26052024
Browse files- data/all_trades_profitability.parquet +2 -2
- data/delivers.parquet +2 -2
- data/fpmmTrades.parquet +2 -2
- data/requests.parquet +2 -2
- data/summary_profitability.parquet +2 -2
- data/t_map.pkl +2 -2
- data/tools.parquet +2 -2
- scripts/tools.py +5 -8
- tabs/error.py +4 -4
- tabs/tool_win.py +1 -10
- test.ipynb +318 -90
data/all_trades_profitability.parquet
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:651c73abd6f2d68f12fa1b20363340c1ceff7652960fe4b47442b95865ef78ae
|
3 |
+
size 8363176
|
data/delivers.parquet
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:873f67b40ebc7dd4ce409ffde5d00a269fc41a24c9627c7df11f02fe3101a389
|
3 |
+
size 1777877349
|
data/fpmmTrades.parquet
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:db7352aa0dcf2ffd2f3c86a2edbcb13dca42c9d5089787a5a73399065a3e6444
|
3 |
+
size 21257018
|
data/requests.parquet
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f89b9db573611cd096e6b17c909842690c3bd2f38f0763e4a809ccfe0ef718d6
|
3 |
+
size 48251533
|
data/summary_profitability.parquet
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f6b13394febf32397270399196772b87014367fd2131fe15d87deb53771b6f60
|
3 |
+
size 52459
|
data/t_map.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c73106e6ae68724a551c807e8a67d209878ecaf2badaae84307fd9ccb9c9cff9
|
3 |
+
size 8126752
|
data/tools.parquet
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bcbf8e0f5725fbe23b7b069031292ddfa8c0fb1425fca5b730492583ba175d54
|
3 |
+
size 1784716177
|
scripts/tools.py
CHANGED
@@ -267,19 +267,19 @@ class MechResponse:
|
|
267 |
if isinstance(self.result, str):
|
268 |
kwargs = json.loads(self.result)
|
269 |
self.result = PredictionResponse(**kwargs)
|
270 |
-
self.error =
|
271 |
|
272 |
except JSONDecodeError:
|
273 |
self.error_message = "Response parsing error"
|
274 |
-
self.error =
|
275 |
|
276 |
except Exception as e:
|
277 |
self.error_message = str(e)
|
278 |
-
self.error =
|
279 |
|
280 |
else:
|
281 |
self.error_message = "Invalid response from tool"
|
282 |
-
self.error =
|
283 |
self.result = None
|
284 |
|
285 |
|
@@ -616,6 +616,7 @@ def store_progress(
|
|
616 |
tools: pd.DataFrame,
|
617 |
) -> None:
|
618 |
"""Store the given progress."""
|
|
|
619 |
if filename:
|
620 |
DATA_DIR.mkdir(parents=True, exist_ok=True) # Ensure the directory exists
|
621 |
for event_name, content in event_to_contents.items():
|
@@ -623,8 +624,6 @@ def store_progress(
|
|
623 |
try:
|
624 |
if "result" in content.columns:
|
625 |
content = content.drop(columns=["result"]) # Avoid in-place modification
|
626 |
-
if 'error' in content.columns:
|
627 |
-
content['error'] = content['error'].astype(bool)
|
628 |
content.to_parquet(DATA_DIR / event_filename, index=False)
|
629 |
except Exception as e:
|
630 |
print(f"Failed to write {event_name}: {e}")
|
@@ -632,8 +631,6 @@ def store_progress(
|
|
632 |
try:
|
633 |
if "result" in tools.columns:
|
634 |
tools = tools.drop(columns=["result"])
|
635 |
-
if 'error' in tools.columns:
|
636 |
-
tools['error'] = tools['error'].astype(bool)
|
637 |
tools.to_parquet(DATA_DIR / filename, index=False)
|
638 |
except Exception as e:
|
639 |
print(f"Failed to write tools data: {e}")
|
|
|
267 |
if isinstance(self.result, str):
|
268 |
kwargs = json.loads(self.result)
|
269 |
self.result = PredictionResponse(**kwargs)
|
270 |
+
self.error = 0
|
271 |
|
272 |
except JSONDecodeError:
|
273 |
self.error_message = "Response parsing error"
|
274 |
+
self.error = 1
|
275 |
|
276 |
except Exception as e:
|
277 |
self.error_message = str(e)
|
278 |
+
self.error = 1
|
279 |
|
280 |
else:
|
281 |
self.error_message = "Invalid response from tool"
|
282 |
+
self.error = 1
|
283 |
self.result = None
|
284 |
|
285 |
|
|
|
616 |
tools: pd.DataFrame,
|
617 |
) -> None:
|
618 |
"""Store the given progress."""
