cyberosa
commited on
Commit
·
570e118
1
Parent(s):
c5bbc45
cleaning testing data
Browse files- notebooks/test.ipynb +0 -363
- test.ipynb +0 -410
- winning_trades_percentage.csv +0 -3
notebooks/test.ipynb
DELETED
@@ -1,363 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"cells": [
|
3 |
-
{
|
4 |
-
"cell_type": "code",
|
5 |
-
"execution_count": 3,
|
6 |
-
"metadata": {},
|
7 |
-
"outputs": [],
|
8 |
-
"source": [
|
9 |
-
"import pickle\n",
|
10 |
-
"import pandas as pd\n",
|
11 |
-
"from pathlib import Path\n",
|
12 |
-
"from web3 import Web3\n",
|
13 |
-
"from concurrent.futures import ThreadPoolExecutor\n",
|
14 |
-
"from tqdm import tqdm\n",
|
15 |
-
"from functools import partial\n",
|
16 |
-
"from datetime import datetime\n"
|
17 |
-
]
|
18 |
-
},
|
19 |
-
{
|
20 |
-
"cell_type": "markdown",
|
21 |
-
"metadata": {},
|
22 |
-
"source": [
|
23 |
-
"### Make t_map"
|
24 |
-
]
|
25 |
-
},
|
26 |
-
{
|
27 |
-
"cell_type": "code",
|
28 |
-
"execution_count": null,
|
29 |
-
"metadata": {},
|
30 |
-
"outputs": [],
|
31 |
-
"source": [
|
32 |
-
"tools = pd.read_csv(\"../data/tools.csv\")"
|
33 |
-
]
|
34 |
-
},
|
35 |
-
{
|
36 |
-
"cell_type": "code",
|
37 |
-
"execution_count": null,
|
38 |
-
"metadata": {},
|
39 |
-
"outputs": [],
|
40 |
-
"source": [
|
41 |
-
"tools.columns"
|
42 |
-
]
|
43 |
-
},
|
44 |
-
{
|
45 |
-
"cell_type": "code",
|
46 |
-
"execution_count": null,
|
47 |
-
"metadata": {},
|
48 |
-
"outputs": [],
|
49 |
-
"source": [
|
50 |
-
"import pickle\n",
|
51 |
-
"t_map = tools[['request_block', 'request_time']].set_index('request_block').to_dict()['request_time']\n",
|
52 |
-
"\n",
|
53 |
-
"with open('../data/t_map.pkl', 'wb') as f:\n",
|
54 |
-
" pickle.dump(t_map, f)\n",
|
55 |
-
"\n"
|
56 |
-
]
|
57 |
-
},
|
58 |
-
{
|
59 |
-
"cell_type": "code",
|
60 |
-
"execution_count": null,
|
61 |
-
"metadata": {},
|
62 |
-
"outputs": [],
|
63 |
-
"source": [
|
64 |
-
"with open('../data/t_map.pkl', 'rb') as f:\n",
|
65 |
-
" t_map = pickle.load(f)"
|
66 |
-
]
|
67 |
-
},
|
68 |
-
{
|
69 |
-
"cell_type": "markdown",
|
70 |
-
"metadata": {},
|
71 |
-
"source": [
|
72 |
-
"### Markets"
|
73 |
-
]
|
74 |
-
},
|
75 |
-
{
|
76 |
-
"cell_type": "code",
|
77 |
-
"execution_count": 4,
|
78 |
-
"metadata": {},
|
79 |
-
"outputs": [
|
80 |
-
{
|
81 |
-
"data": {
|
82 |
-
"text/plain": [
|
83 |
-
"Index(['id', 'currentAnswer', 'title'], dtype='object')"
|
84 |
-
]
|
85 |
-
},
|
86 |
-
"execution_count": 4,
|
87 |
-
"metadata": {},
|
88 |
-
"output_type": "execute_result"
|
89 |
-
}
|
90 |
-
],
|
91 |
-
"source": [
|
92 |
-
"fpmms = pd.read_csv(\"../data/fpmms.csv\")\n",
|
93 |
-
"fpmms.columns"
|
94 |
-
]
|
95 |
-
},
|
96 |
-
{
|
97 |
-
"cell_type": "code",
|
98 |
-
"execution_count": 6,
|
99 |
-
"metadata": {},
|
100 |
-
"outputs": [
|
101 |
-
{
|
102 |
-
"name": "stderr",
|
103 |
-
"output_type": "stream",
|
104 |
-
"text": [
|
105 |
-
