
"""https://gateway-arbitrum.network.thegraph.com/api/${subgraph_api_key}/subgraphs/id/9fUVQpFwzpdWS9bq5WkAnmKbNNcoBwatMR4yZq81pbbz"""
)
omen_subgraph = OMEN_SUBGRAPH_URL.substitute(subgraph_api_key=SUBGRAPH_API_KEY)
print(f"omen_subgraph = {omen_subgraph}")
grouped_results = defaultdict(list)
id_gt = ""
if trader_category == "quickstart":
creator_id = FPMM_QS_CREATOR.lower()
else: # pearl
creator_id = FPMM_PEARL_CREATOR.lower()
while True:
query = omen_xdai_trades_query.substitute(
fpmm_creator=creator_id,
creationTimestamp_gte=int(from_timestamp),
creationTimestamp_lte=int(to_timestamp),
fpmm_creationTimestamp_gte=int(fpmm_from_timestamp),
fpmm_creationTimestamp_lte=int(fpmm_to_timestamp),
first=QUERY_BATCH_SIZE,
id_gt=id_gt,
)
content_json = _to_content(query)
res = requests.post(omen_subgraph, headers=headers, json=content_json)
result_json = res.json()
# print(f"result = {result_json}")
user_trades = result_json.get("data", {}).get("fpmmTrades", [])
if not user_trades:
break
for trade in user_trades:
fpmm_id = trade.get("fpmm", {}).get("id")
grouped_results[fpmm_id].append(trade)
id_gt = user_trades[len(user_trades) - 1]["id"]
all_results = {
"data": {
"fpmmTrades": [
trade
for trades_list in grouped_results.values()
for trade in trades_list
]
}
}
return all_results
def _query_conditional_tokens_gc_subgraph(creator: str) -> dict[str, Any]:
"""Query the subgraph."""
SUBGRAPH_URL = Template(
"""https://gateway-arbitrum.network.thegraph.com/api/${subgraph_api_key}/subgraphs/id/7s9rGBffUTL8kDZuxvvpuc46v44iuDarbrADBFw5uVp2"""
)
subgraph = SUBGRAPH_URL.substitute(subgraph_api_key=SUBGRAPH_API_KEY)
all_results: dict[str, Any] = {"data": {"user": {"userPositions": []}}}
userPositions_id_gt = ""
while True:
query = conditional_tokens_gc_user_query.substitute(
id=creator.lower(),
first=QUERY_BATCH_SIZE,
userPositions_id_gt=userPositions_id_gt,
)
content_json = {"query": query}
print("sending query to subgraph")
res = requests.post(subgraph, headers=headers, json=content_json)
result_json = res.json()
# print(f"result = {result_json}")
user_data = result_json.get("data", {}).get("user", {})
if not user_data:
break
user_positions = user_data.get("userPositions", [])
if user_positions:
all_results["data"]["user"]["userPositions"].extend(user_positions)
userPositions_id_gt = user_positions[len(user_positions) - 1]["id"]
else:
break
if len(all_results["data"]["user"]["userPositions"]) == 0:
return {"data": {"user": None}}
return all_results
def _is_redeemed(user_json: dict[str, Any], fpmmTrade: dict[str, Any]) -> bool:
"""Returns whether the user has redeemed the position."""
user_positions = user_json["data"]["user"]["userPositions"]
condition_id = fpmmTrade["fpmm.condition.id"]
for position in user_positions:
position_condition_ids = position["position"]["conditionIds"]
balance = int(position["balance"])
if condition_id in position_condition_ids:
if balance == 0:
return True
# return early
return False
return False
def transform_fpmmTrades(df: pd.DataFrame) -> pd.DataFrame:
print("Transforming trades dataframe")
# convert creator to address
df["creator"] = df["creator"].apply(lambda x: x["id"])
# normalize fpmm column
fpmm = pd.json_normalize(df["fpmm"])
fpmm.columns = [f"fpmm.{col}" for col in fpmm.columns]
df = pd.concat([df, fpmm], axis=1)
# drop fpmm column
df.drop(["fpmm"], axis=1, inplace=True)
# change creator to creator_address
df.rename(columns={"creator": "trader_address"}, inplace=True)
print(df.head())
print(df.info())
return df
def create_fpmmTrades(rpc: str, from_timestamp: float = DEFAULT_FROM_TIMESTAMP):
"""Create fpmmTrades for all trades."""