|
619 |
+
print("starting")
|
620 |
if filename:
|
621 |
DATA_DIR.mkdir(parents=True, exist_ok=True) # Ensure the directory exists
|
622 |
for event_name, content in event_to_contents.items():
|
|
|
624 |
try:
|
625 |
if "result" in content.columns:
|
626 |
content = content.drop(columns=["result"]) # Avoid in-place modification
|
|
|
|
|
627 |
content.to_parquet(DATA_DIR / event_filename, index=False)
|
628 |
except Exception as e:
|
629 |
print(f"Failed to write {event_name}: {e}")
|
|
|
631 |
try:
|
632 |
if "result" in tools.columns:
|
633 |
tools = tools.drop(columns=["result"])
|
|
|
|
|
634 |
tools.to_parquet(DATA_DIR / filename, index=False)
|
635 |
except Exception as e:
|
636 |
print(f"Failed to write tools data: {e}")
|
tabs/error.py
CHANGED
@@ -19,14 +19,14 @@ def get_error_data(tools_df: pd.DataFrame, inc_tools: List[str]) -> pd.DataFrame
|
|
19 |
tools_inc = tools_df[tools_df['tool'].isin(inc_tools)]
|
20 |
# tools_inc['error'] = tools_inc.apply(set_error, axis=1)
|
21 |
error = tools_inc.groupby(['tool', 'request_month_year_week', 'error']).size().unstack().fillna(0).reset_index()
|
22 |
-
error['error_perc'] = (error[
|
23 |
-
error['total_requests'] = error[
|
24 |
return error
|
25 |
|
26 |
def get_error_data_overall(error_df: pd.DataFrame) -> pd.DataFrame:
|
27 |
"""Gets the error data for the given tools and calculates the error percentage."""
|
28 |
-
error_total = error_df.groupby('request_month_year_week').agg({'total_requests': 'sum',
|
29 |
-
error_total['error_perc'] = (error_total[
|
30 |
error_total.columns = error_total.columns.astype(str)
|
31 |
error_total['error_perc'] = error_total['error_perc'].apply(lambda x: round(x, 4))
|
32 |
return error_total
|
|
|
19 |
tools_inc = tools_df[tools_df['tool'].isin(inc_tools)]
|
20 |
# tools_inc['error'] = tools_inc.apply(set_error, axis=1)
|
21 |
error = tools_inc.groupby(['tool', 'request_month_year_week', 'error']).size().unstack().fillna(0).reset_index()
|
22 |
+
error['error_perc'] = (error[1] / (error[0] + error[1])) * 100
|
23 |
+
error['total_requests'] = error[0] + error[1]
|
24 |
return error
|
25 |
|
26 |
def get_error_data_overall(error_df: pd.DataFrame) -> pd.DataFrame:
|
27 |
"""Gets the error data for the given tools and calculates the error percentage."""
|
28 |
+
error_total = error_df.groupby('request_month_year_week').agg({'total_requests': 'sum', 1: 'sum', 0: 'sum'}).reset_index()
|
29 |
+
error_total['error_perc'] = (error_total[1] / error_total['total_requests']) * 100
|
30 |
error_total.columns = error_total.columns.astype(str)
|
31 |
error_total['error_perc'] = error_total['error_perc'].apply(lambda x: round(x, 4))
|
32 |
return error_total
|
tabs/tool_win.py
CHANGED
@@ -7,20 +7,11 @@ HEIGHT=600
|
|
7 |
WIDTH=1000
|
8 |
|
9 |
|
10 |
-
# def set_error(row: pd.Series) -> bool:
|
11 |
-
# """Sets the error for the given row."""
|
12 |
-
# if row.error not in [True, False]:
|
13 |
-
# if not row.prompt_response:
|
14 |
-
# return True
|
15 |
-
# return False
|
16 |
-
# return row.error
|
17 |
-
|
18 |
-
|
19 |
def get_tool_winning_rate(tools_df: pd.DataFrame, inc_tools: List[str]) -> pd.DataFrame:
|
20 |
"""Gets the tool winning rate data for the given tools and calculates the winning percentage."""