"/var/folders/l_/g22b1g_n0gn4tmx9lkxqv5x00000gn/T/ipykernel_42934/371090584.py:1: DtypeWarning: Columns (2) have mixed types. Specify dtype option on import or set low_memory=False.\n",
|
106 |
-
" delivers = pd.read_csv(\"../data/delivers.csv\")\n"
|
107 |
-
]
|
108 |
-
},
|
109 |
-
{
|
110 |
-
"data": {
|
111 |
-
"text/plain": [
|
112 |
-
"(263613, 12)"
|
113 |
-
]
|
114 |
-
},
|
115 |
-
"execution_count": 6,
|
116 |
-
"metadata": {},
|
117 |
-
"output_type": "execute_result"
|
118 |
-
}
|
119 |
-
],
|
120 |
-
"source": [
|
121 |
-
"delivers = pd.read_csv(\"../data/delivers.csv\")\n",
|
122 |
-
"delivers.shape\n"
|
123 |
-
]
|
124 |
-
},
|
125 |
-
{
|
126 |
-
"cell_type": "code",
|
127 |
-
"execution_count": 7,
|
128 |
-
"metadata": {},
|
129 |
-
"outputs": [
|
130 |
-
{
|
131 |
-
"data": {
|
132 |
-
"text/plain": [
|
133 |
-
"(245092, 6)"
|
134 |
-
]
|
135 |
-
},
|
136 |
-
"execution_count": 7,
|
137 |
-
"metadata": {},
|
138 |
-
"output_type": "execute_result"
|
139 |
-
}
|
140 |
-
],
|
141 |
-
"source": [
|
142 |
-
"requests = pd.read_csv(\"../data/requests.csv\")\n",
|
143 |
-
"requests.columns\n",
|
144 |
-
"\n",
|
145 |
-
"requests.shape"
|
146 |
-
]
|
147 |
-
},
|
148 |
-
{
|
149 |
-
"cell_type": "code",
|
150 |
-
"execution_count": 8,
|
151 |
-
"metadata": {},
|
152 |
-
"outputs": [
|
153 |
-
{
|
154 |
-
"name": "stderr",
|
155 |
-
"output_type": "stream",
|
156 |
-
"text": [
|
157 |
-
"/var/folders/l_/g22b1g_n0gn4tmx9lkxqv5x00000gn/T/ipykernel_42934/3254331204.py:1: DtypeWarning: Columns (7,10) have mixed types. Specify dtype option on import or set low_memory=False.\n",
|
158 |
-
" tools = pd.read_csv(\"../data/tools.csv\")\n"
|
159 |
-
]
|
160 |
-
},
|
161 |
-
{
|
162 |
-
"data": {
|
163 |
-
"text/plain": [
|
164 |
-
"Index(['request_id', 'request_block', 'prompt_request', 'tool', 'nonce',\n",
|
165 |
-
" 'trader_address', 'deliver_block', 'error', 'error_message',\n",
|
166 |
-
" 'prompt_response', 'mech_address', 'p_yes', 'p_no', 'confidence',\n",
|
167 |
-
" 'info_utility', 'vote', 'win_probability', 'title', 'currentAnswer',\n",
|
168 |
-
" 'request_time', 'request_month_year', 'request_month_year_week'],\n",
|
169 |
-
" dtype='object')"
|
170 |
-
]
|
171 |
-
},
|
172 |
-
"execution_count": 8,
|
173 |
-
"metadata": {},
|
174 |
-
"output_type": "execute_result"
|
175 |
-
}
|
176 |
-
],
|
177 |
-
"source": [
|
178 |
-
"tools = pd.read_csv(\"../data/tools.csv\")\n",
|
179 |
-
"tools.columns"
|
180 |
-
]
|
181 |
-
},
|
182 |
-
{
|
183 |
-
"cell_type": "code",
|
184 |
-
"execution_count": 9,
|
185 |
-
"metadata": {},
|
186 |
-
"outputs": [
|
187 |
-
{
|
188 |
-
"data": {
|
189 |
-
"text/plain": [
|
190 |
-
"841"
|
191 |
-
]
|
192 |
-
},
|
193 |
-
"execution_count": 9,
|
194 |
-
"metadata": {},
|
195 |
-
"output_type": "execute_result"
|
196 |
-
}
|
197 |
-
],
|
198 |
-
"source": [
|
199 |
-
"tools['request_time'].isna().sum()"
|
200 |
-
]
|
201 |
-
},
|
202 |