# Quickstart trades
qs_trades_json = _query_omen_xdai_subgraph(
trader_category="quickstart",
from_timestamp=from_timestamp,
to_timestamp=DEFAULT_TO_TIMESTAMP,
fpmm_from_timestamp=from_timestamp,
fpmm_to_timestamp=DEFAULT_TO_TIMESTAMP,
)
print(f"length of the qs_trades_json dataset {len(qs_trades_json)}")
# convert to dataframe
qs_df = pd.DataFrame(qs_trades_json["data"]["fpmmTrades"])
qs_df["market_creator"] = "quickstart"
qs_df = transform_fpmmTrades(qs_df)
# Pearl trades
pearl_trades_json = _query_omen_xdai_subgraph(
trader_category="pearl",
from_timestamp=from_timestamp,
to_timestamp=DEFAULT_TO_TIMESTAMP,
fpmm_from_timestamp=from_timestamp,
fpmm_to_timestamp=DEFAULT_TO_TIMESTAMP,
)
print(f"length of the pearl_trades_json dataset {len(pearl_trades_json)}")
# convert to dataframe
pearl_df = pd.DataFrame(pearl_trades_json["data"]["fpmmTrades"])
pearl_df["market_creator"] = "pearl"
pearl_df = transform_fpmmTrades(pearl_df)
return pd.concat([qs_df, pearl_df], ignore_index=True)
def prepare_profitalibity_data(
rpc: str,
tools_filename: str = "tools.parquet",
trades_filename: str = "fpmmTrades.parquet",
from_timestamp: float = DEFAULT_60_DAYS_AGO_TIMESTAMP,
):
"""Prepare data for profitalibity analysis."""
# Check if tools.parquet is in the same directory
try:
tools = pd.read_parquet(DATA_DIR / tools_filename)
# make sure creator_address is in the columns
assert "trader_address" in tools.columns, "trader_address column not found"
# lowercase and strip creator_address
tools["trader_address"] = tools["trader_address"].str.lower().str.strip()
# drop duplicates
tools.drop_duplicates(inplace=True)
print(f"{tools_filename} loaded")
except FileNotFoundError:
print("tools.parquet not found. Please run tools.py first.")
return
# Check if fpmmTrades.parquet is in the same directory
try:
fpmmTrades = pd.read_parquet(DATA_DIR / trades_filename)
print(f"{trades_filename} loaded")
except FileNotFoundError:
print("fpmmTrades.parquet not found. Creating fpmmTrades.parquet...")
fpmmTrades = create_fpmmTrades(rpc, from_timestamp=from_timestamp)
fpmmTrades.to_parquet(DATA_DIR / "fpmmTrades.parquet", index=False)
# make sure trader_address is in the columns
assert "trader_address" in fpmmTrades.columns, "trader_address column not found"
# lowercase and strip creator_address
fpmmTrades["trader_address"] = fpmmTrades["trader_address"].str.lower().str.strip()
return fpmmTrades, tools
def determine_market_status(trade, current_answer):
"""Determine the market status of a trade."""
if current_answer is np.nan and time.time() >= int(trade["fpmm.openingTimestamp"]):
return MarketState.PENDING
elif current_answer == np.nan:
return MarketState.OPEN
elif trade["fpmm.isPendingArbitration"]:
return MarketState.ARBITRATING
elif time.time() < int(trade["fpmm.answerFinalizedTimestamp"]):
return MarketState.FINALIZING
return MarketState.CLOSED
def analyse_trader(
trader_address: str, fpmmTrades: pd.DataFrame, tools: pd.DataFrame
) -> pd.DataFrame:
"""Analyse a trader's trades"""
# Filter trades and tools for the given trader
trades = fpmmTrades[fpmmTrades["trader_address"] == trader_address]
tools_usage = tools[tools["trader_address"] == trader_address]
# Prepare the DataFrame
trades_df = pd.DataFrame(columns=ALL_TRADES_STATS_DF_COLS)
if trades.empty:
return trades_df
# Fetch user's conditional tokens gc graph
try:
user_json = _query_conditional_tokens_gc_subgraph(trader_address)
except Exception as e:
print(f"Error fetching user data: {e}")
return trades_df
# Iterate over the trades
for i, trade in tqdm(trades.iterrows(), total=len(trades), desc="Analysing trades"):
try:
if not trade["fpmm.currentAnswer"]:
print(f"Skipping trade {i} because currentAnswer is NaN")
continue
# Parsing and computing shared values
creation_timestamp_utc = datetime.datetime.fromtimestamp(
int(trade["creationTimestamp"]), tz=datetime.timezone.utc
)
collateral_amount = wei_to_unit(float(trade["collateralAmount"]))
fee_amount = wei_to_unit(float(trade["feeAmount"]))
outcome_tokens_traded = wei_to_unit(float(trade["outcomeTokensTraded"]))
earnings, winner_trade = (0, False)
redemption = _is_redeemed(user_json, trade)
current_answer = trade["fpmm.currentAnswer"]
market_creator = trade["market_creator"]
# Determine market status
market_status = determine_market_status(trade, current_answer)
# Skip non-closed markets
if market_status != MarketState.CLOSED:
print(
f"Skipping trade {i} because market is not closed. Market Status: {market_status}"
)
continue
current_answer = convert_hex_to_int(current_answer)
# Compute invalidity
is_invalid = current_answer == INVALID_ANSWER
# Compute earnings and winner trade status
if is_invalid:
earnings = collateral_amount
winner_trade = False
elif int(trade["outcomeIndex"]) == current_answer:
earnings = outcome_tokens_traded
winner_trade = True
# Compute mech calls
try:
num_mech_calls = (
tools_usage["prompt_request"]
.apply(lambda x: trade["title"] in x)
.sum()
)
except Exception:
print(f"Error while getting the number of mech calls")
num_mech_calls = 2 # Average value
net_earnings = (
earnings
- fee_amount
- (num_mech_calls * DEFAULT_MECH_FEE)
- collateral_amount
)
# Assign values to DataFrame
trades_df.loc[i] = {
"trader_address": trader_address,
"market_creator": market_creator,
"trade_id": trade["id"],
"market_status": market_status.name,
"creation_timestamp": creation_timestamp_utc,
"title": trade["title"],
"collateral_amount": collateral_amount,
"outcome_index": trade["outcomeIndex"],
"trade_fee_amount": fee_amount,
"outcomes_tokens_traded": outcome_tokens_traded,
"current_answer": current_answer,
"is_invalid": is_invalid,
"winning_trade": winner_trade,
"earnings": earnings,
"redeemed": redemption,
"redeemed_amount": earnings if redemption else 0,
"num_mech_calls": num_mech_calls,
"mech_fee_amount": num_mech_calls * DEFAULT_MECH_FEE,
"net_earnings": net_earnings,
"roi": net_earnings
/ (collateral_amount + fee_amount + num_mech_calls * DEFAULT_MECH_FEE),
}
except Exception as e:
print(f"Error processing trade {i}: {e}")
continue
return trades_df
def analyse_all_traders(trades: pd.DataFrame, tools: pd.DataFrame) -> pd.DataFrame:
"""Analyse all creators."""