|
21 |
tools_inc = tools_df[tools_df['tool'].isin(inc_tools)]
|
22 |
# tools_inc['error'] = tools_inc.apply(set_error, axis=1)
|
23 |
-
tools_non_error = tools_inc[tools_inc['error'] !=
|
24 |
tools_non_error.loc[:, 'currentAnswer'] = tools_non_error['currentAnswer'].replace({'no': 'No', 'yes': 'Yes'})
|
25 |
tools_non_error = tools_non_error[tools_non_error['currentAnswer'].isin(['Yes', 'No'])]
|
26 |
tools_non_error = tools_non_error[tools_non_error['vote'].isin(['Yes', 'No'])]
|
|
|
7 |
WIDTH=1000
|
8 |
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
def get_tool_winning_rate(tools_df: pd.DataFrame, inc_tools: List[str]) -> pd.DataFrame:
|
11 |
"""Gets the tool winning rate data for the given tools and calculates the winning percentage."""
|
12 |
tools_inc = tools_df[tools_df['tool'].isin(inc_tools)]
|
13 |
# tools_inc['error'] = tools_inc.apply(set_error, axis=1)
|
14 |
+
tools_non_error = tools_inc[tools_inc['error'] != 1]
|
15 |
tools_non_error.loc[:, 'currentAnswer'] = tools_non_error['currentAnswer'].replace({'no': 'No', 'yes': 'Yes'})
|
16 |
tools_non_error = tools_non_error[tools_non_error['currentAnswer'].isin(['Yes', 'No'])]
|
17 |
tools_non_error = tools_non_error[tools_non_error['vote'].isin(['Yes', 'No'])]
|
test.ipynb
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
-
"execution_count":
|
6 |
"metadata": {},
|
7 |
"outputs": [],
|
8 |
"source": [
|
@@ -20,134 +20,362 @@
|
|
20 |
"from enum import Enum\n",
|
21 |
"from tqdm import tqdm\n",
|
22 |
"import numpy as np\n",
|
23 |
-
"from pathlib import Path"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
]
|
25 |
},
|
26 |
{
|
27 |
"cell_type": "code",
|
28 |
-
"execution_count":
|
29 |
"metadata": {},
|
30 |
"outputs": [],
|
31 |
"source": [
|
32 |
-
"
|
33 |
-
"
|
34 |
-
"
|
35 |
-
"
|
36 |
-
" 'claude-prediction-offline', \n",
|
37 |
-
" 'prediction-offline-sme',\n",
|
38 |
-
" 'prediction-online-sme',\n",
|
39 |
-
" 'prediction-request-rag',\n",
|
40 |
-
" 'prediction-request-reasoning',\n",
|
41 |
-
" 'prediction-url-cot-claude', \n",
|
42 |
-
" 'prediction-request-rag-claude',\n",
|
43 |
-
" 'prediction-request-reasoning-claude'\n",
|
44 |
-
"]"
|
45 |
]
|
46 |
},
|
47 |
{
|
48 |
"cell_type": "code",
|
49 |
-
"execution_count":
|
50 |
"metadata": {},
|
51 |
-
"outputs": [
|
52 |
-
{
|
53 |
-
"name": "stderr",
|
54 |
-
"output_type": "stream",
|
55 |
-
"text": [
|
56 |
-
"/var/folders/l_/g22b1g_n0gn4tmx9lkxqv5x00000gn/T/ipykernel_58769/3518445359.py:5: UserWarning: Converting to PeriodArray/Index representation will drop timezone information.\n",
|
57 |
-
" trades_df['month_year'] = trades_df['creation_timestamp'].dt.to_period('M').astype(str)\n",
|
58 |
-
"/var/folders/l_/g22b1g_n0gn4tmx9lkxqv5x00000gn/T/ipykernel_58769/3518445359.py:6: UserWarning: Converting to PeriodArray/Index representation will drop timezone information.\n",
|
59 |
-
" trades_df['month_year_week'] = trades_df['creation_timestamp'].dt.to_period('W').astype(str)\n"
|
60 |
-
]
|
61 |
-
}
|
62 |
-
],
|
63 |
"source": [
|
64 |