-
{
|
203 |
-
"cell_type": "code",
|
204 |
-
"execution_count": 10,
|
205 |
-
"metadata": {},
|
206 |
-
"outputs": [],
|
207 |
-
"source": [
|
208 |
-
"def block_number_to_timestamp(block_number: int, web3: Web3) -> str:\n",
|
209 |
-
" \"\"\"Convert a block number to a timestamp.\"\"\"\n",
|
210 |
-
" block = web3.eth.get_block(block_number)\n",
|
211 |
-
" timestamp = datetime.utcfromtimestamp(block['timestamp'])\n",
|
212 |
-
" return timestamp.strftime('%Y-%m-%d %H:%M:%S')\n",
|
213 |
-
"\n",
|
214 |
-
"\n",
|
215 |
-
"def parallelize_timestamp_conversion(df: pd.DataFrame, function: callable) -> list:\n",
|
216 |
-
" \"\"\"Parallelize the timestamp conversion.\"\"\"\n",
|
217 |
-
" block_numbers = df['request_block'].tolist()\n",
|
218 |
-
" with ThreadPoolExecutor(max_workers=10) as executor:\n",
|
219 |
-
" results = list(tqdm(executor.map(function, block_numbers), total=len(block_numbers))) \n",
|
220 |
-
" return results\n"
|
221 |
-
]
|
222 |
-
},
|
223 |
-
{
|
224 |
-
"cell_type": "code",
|
225 |
-
"execution_count": 11,
|
226 |
-
"metadata": {},
|
227 |
-
"outputs": [],
|
228 |
-
"source": [
|
229 |
-
"rpc = \"https://lb.nodies.app/v1/406d8dcc043f4cb3959ed7d6673d311a\"\n",
|
230 |
-
"web3 = Web3(Web3.HTTPProvider(rpc))\n",
|
231 |
-
"\n",
|
232 |
-
"partial_block_number_to_timestamp = partial(block_number_to_timestamp, web3=web3)"
|
233 |
-
]
|
234 |
-
},
|
235 |
-
{
|
236 |
-
"cell_type": "code",
|
237 |
-
"execution_count": 15,
|
238 |
-
"metadata": {},
|
239 |
-
"outputs": [
|
240 |
-
{
|
241 |
-
"name": "stderr",
|
242 |
-
"output_type": "stream",
|
243 |
-
"text": [
|
244 |
-
"100%|██████████| 841/841 [00:25<00:00, 33.18it/s]\n"
|
245 |
-
]
|
246 |
-
}
|
247 |
-
],
|
248 |
-
"source": [
|
249 |
-
"missing_time_indices = tools[tools['request_time'].isna()].index\n",
|
250 |
-
"if not missing_time_indices.empty:\n",
|
251 |
-
" partial_block_number_to_timestamp = partial(block_number_to_timestamp, web3=web3)\n",
|
252 |
-
" missing_timestamps = parallelize_timestamp_conversion(tools.loc[missing_time_indices], partial_block_number_to_timestamp)\n",
|
253 |
-
" \n",
|
254 |
-
" # Update the original DataFrame with the missing timestamps\n",
|
255 |
-
" for i, timestamp in zip(missing_time_indices, missing_timestamps):\n",
|
256 |
-
" tools.at[i, 'request_time'] = timestamp"
|
257 |
-
]
|
258 |
-
},
|
259 |
-
{
|
260 |
-
"cell_type": "code",
|
261 |
-
"execution_count": 16,
|
262 |
-
"metadata": {},
|
263 |
-
"outputs": [
|
264 |
-
{
|
265 |
-
"data": {
|
266 |
-
"text/plain": [
|
267 |
-
"0"
|
268 |
-
]
|
269 |
-
},
|
270 |
-
"execution_count": 16,
|
271 |
-
"metadata": {},
|
272 |
-
"output_type": "execute_result"
|
273 |
-
}
|
274 |
-
],
|
275 |
-
"source": [
|
276 |
-
"tools['request_time'].isna().sum()"
|
277 |
-
]
|
278 |
-
},
|
279 |
-
{
|
280 |
-
"cell_type": "code",
|
281 |
-
"execution_count": 17,
|
282 |
-
"metadata": {},
|
283 |
-
