rosacastillo commited on
Commit
18afe53
·
1 Parent(s): 6e7e273

fixing ui plot issue and adding new tool

Browse files
Files changed (3) hide show
  1. app.py +11 -17
  2. scripts/utils.py +1 -0
  3. tabs/metrics.py +5 -4
app.py CHANGED
@@ -50,7 +50,7 @@ from tabs.error import (
50
  plot_tool_error_data_by_market,
51
  )
52
  from tabs.about import about_olas_predict, about_this_dashboard
53
-
54
  from scripts.utils import INC_TOOLS
55
 
56
 
@@ -207,6 +207,14 @@ with demo:
207
  trades_df=trades_df
208
  )
209
 
 
 
 
 
 
 
 
 
210
  with gr.Row():
211
  gr.Markdown("# ⚖️ Trading metrics")
212
  with gr.Row():
@@ -225,25 +233,11 @@ with demo:
225
  with gr.Column(scale=1):
226
  trade_details_text = get_trade_metrics_text()
227
 
228
- def update_trade_details(trade_detail):
229
- return plot_trade_metrics(
230
- metric_name=trade_detail,
231
- trades_df=trades_df,
232
- )
233
-
234
  trade_details_selector.change(
235
  update_trade_details,
236
- inputs=trade_details_selector,
237
- outputs=trade_details_plot,
238
  )
239
-
240
- with gr.Row():
241
- trade_details_selector
242
- with gr.Row():
243
- with gr.Column(scale=3):
244
- trade_details_plot
245
- with gr.Column(scale=1):
246
- trade_details_text
247
  with gr.TabItem("🔒 Staking traders"):
248
  with gr.Row():
249
  gr.Markdown("# Trades conducted at the Pearl markets")
 
50
  plot_tool_error_data_by_market,
51
  )
52
  from tabs.about import about_olas_predict, about_this_dashboard
53
+ import matplotlib.pyplot as plt
54
  from scripts.utils import INC_TOOLS
55
 
56
 
 
207
  trades_df=trades_df
208
  )
209
 
210
+ def update_trade_details(trade_detail, trade_details_plot):
211
+ print(f"user selected option= {trade_detail}")
212
+ new_plot = plot_trade_metrics(
213
+ metric_name=trade_detail,
214
+ trades_df=trades_df,
215
+ )
216
+ return new_plot
217
+
218
  with gr.Row():
219
  gr.Markdown("# ⚖️ Trading metrics")
220
  with gr.Row():
 
233
  with gr.Column(scale=1):
234
  trade_details_text = get_trade_metrics_text()
235
 
 
 
 
 
 
 
236
  trade_details_selector.change(
237
  update_trade_details,
238
+ inputs=[trade_details_selector, trade_details_plot],
239
+ outputs=[trade_details_plot],
240
  )
 
 
 
 
 
 
 
 
241
  with gr.TabItem("🔒 Staking traders"):
242
  with gr.Row():
243
  gr.Markdown("# Trades conducted at the Pearl markets")
scripts/utils.py CHANGED
@@ -45,6 +45,7 @@ INC_TOOLS = [
45
  "prediction-url-cot-claude",
46
  "prediction-request-rag-claude",
47
  "prediction-request-reasoning-claude",
 
48
  ]
49
 
50
  SUBGRAPH_API_KEY = os.environ.get("SUBGRAPH_API_KEY", None)
 
45
  "prediction-url-cot-claude",
46
  "prediction-request-rag-claude",
47
  "prediction-request-reasoning-claude",
48
+ "superforcaster",
49
  ]
50
 
51
  SUBGRAPH_API_KEY = os.environ.get("SUBGRAPH_API_KEY", None)
tabs/metrics.py CHANGED
@@ -1,6 +1,8 @@
1
  import pandas as pd
2
  import gradio as gr
3
  import plotly.express as px
 
 
4
 
5
  trade_metric_choices = [
6
  "mech calls",
@@ -59,13 +61,11 @@ def get_metrics(
59
 
60
 
61
  def get_boxplot_metrics(column_name: str, trades_df: pd.DataFrame) -> pd.DataFrame:
62
- # this is to filter out the data before 2023-09-01
63
- trades_filtered = trades_df[trades_df["creation_timestamp"] > "2023-09-01"]
64
- trades_filtered = trades_filtered[
65
  ["creation_timestamp", "month_year_week", "market_creator", column_name]
66
  ]
67
  # adding the total
68
- trades_filtered_all = trades_filtered.copy(deep=True)
69
  trades_filtered_all["market_creator"] = "all"
70
 
71
  # merging both dataframes
@@ -75,6 +75,7 @@ def get_boxplot_metrics(column_name: str, trades_df: pd.DataFrame) -> pd.DataFra
75
  all_filtered_trades = all_filtered_trades.sort_values(
76
  by="creation_timestamp", ascending=True
77
  )
 
78
  return all_filtered_trades
79
 
80
 
 
1
  import pandas as pd
2
  import gradio as gr
3
  import plotly.express as px
4
+ import gc
5
+ import matplotlib.pyplot as plt
6
 
7
  trade_metric_choices = [
8
  "mech calls",
 
61
 
62
 
63
  def get_boxplot_metrics(column_name: str, trades_df: pd.DataFrame) -> pd.DataFrame:
64
+ trades_filtered = trades_df[
 
 
65
  ["creation_timestamp", "month_year_week", "market_creator", column_name]
66
  ]
67
  # adding the total
68
+ trades_filtered_all = trades_df.copy(deep=True)
69
  trades_filtered_all["market_creator"] = "all"
70
 
71
  # merging both dataframes
 
75
  all_filtered_trades = all_filtered_trades.sort_values(
76
  by="creation_timestamp", ascending=True
77
  )
78
+ gc.collect()
79
  return all_filtered_trades
80
 
81