-
"
|
65 |
-
" \"\"
|
66 |
-
"
|
67 |
-
"
|
68 |
-
"
|
69 |
-
"
|
70 |
-
"
|
71 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
"\n",
|
73 |
-
"
|
74 |
-
"
|
75 |
-
" trades_df = pd.read_parquet(\"./data/all_trades_profitability.parquet\")\n",
|
76 |
"\n",
|
77 |
-
"
|
78 |
-
" tools_df = tools_df[tools_df['request_time'].dt.year == 2024]\n",
|
79 |
"\n",
|
80 |
-
"
|
81 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
"\n",
|
83 |
-
"
|
84 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
"\n",
|
86 |
-
"
|
|
|
87 |
]
|
88 |
},
|
89 |
{
|
90 |
"cell_type": "code",
|
91 |
-
"execution_count":
|
92 |
"metadata": {},
|
93 |
-
"outputs": [
|
94 |
-
{
|
95 |
-
"data": {
|
96 |
-
"text/plain": [
|
97 |
-
"Index(['trader_address', 'trade_id', 'creation_timestamp', 'title',\n",
|
98 |
-
" 'market_status', 'collateral_amount', 'outcome_index',\n",
|
99 |
-
" 'trade_fee_amount', 'outcomes_tokens_traded', 'current_answer',\n",
|
100 |
-
" 'is_invalid', 'winning_trade', 'earnings', 'redeemed',\n",
|
101 |
-
" 'redeemed_amount', 'num_mech_calls', 'mech_fee_amount', 'net_earnings',\n",
|
102 |
-
" 'roi', 'month_year', 'month_year_week'],\n",
|
103 |
-
" dtype='object')"
|
104 |
-
]
|
105 |
-
},
|
106 |
-
"execution_count": 4,
|
107 |
-
"metadata": {},
|
108 |
-
"output_type": "execute_result"
|
109 |
-
}
|
110 |
-
],
|
111 |
"source": [
|
112 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
]
|
114 |
},
|
115 |
{
|
116 |
"cell_type": "code",
|
117 |
-
"execution_count":
|
118 |
"metadata": {},
|
119 |
"outputs": [],
|
120 |
"source": [
|
121 |
-
"
|
122 |
-
"
|
123 |
-
"
|
124 |
-
"
|
125 |
-
"
|
126 |
-
"
|
127 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
"\n",
|
129 |
-
"
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
|
|
|
|
|
|
|
|
|
|
136 |
]
|
137 |
},
|
138 |
{
|
139 |
"cell_type": "code",
|
140 |
-
"execution_count":
|
141 |
"metadata": {},
|
142 |
"outputs": [],
|
143 |
"source": [
|
144 |
-
"
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
]
|
152 |
},
|
153 |
{
|
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
"metadata": {},
|
7 |
"outputs": [],
|
8 |
"source": [
|
|
|
20 |
"from enum import Enum\n",
|
21 |
"from tqdm import tqdm\n",
|
22 |
"import numpy as np\n",
|
23 |
+
"from pathlib import Path\n",
|
24 |
+
"import pickle"
|
25 |
+
]
|
26 |
+
},
|
27 |
+
{
|
28 |
+
"cell_type": "code",
|
29 |
+
"execution_count": null,
|
30 |
+
"metadata": {},
|
31 |
+
"outputs": [],
|
32 |
+
"source": [
|
33 |
+
"# trades = pd.read_parquet('/Users/arshath/play/openautonomy/olas-prediction-live-dashboard_old/data/all_trades_profitability.parquet')\n",
|
34 |
+
"tools = pd.read_parquet('/Users/arshath/play/openautonomy/olas-prediction-live-dashboard_old/data/tools.parquet')"
|
35 |
+
]
|
36 |
+
},
|
37 |
+
{
|
38 |
+
"cell_type": "code",
|
39 |
+
"execution_count": null,
|
40 |
+
"metadata": {},
|
41 |
+
"outputs": [],
|
42 |
+
"source": [
|
43 |
+
"tools.groupby(['request_month_year_week', 'error']).size().unstack()"
|
44 |
+
]