"outputs": [],
|
284 |
-
"source": [
|
285 |
-
"tools['request_month_year'] = pd.to_datetime(tools['request_time']).dt.strftime('%Y-%m')\n",
|
286 |
-
"tools['request_month_year_week'] = pd.to_datetime(tools['request_time']).dt.to_period('W').astype(str)"
|
287 |
-
]
|
288 |
-
},
|
289 |
-
{
|
290 |
-
"cell_type": "code",
|
291 |
-
"execution_count": 18,
|
292 |
-
"metadata": {},
|
293 |
-
"outputs": [
|
294 |
-
{
|
295 |
-
"data": {
|
296 |
-
"text/plain": [
|
297 |
-
"0"
|
298 |
-
]
|
299 |
-
},
|
300 |
-
"execution_count": 18,
|
301 |
-
"metadata": {},
|
302 |
-
"output_type": "execute_result"
|
303 |
-
}
|
304 |
-
],
|
305 |
-
"source": [
|
306 |
-
"tools['request_month_year_week'].isna().sum()\n"
|
307 |
-
]
|
308 |
-
},
|
309 |
-
{
|
310 |
-
"cell_type": "code",
|
311 |
-
"execution_count": 19,
|
312 |
-
"metadata": {},
|
313 |
-
"outputs": [],
|
314 |
-
"source": [
|
315 |
-
"tools.to_csv(\"../data/tools.csv\", index=False)"
|
316 |
-
]
|
317 |
-
},
|
318 |
-
{
|
319 |
-
"cell_type": "code",
|
320 |
-
"execution_count": 23,
|
321 |
-
"metadata": {},
|
322 |
-
"outputs": [],
|
323 |
-
"source": [
|
324 |
-
"with open('../data/t_map.pkl', 'rb') as f:\n",
|
325 |
-
" t_map = pickle.load(f)\n",
|
326 |
-
"new_timestamps = tools[['request_block', 'request_time']].dropna().set_index('request_block').to_dict()['request_time']\n",
|
327 |
-
"t_map.update(new_timestamps)\n",
|
328 |
-
"\n",
|
329 |
-
"with open('../data/t_map.pkl', 'wb') as f:\n",
|
330 |
-
" pickle.dump(t_map, f)\n",
|
331 |
-
"\n"
|
332 |
-
]
|
333 |
-
},
|
334 |
-
{
|
335 |
-
"cell_type": "code",
|
336 |
-
"execution_count": null,
|
337 |
-
"metadata": {},
|
338 |
-
"outputs": [],
|
339 |
-
"source": []
|
340 |
-
}
|
341 |
-
],
|
342 |
-
"metadata": {
|
343 |
-
"kernelspec": {
|
344 |
-
"display_name": "autogen",
|
345 |
-
"language": "python",
|
346 |
-
"name": "python3"
|
347 |
-
},
|
348 |
-
"language_info": {
|
349 |
-
"codemirror_mode": {
|
350 |
-
"name": "ipython",
|
351 |
-
"version": 3
|
352 |
-
},
|
353 |
-
"file_extension": ".py",
|
354 |
-
"mimetype": "text/x-python",
|
355 |
-
"name": "python",
|
356 |
-
"nbconvert_exporter": "python",
|
357 |
-
"pygments_lexer": "ipython3",
|
358 |
-
"version": "3.10.13"
|
359 |
-
}
|
360 |
-
},
|
361 |
-
"nbformat": 4,
|
362 |
-
"nbformat_minor": 2
|
363 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
test.ipynb
DELETED
@@ -1,410 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"cells": [
|
3 |
-
{
|
4 |
-
"cell_type": "code",
|
5 |
-
"execution_count": null,
|
6 |
-
"metadata": {},
|
7 |
-
"outputs": [],
|
8 |
-
"source": [
|
9 |
-
"import pandas as pd\n",
|
10 |
-
"from datetime import datetime\n",
|
11 |
-
"from tqdm import tqdm\n",
|
12 |
-
"\n",
|
13 |
-
"import time\n",
|
14 |
-
"import requests\n",
|
15 |
-
"import datetime\n",
|
16 |
-
"import pandas as pd\n",
|
17 |
-
"from collections import defaultdict\n",
|
18 |
-