all_traders = []
for trader in tqdm(
trades["trader_address"].unique(),
total=len(trades["trader_address"].unique()),
desc="Analysing creators",
):
all_traders.append(analyse_trader(trader, trades, tools))
# concat all creators
all_creators_df = pd.concat(all_traders)
return all_creators_df
def summary_analyse(df):
"""Summarise profitability analysis."""
# Ensure DataFrame is not empty
if df.empty:
return pd.DataFrame(columns=SUMMARY_STATS_DF_COLS)
# Group by trader_address
grouped = df.groupby("trader_address")
# Create summary DataFrame
summary_df = grouped.agg(
num_trades=("trader_address", "size"),
num_winning_trades=("winning_trade", lambda x: float((x).sum())),
num_redeemed=("redeemed", lambda x: float(x.sum())),
total_investment=("collateral_amount", "sum"),
total_trade_fees=("trade_fee_amount", "sum"),
num_mech_calls=("num_mech_calls", "sum"),
total_mech_fees=("mech_fee_amount", "sum"),
total_earnings=("earnings", "sum"),
total_redeemed_amount=("redeemed_amount", "sum"),
total_net_earnings=("net_earnings", "sum"),
)
# Calculating additional columns
summary_df["total_roi"] = (
summary_df["total_net_earnings"] / summary_df["total_investment"]
)
summary_df["mean_mech_calls_per_trade"] = (
summary_df["num_mech_calls"] / summary_df["num_trades"]
)
summary_df["mean_mech_fee_amount_per_trade"] = (
summary_df["total_mech_fees"] / summary_df["num_trades"]
)
summary_df["total_net_earnings_wo_mech_fees"] = (
summary_df["total_net_earnings"] + summary_df["total_mech_fees"]
)
summary_df["total_roi_wo_mech_fees"] = (
summary_df["total_net_earnings_wo_mech_fees"] / summary_df["total_investment"]
)
# Resetting index to include trader_address
summary_df.reset_index(inplace=True)
return summary_df
def run_profitability_analysis(
rpc: str,
tools_filename: str = "tools.parquet",
trades_filename: str = "fpmmTrades.parquet",
from_timestamp: float = DEFAULT_60_DAYS_AGO_TIMESTAMP,
):
"""Create all trades analysis."""
# load dfs from data folder for analysis
print(f"Preparing data with {tools_filename} and {trades_filename}")
fpmmTrades, tools = prepare_profitalibity_data(
rpc, tools_filename, trades_filename, from_timestamp
)
tools["trader_address"] = tools["trader_address"].str.lower()
# all trades profitability df
print("Analysing trades...")
all_trades_df = analyse_all_traders(fpmmTrades, tools)
# filter invalid markets. Condition: "is_invalid" is True
invalid_trades = all_trades_df.loc[all_trades_df["is_invalid"] == True]
invalid_trades.to_parquet(DATA_DIR / "invalid_trades.parquet", index=False)
all_trades_df = all_trades_df.loc[all_trades_df["is_invalid"] == False]
# summarize profitability df
print("Summarising trades...")
summary_df = summary_analyse(all_trades_df)
# add staking labels
label_trades_by_staking(trades_df=all_trades_df)
# save to parquet
all_trades_df.to_parquet(DATA_DIR / "all_trades_profitability.parquet", index=False)
summary_df.to_parquet(DATA_DIR / "summary_profitability.parquet", index=False)
print("Done!")
return all_trades_df, summary_df
if __name__ == "__main__":
rpc = "https://lb.nodies.app/v1/406d8dcc043f4cb3959ed7d6673d311a"
if os.path.exists(DATA_DIR / "fpmmTrades.parquet"):
os.remove(DATA_DIR / "fpmmTrades.parquet")
run_profitability_analysis(rpc)