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"cell_type": "code",
|
48 |
+
"execution_count": null,
|
49 |
+
"metadata": {},
|
50 |
+
"outputs": [],
|
51 |
+
"source": [
|
52 |
+
"t_map = pickle.load(open('./data/t_map.pkl', 'rb'))\n",
|
53 |
+
"tools['request_time'] = tools['request_block'].map(t_map)\n",
|
54 |
+
"tools.to_parquet('./data/tools.parquet')"
|
55 |
+
]
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"cell_type": "code",
|
59 |
+
"execution_count": null,
|
60 |
+
"metadata": {},
|
61 |
+
"outputs": [],
|
62 |
+
"source": [
|
63 |
+
"tools['request_time'] = pd.to_datetime(tools['request_time'])\n",
|
64 |
+
"tools = tools[tools['request_time'] >= pd.to_datetime('2024-05-01')]\n",
|
65 |
+
"tools['request_block'].max()"
|
66 |
+
]
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"cell_type": "code",
|
70 |
+
"execution_count": null,
|
71 |
+
"metadata": {},
|
72 |
+
"outputs": [],
|
73 |
+
"source": [
|
74 |
+
"requests = pd.read_parquet(\"./data/requests.parquet\")\n",
|
75 |
+
"delivers = pd.read_parquet(\"./data/delivers.parquet\")\n",
|
76 |
+
"print(requests.shape)\n",
|
77 |
+
"print(delivers.shape)"
|
78 |
+
]
|
79 |
+
},
|
80 |
+
{
|
81 |
+
"cell_type": "code",
|
82 |
+
"execution_count": null,
|
83 |
+
"metadata": {},
|
84 |
+
"outputs": [],
|
85 |
+
"source": [
|
86 |
+
"requests[requests['request_block'] <= 33714082].reset_index(drop=True).to_parquet(\"./data/requests.parquet\")\n",
|
87 |
+
"delivers[delivers['deliver_block'] <= 33714082].reset_index(drop=True).to_parquet(\"./data/delivers.parquet\")"
|
88 |
]
|
89 |
},
|
90 |
{
|
91 |
"cell_type": "code",
|
92 |
+
"execution_count": null,
|
93 |
"metadata": {},
|
94 |
"outputs": [],
|
95 |
"source": [
|
96 |
+
"import sys \n",
|
97 |
+
"\n",
|
98 |
+
"sys.path.append('./')\n",
|
99 |
+
"from scripts.tools import *"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
]
|
101 |
},
|
102 |
{
|
103 |
"cell_type": "code",
|
104 |
+
"execution_count": null,
|
105 |
"metadata": {},
|
106 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
"source": [
|
108 |
+
"RPCs = [\n",
|
109 |
+
" \"https://lb.nodies.app/v1/406d8dcc043f4cb3959ed7d6673d311a\",\n",
|
110 |
+
"]\n",
|
111 |
+
"w3s = [Web3(HTTPProvider(r)) for r in RPCs]\n",
|
112 |
+
"session = create_session()\n",
|
113 |
+
"event_to_transformer = {\n",
|
114 |
+
" MechEventName.REQUEST: transform_request,\n",
|
115 |
+
" MechEventName.DELIVER: transform_deliver,\n",
|
116 |
+
"}\n",
|
117 |
+
"mech_to_info = {\n",
|
118 |
+
" to_checksum_address(address): (\n",
|
119 |
+
" os.path.join(CONTRACTS_PATH, filename),\n",
|
120 |
+
" earliest_block,\n",
|
121 |
+
" )\n",
|
122 |
+
" for address, (filename, earliest_block) in MECH_TO_INFO.items()\n",
|
123 |
+
"}\n",
|
124 |
+
"event_to_contents = {}\n",
|
125 |
"\n",
|
126 |
+
"# latest_block = w3s[0].eth.get_block(LATEST_BLOCK_NAME)[BLOCK_DATA_NUMBER]\n",
|
127 |
+
"latest_block = 34032575\n",
|
|
|
128 |
"\n",
|
129 |
+
"next_start_block = latest_block - 300\n",
|
|
|
130 |
"\n",
|
131 |
+
"events_request = []\n",