"from typing import Any, Union, List\n",
|
19 |
-
"from string import Template\n",
|
20 |
-
"from enum import Enum\n",
|
21 |
-
"from tqdm import tqdm\n",
|
22 |
-
"import numpy as np\n",
|
23 |
-
"from pathlib import Path\n",
|
24 |
-
"import pickle"
|
25 |
-
]
|
26 |
-
},
|
27 |
-
{
|
28 |
-
"cell_type": "code",
|
29 |
-
"execution_count": null,
|
30 |
-
"metadata": {},
|
31 |
-
"outputs": [],
|
32 |
-
"source": [
|
33 |
-
"# trades = pd.read_parquet('/Users/arshath/play/openautonomy/olas-prediction-live-dashboard_old/data/all_trades_profitability.parquet')\n",
|
34 |
-
"tools = pd.read_parquet('/Users/arshath/play/openautonomy/olas-prediction-live-dashboard_old/data/tools.parquet')"
|
35 |
-
]
|
36 |
-
},
|
37 |
-
{
|
38 |
-
"cell_type": "code",
|
39 |
-
"execution_count": null,
|
40 |
-
"metadata": {},
|
41 |
-
"outputs": [],
|
42 |
-
"source": [
|
43 |
-
"tools.groupby(['request_month_year_week', 'error']).size().unstack()"
|
44 |
-
]
|
45 |
-
},
|
46 |
-
{
|
47 |
-
"cell_type": "code",
|
48 |
-
"execution_count": null,
|
49 |
-
"metadata": {},
|
50 |
-
"outputs": [],
|
51 |
-
"source": [
|
52 |
-
"t_map = pickle.load(open('./data/t_map.pkl', 'rb'))\n",
|
53 |
-
"tools['request_time'] = tools['request_block'].map(t_map)\n",
|
54 |
-
"tools.to_parquet('./data/tools.parquet')"
|
55 |
-
]
|
56 |
-
},
|
57 |
-
{
|
58 |
-
"cell_type": "code",
|
59 |
-
"execution_count": null,
|
60 |
-
"metadata": {},
|
61 |
-
"outputs": [],
|
62 |
-
"source": [
|
63 |
-
"tools['request_time'] = pd.to_datetime(tools['request_time'])\n",
|
64 |
-
"tools = tools[tools['request_time'] >= pd.to_datetime('2024-05-01')]\n",
|
65 |
-
"tools['request_block'].max()"
|
66 |
-
]
|
67 |
-
},
|
68 |
-
{
|
69 |
-
"cell_type": "code",
|
70 |
-
"execution_count": null,
|
71 |
-
"metadata": {},
|
72 |
-
"outputs": [],
|
73 |
-
"source": [
|
74 |
-
"requests = pd.read_parquet(\"./data/requests.parquet\")\n",
|
75 |
-
"delivers = pd.read_parquet(\"./data/delivers.parquet\")\n",
|
76 |
-
"print(requests.shape)\n",
|
77 |
-
"print(delivers.shape)"
|
78 |
-
]
|
79 |
-
},
|
80 |
-
{
|
81 |
-
"cell_type": "code",
|
82 |
-
"execution_count": null,
|
83 |
-
"metadata": {},
|
84 |
-
"outputs": [],
|
85 |
-
"source": [
|
86 |
-
"requests[requests['request_block'] <= 33714082].reset_index(drop=True).to_parquet(\"./data/requests.parquet\")\n",
|
87 |
-
"delivers[delivers['deliver_block'] <= 33714082].reset_index(drop=True).to_parquet(\"./data/delivers.parquet\")"
|
88 |
-
]
|
89 |
-
},
|
90 |
-
{
|
91 |
-
"cell_type": "code",
|
92 |
-
"execution_count": null,
|
93 |
-
"metadata": {},
|
94 |
-
"outputs": [],
|
95 |
-
"source": [
|
96 |
-
"import sys \n",
|
97 |
-
"\n",
|
98 |
-
"sys.path.append('./')\n",
|
99 |
-
"from scripts.tools import *"
|
100 |
-
]
|
101 |
-
},
|
102 |
-
{
|
103 |
-
"cell_type": "code",
|
104 |
-
"execution_count": null,
|
105 |
-
"metadata": {},
|
106 |
-
"outputs": [],
|
107 |
-
"source": [
|
108 |
-
"RPCs = [\n",
|
109 |
-
" \"https://lb.nodies.app/v1/406d8dcc043f4cb3959ed7d6673d311a\",\n",
|
110 |
-
"]\n",
|
111 |
-
"w3s = [Web3(HTTPProvider(r)) for r in RPCs]\n",
|
112 |
-
"session = create_session()\n",
|
113 |
-
"event_to_transformer = {\n",
|
114 |
-
" MechEventName.REQUEST: transform_request,\n",
|
115 |
-
" MechEventName.DELIVER: transform_deliver,\n",
|
116 |
-
"}\n",
|
117 |
-
"mech_to_info = {\n",
|
118 |
-
" to_checksum_address(address): (\n",
|
119 |
-
" os.path.join(CONTRACTS_PATH, filename),\n",
|
120 |
-
" earliest_block,\n",
|
121 |
-
" )\n",
|
122 |
-
" for address, (filename, earliest_block) in MECH_TO_INFO.items()\n",
|
123 |
-
"}\n",
|
124 |
-
"event_to_contents = {}\n",
|
125 |
-
"\n",
|
126 |
-
"# latest_block = w3s[0].eth.get_block(LATEST_BLOCK_NAME)[BLOCK_DATA_NUMBER]\n",
|
127 |
-
"latest_block = 34032575\n",
|
128 |
-
"\n",
|
129 |
-
"next_start_block = latest_block - 300\n",
|
130 |
-
"\n",
|
131 |
-
"events_request = []\n",
|
132 |
-
"events_deliver = []\n",
|
133 |
-
"# Loop through events in event_to_transformer\n",
|
134 |
-
"for event_name, transformer in event_to_transformer.items():\n",
|
135 |
-
" print(f\"Fetching {event_name.value} events\")\n",
|
136 |
-
" for address, (abi, earliest_block) in mech_to_info.items():\n",
|
137 |
-
" # parallelize the fetching of events\n",
|
138 |
-
" with ThreadPoolExecutor(max_workers=NUM_WORKERS) as executor:\n",
|
139 |
-
" futures = []\n",
|
140 |
-
" for i in range(\n",
|
141 |
-
" next_start_block, latest_block, BLOCKS_CHUNK_SIZE * SNAPSHOT_RATE\n",
|
142 |
-
" ):\n",
|
143 |
-
" futures.append(\n",
|
144 |
-
" executor.submit(\n",
|
145 |
-
" get_events,\n",
|
146 |
-
" random.choice(w3s),\n",
|
147 |
-
" event_name.value,\n",
|
148 |
-
" address,\n",
|
149 |
-
" abi,\n",
|
150 |
-
" i,\n",
|
151 |
-
" min(i + BLOCKS_CHUNK_SIZE * SNAPSHOT_RATE, latest_block),\n",
|
152 |
-
" )\n",
|
153 |
-
" )\n",
|
154 |
-
"\n",
|
155 |
-
" for future in tqdm(\n",
|
156 |
-
" as_completed(futures),\n",
|
157 |
-
" total=len(futures),\n",
|
158 |
-
" desc=f\"Fetching {event_name.value} Events\",\n",
|
159 |
-
" ):\n",
|
160 |
-
" current_mech_events = future.result()\n",
|
161 |
-
" if event_name == MechEventName.REQUEST:\n",
|
162 |
-
" events_request.extend(current_mech_events)\n",
|
163 |
-
" elif event_name == MechEventName.DELIVER:\n",
|
164 |
-
" events_deliver.extend(current_mech_events)\n",
|
165 |
-
"\n",
|
166 |
-
" parsed_request = parse_events(events_request)\n",
|
167 |
-
" parsed_deliver = parse_events(events_deliver)"
|
168 |
-
]
|
169 |
-
},
|
170 |
-
{
|
171 |
-
"cell_type": "code",
|
172 |
-
"execution_count": null,
|
173 |
-
"metadata": {},
|
174 |
-
"outputs": [],
|
175 |
-
"source": [
|
176 |
-
"contents_request = []\n",
|
177 |
-
"with ThreadPoolExecutor(max_workers=NUM_WORKERS) as executor:\n",
|
178 |
-
" futures = []\n",
|
179 |
-