|
132 |
+
"events_deliver = []\n",
|
133 |
+
"# Loop through events in event_to_transformer\n",
|
134 |
+
"for event_name, transformer in event_to_transformer.items():\n",
|
135 |
+
" print(f\"Fetching {event_name.value} events\")\n",
|
136 |
+
" for address, (abi, earliest_block) in mech_to_info.items():\n",
|
137 |
+
" # parallelize the fetching of events\n",
|
138 |
+
" with ThreadPoolExecutor(max_workers=NUM_WORKERS) as executor:\n",
|
139 |
+
" futures = []\n",
|
140 |
+
" for i in range(\n",
|
141 |
+
" next_start_block, latest_block, BLOCKS_CHUNK_SIZE * SNAPSHOT_RATE\n",
|
142 |
+
" ):\n",
|
143 |
+
" futures.append(\n",
|
144 |
+
" executor.submit(\n",
|
145 |
+
" get_events,\n",
|
146 |
+
" random.choice(w3s),\n",
|
147 |
+
" event_name.value,\n",
|
148 |
+
" address,\n",
|
149 |
+
" abi,\n",
|
150 |
+
" i,\n",
|
151 |
+
" min(i + BLOCKS_CHUNK_SIZE * SNAPSHOT_RATE, latest_block),\n",
|
152 |
+
" )\n",
|
153 |
+
" )\n",
|
154 |
"\n",
|
155 |
+
" for future in tqdm(\n",
|
156 |
+
" as_completed(futures),\n",
|
157 |
+
" total=len(futures),\n",
|
158 |
+
" desc=f\"Fetching {event_name.value} Events\",\n",
|
159 |
+
" ):\n",
|
160 |
+
" current_mech_events = future.result()\n",
|
161 |
+
" if event_name == MechEventName.REQUEST:\n",
|
162 |
+
" events_request.extend(current_mech_events)\n",
|
163 |
+
" elif event_name == MechEventName.DELIVER:\n",
|
164 |
+
" events_deliver.extend(current_mech_events)\n",
|
165 |
"\n",
|
166 |
+
" parsed_request = parse_events(events_request)\n",
|
167 |
+
" parsed_deliver = parse_events(events_deliver)"
|
168 |
]
|
169 |
},
|
170 |
{
|
171 |
"cell_type": "code",
|
172 |
+
"execution_count": null,
|
173 |
"metadata": {},
|
174 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
"source": [
|
176 |
+
"contents_request = []\n",
|
177 |
+
"with ThreadPoolExecutor(max_workers=NUM_WORKERS) as executor:\n",
|
178 |
+
" futures = []\n",
|
179 |
+
" for i in range(0, len(parsed_request), GET_CONTENTS_BATCH_SIZE):\n",
|
180 |
+
" futures.append(\n",
|
181 |
+
" executor.submit(\n",
|
182 |
+
" get_contents,\n",
|
183 |
+
" session,\n",
|
184 |
+
" parsed_request[i : i + GET_CONTENTS_BATCH_SIZE],\n",
|
185 |
+
" MechEventName.REQUEST,\n",
|
186 |
+
" )\n",
|
187 |
+
" )\n",
|
188 |
+
"\n",
|
189 |
+
" for future in tqdm(\n",
|
190 |
+
" as_completed(futures),\n",
|
191 |
+
" total=len(futures),\n",
|
192 |
+
" desc=f\"Fetching {event_name.value} Contents\",\n",
|
193 |
+
" ):\n",
|
194 |
+
" current_mech_contents = future.result()\n",
|
195 |
+
" contents_request.append(current_mech_contents)\n",
|
196 |
+
"\n",
|
197 |
+
"contents_request = pd.concat(contents_request, ignore_index=True)"
|
198 |
]
|
199 |
},
|
200 |
{
|
201 |
"cell_type": "code",
|
202 |
+
"execution_count": null,
|
203 |
"metadata": {},
|
204 |
"outputs": [],
|
205 |
"source": [
|
206 |
+
"contents_deliver = []\n",
|
207 |
+
"with ThreadPoolExecutor(max_workers=NUM_WORKERS) as executor:\n",
|
208 |
+
" futures = []\n",
|
209 |
+
" for i in range(0, len(parsed_deliver), GET_CONTENTS_BATCH_SIZE):\n",