" for i in range(0, len(parsed_request), GET_CONTENTS_BATCH_SIZE):\n",
|
180 |
-
" futures.append(\n",
|
181 |
-
" executor.submit(\n",
|
182 |
-
" get_contents,\n",
|
183 |
-
" session,\n",
|
184 |
-
" parsed_request[i : i + GET_CONTENTS_BATCH_SIZE],\n",
|
185 |
-
" MechEventName.REQUEST,\n",
|
186 |
-
" )\n",
|
187 |
-
" )\n",
|
188 |
-
"\n",
|
189 |
-
" for future in tqdm(\n",
|
190 |
-
" as_completed(futures),\n",
|
191 |
-
" total=len(futures),\n",
|
192 |
-
" desc=f\"Fetching {event_name.value} Contents\",\n",
|
193 |
-
" ):\n",
|
194 |
-
" current_mech_contents = future.result()\n",
|
195 |
-
" contents_request.append(current_mech_contents)\n",
|
196 |
-
"\n",
|
197 |
-
"contents_request = pd.concat(contents_request, ignore_index=True)"
|
198 |
-
]
|
199 |
-
},
|
200 |
-
{
|
201 |
-
"cell_type": "code",
|
202 |
-
"execution_count": null,
|
203 |
-
"metadata": {},
|
204 |
-
"outputs": [],
|
205 |
-
"source": [
|
206 |
-
"contents_deliver = []\n",
|
207 |
-
"with ThreadPoolExecutor(max_workers=NUM_WORKERS) as executor:\n",
|
208 |
-
" futures = []\n",
|
209 |
-
" for i in range(0, len(parsed_deliver), GET_CONTENTS_BATCH_SIZE):\n",
|
210 |
-
" futures.append(\n",
|
211 |
-
" executor.submit(\n",
|
212 |
-
" get_contents,\n",
|
213 |
-
" session,\n",
|
214 |
-
" parsed_deliver[i : i + GET_CONTENTS_BATCH_SIZE],\n",
|
215 |
-
" MechEventName.DELIVER,\n",
|
216 |
-
" )\n",
|
217 |
-
" )\n",
|
218 |
-
"\n",
|
219 |
-
" for future in tqdm(\n",
|
220 |
-
" as_completed(futures),\n",
|
221 |
-
" total=len(futures),\n",
|
222 |
-
" desc=f\"Fetching {event_name.value} Contents\",\n",
|
223 |
-
" ):\n",
|
224 |
-
" current_mech_contents = future.result()\n",
|
225 |
-
" contents_deliver.append(current_mech_contents)\n",
|
226 |
-
"\n",
|
227 |
-
"contents_deliver = pd.concat(contents_deliver, ignore_index=True)"
|
228 |
-
]
|
229 |
-
},
|
230 |
-
{
|
231 |
-
"cell_type": "code",
|
232 |
-
"execution_count": null,
|
233 |
-
"metadata": {},
|
234 |
-
"outputs": [],
|
235 |
-
"source": [
|
236 |
-
"full_contents = True\n",
|
237 |
-
"transformed_request = event_to_transformer[MechEventName.REQUEST](contents_request)\n",
|
238 |
-
"transformed_deliver = event_to_transformer[MechEventName.DELIVER](contents_deliver, full_contents=full_contents)"
|
239 |
-
]
|
240 |
-
},
|
241 |
-
{
|
242 |
-
"cell_type": "code",
|
243 |
-
"execution_count": null,
|
244 |
-
"metadata": {},
|
245 |
-
"outputs": [],
|
246 |
-
"source": [
|
247 |
-
"transformed_request.shape"
|
248 |
-
]
|
249 |
-
},
|
250 |
-
{
|
251 |
-
"cell_type": "code",
|
252 |
-
"execution_count": null,
|
253 |
-
"metadata": {},
|
254 |
-
"outputs": [],
|
255 |
-
"source": [
|
256 |
-
"transformed_deliver.shape"
|
257 |
-
]
|
258 |
-
},
|
259 |
-
{
|
260 |
-
"cell_type": "code",
|
261 |
-
"execution_count": null,
|
262 |
-
"metadata": {},
|
263 |
-
"outputs": [],
|
264 |
-
"source": [
|
265 |
-