|
210 |
+
" futures.append(\n",
|
211 |
+
" executor.submit(\n",
|
212 |
+
" get_contents,\n",
|
213 |
+
" session,\n",
|
214 |
+
" parsed_deliver[i : i + GET_CONTENTS_BATCH_SIZE],\n",
|
215 |
+
" MechEventName.DELIVER,\n",
|
216 |
+
" )\n",
|
217 |
+
" )\n",
|
218 |
+
"\n",
|
219 |
+
" for future in tqdm(\n",
|
220 |
+
" as_completed(futures),\n",
|
221 |
+
" total=len(futures),\n",
|
222 |
+
" desc=f\"Fetching {event_name.value} Contents\",\n",
|
223 |
+
" ):\n",
|
224 |
+
" current_mech_contents = future.result()\n",
|
225 |
+
" contents_deliver.append(current_mech_contents)\n",
|
226 |
"\n",
|
227 |
+
"contents_deliver = pd.concat(contents_deliver, ignore_index=True)"
|
228 |
+
]
|
229 |
+
},
|
230 |
+
{
|
231 |
+
"cell_type": "code",
|
232 |
+
"execution_count": null,
|
233 |
+
"metadata": {},
|
234 |
+
"outputs": [],
|
235 |
+
"source": [
|
236 |
+
"full_contents = True\n",
|
237 |
+
"transformed_request = event_to_transformer[MechEventName.REQUEST](contents_request)\n",
|
238 |
+
"transformed_deliver = event_to_transformer[MechEventName.DELIVER](contents_deliver, full_contents=full_contents)"
|
239 |
]
|
240 |
},
|
241 |
{
|
242 |
"cell_type": "code",
|
243 |
+
"execution_count": null,
|
244 |
"metadata": {},
|
245 |
"outputs": [],
|
246 |
"source": [
|
247 |
+
"transformed_request.shape"
|
248 |
+
]
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"cell_type": "code",
|
252 |
+
"execution_count": null,
|
253 |
+
"metadata": {},
|
254 |
+
"outputs": [],
|
255 |
+
"source": [
|
256 |
+
"transformed_deliver.shape"
|
257 |
+
]
|
258 |
+
},
|
259 |
+
{
|
260 |
+
"cell_type": "code",
|
261 |
+
"execution_count": null,
|
262 |
+
"metadata": {},
|
263 |
+
"outputs": [],
|
264 |
+
"source": [
|
265 |
+
"tools = pd.merge(transformed_request, transformed_deliver, on=REQUEST_ID_FIELD)\n",
|
266 |
+
"tools.columns"
|
267 |
+
]
|
268 |
+
},
|
269 |
+
{
|
270 |
+
"cell_type": "code",
|
271 |
+
"execution_count": null,
|
272 |
+
"metadata": {},
|
273 |
+
"outputs": [],
|
274 |
+
"source": [
|
275 |
+
"def store_progress(\n",
|
276 |
+
" filename: str,\n",
|
277 |
+
" event_to_contents: Dict[str, pd.DataFrame],\n",
|
278 |
+
" tools: pd.DataFrame,\n",
|
279 |
+
") -> None:\n",
|
280 |
+
" \"\"\"Store the given progress.\"\"\"\n",
|
281 |
+
" if filename:\n",
|
282 |
+
" DATA_DIR.mkdir(parents=True, exist_ok=True) # Ensure the directory exists\n",
|
283 |
+
" for event_name, content in event_to_contents.items():\n",
|
284 |
+
" event_filename = gen_event_filename(event_name) # Ensure this function returns a valid filename string\n",
|
285 |
+
" try:\n",
|
286 |
+
" if \"result\" in content.columns:\n",
|
287 |
+
" content = content.drop(columns=[\"result\"]) # Avoid in-place modification\n",
|
288 |
+
" if 'error' in content.columns:\n",
|
289 |
+
" content['error'] = content['error'].astype(bool)\n",
|
290 |
+
" content.to_parquet(DATA_DIR / event_filename, index=False)\n",
|
291 |
+
" except Exception as e:\n",
|
292 |
+
" print(f\"Failed to write {event_name}: {e}\")\n",
|
293 |
+
" try:\n",
|
294 |
+
" if \"result\" in tools.columns:\n",
|
295 |
+
" tools = tools.drop(columns=[\"result\"])\n",
|
296 |
+
" if 'error' in tools.columns:\n",
|
297 |
+
" tools['error'] = tools['error'].astype(bool)\n",
|
298 |
+
" tools.to_parquet(DATA_DIR / filename, index=False)\n",
|
299 |
+
" except Exception as e:\n",
|
300 |
+
" print(f\"Failed to write tools data: {e}\")"
|
301 |
+
]
|
302 |
+
},
|
303 |
+
{
|
304 |
+
"cell_type": "code",
|
305 |
+
"execution_count": null,
|
306 |
+
"metadata": {},
|
307 |
+
"outputs": [],
|
308 |
+
"source": [
|
309 |
+
"# store_progress(filename, event_to_contents, tools)"
|
310 |
+
]
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"cell_type": "code",
|
314 |
+
"execution_count": null,
|
315 |
+
"metadata": {},
|
316 |
+
"outputs": [],
|
317 |
+
"source": [
|
318 |
+
"if 'result' in transformed_deliver.columns:\n",
|
319 |
+
" transformed_deliver = transformed_deliver.drop(columns=['result'])\n",
|
320 |
+
"if 'error' in transformed_deliver.columns:\n",
|
321 |
+
" transformed_deliver['error'] = transformed_deliver['error'].astype(bool)"
|
322 |
+
]
|
323 |
+
},
|
324 |
+
{
|
325 |
+
"cell_type": "code",
|
326 |
+
"execution_count": null,
|
327 |
+
"metadata": {},
|
328 |
+
"outputs": [],
|
329 |
+
"source": [
|
330 |
+
"transformed_deliver.to_parquet(\"transformed_deliver.parquet\", index=False)"
|
331 |
+
]
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"cell_type": "code",
|
335 |
+
"execution_count": null,
|
336 |
+
"metadata": {},
|
337 |
+
"outputs": [],
|
338 |
+
"source": [
|
339 |
+
"d = pd.read_parquet(\"transformed_deliver.parquet\")"
|
340 |
+
]
|
341 |
+
},
|
342 |
+
{
|
343 |
+
"cell_type": "markdown",
|
344 |
+
"metadata": {},
|
345 |
+
"source": [
|
346 |
+
"### duck db"
|
347 |
+
]
|
348 |
+
},
|
349 |
+
{
|
350 |
+
"cell_type": "code",
|
351 |
+
"execution_count": null,
|
352 |
+
"metadata": {},
|
353 |
+
"outputs": [],
|
354 |
+
"source": [
|
355 |
+
"import duckdb\n",
|
356 |
+
"from datetime import datetime, timedelta\n",
|
357 |
+
"\n",
|
358 |
+
"# Calculate the date for two months ago\n",
|
359 |
+
"two_months_ago = (datetime.now() - timedelta(days=60)).strftime('%Y-%m-%d')\n",
|
360 |
+
"\n",
|
361 |
+
"# Connect to an in-memory DuckDB instance\n",
|
362 |
+
"con = duckdb.connect(':memory:')\n",
|
363 |
+
"\n",
|
364 |
+
"# Perform a SQL query to select data from the past two months directly from the Parquet file\n",
|
365 |
+
"query = f\"\"\"\n",
|
366 |
+
"SELECT *\n",
|
367 |
+
"FROM read_parquet('/Users/arshath/play/openautonomy/olas-prediction-live-dashboard_old/data/tools.parquet')\n",
|
368 |
+
"WHERE request_time >= '{two_months_ago}'\n",
|
369 |
+
"\"\"\"\n",
|
370 |
+
"\n",
|
371 |
+
"# Fetch the result as a pandas DataFrame\n",
|
372 |
+
"df = con.execute(query).fetchdf()\n",
|
373 |
+
"\n",
|
374 |
+
"# Close the connection\n",
|
375 |
+
"con.close()\n",
|
376 |
+
"\n",
|
377 |
+
"# Print the DataFrame\n",
|
378 |
+
"print(df)"
|
379 |
]
|
380 |
},
|
381 |
{
|