"tools = pd.merge(transformed_request, transformed_deliver, on=REQUEST_ID_FIELD)\n",
|
266 |
-
"tools.columns"
|
267 |
-
]
|
268 |
-
},
|
269 |
-
{
|
270 |
-
"cell_type": "code",
|
271 |
-
"execution_count": null,
|
272 |
-
"metadata": {},
|
273 |
-
"outputs": [],
|
274 |
-
"source": [
|
275 |
-
"def store_progress(\n",
|
276 |
-
" filename: str,\n",
|
277 |
-
" event_to_contents: Dict[str, pd.DataFrame],\n",
|
278 |
-
" tools: pd.DataFrame,\n",
|
279 |
-
") -> None:\n",
|
280 |
-
" \"\"\"Store the given progress.\"\"\"\n",
|
281 |
-
" if filename:\n",
|
282 |
-
" DATA_DIR.mkdir(parents=True, exist_ok=True) # Ensure the directory exists\n",
|
283 |
-
" for event_name, content in event_to_contents.items():\n",
|
284 |
-
" event_filename = gen_event_filename(event_name) # Ensure this function returns a valid filename string\n",
|
285 |
-
" try:\n",
|
286 |
-
" if \"result\" in content.columns:\n",
|
287 |
-
" content = content.drop(columns=[\"result\"]) # Avoid in-place modification\n",
|
288 |
-
" if 'error' in content.columns:\n",
|
289 |
-
" content['error'] = content['error'].astype(bool)\n",
|
290 |
-
" content.to_parquet(DATA_DIR / event_filename, index=False)\n",
|
291 |
-
" except Exception as e:\n",
|
292 |
-
" print(f\"Failed to write {event_name}: {e}\")\n",
|
293 |
-
" try:\n",
|
294 |
-
" if \"result\" in tools.columns:\n",
|
295 |
-
" tools = tools.drop(columns=[\"result\"])\n",
|
296 |
-
" if 'error' in tools.columns:\n",
|
297 |
-
" tools['error'] = tools['error'].astype(bool)\n",
|
298 |
-
" tools.to_parquet(DATA_DIR / filename, index=False)\n",
|
299 |
-
" except Exception as e:\n",
|
300 |
-
" print(f\"Failed to write tools data: {e}\")"
|
301 |
-
]
|
302 |
-
},
|
303 |
-
{
|
304 |
-
"cell_type": "code",
|
305 |
-
"execution_count": null,
|
306 |
-
"metadata": {},
|
307 |
-
"outputs": [],
|
308 |
-
"source": [
|
309 |
-
"# store_progress(filename, event_to_contents, tools)"
|
310 |
-
]
|
311 |
-
},
|
312 |
-
{
|
313 |
-
"cell_type": "code",
|
314 |
-
"execution_count": null,
|
315 |
-
"metadata": {},
|
316 |
-
"outputs": [],
|
317 |
-
"source": [
|
318 |
-
"if 'result' in transformed_deliver.columns:\n",
|
319 |
-
" transformed_deliver = transformed_deliver.drop(columns=['result'])\n",
|
320 |
-
"if 'error' in transformed_deliver.columns:\n",
|
321 |
-
" transformed_deliver['error'] = transformed_deliver['error'].astype(bool)"
|
322 |
-
]
|
323 |
-
},
|
324 |
-
{
|
325 |
-
"cell_type": "code",
|
326 |
-
"execution_count": null,
|
327 |
-
"metadata": {},
|
328 |
-
"outputs": [],
|
329 |
-
"source": [
|
330 |
-
"transformed_deliver.to_parquet(\"transformed_deliver.parquet\", index=False)"
|
331 |
-
]
|
332 |
-
},
|
333 |
-
{
|
334 |
-
"cell_type": "code",
|
335 |
-
"execution_count": null,
|
336 |
-
"metadata": {},
|
337 |
-
"outputs": [],
|
338 |
-
"source": [
|
339 |
-
"d = pd.read_parquet(\"transformed_deliver.parquet\")"
|
340 |
-
]
|
341 |
-
},
|
342 |
-
{
|
343 |
-
"cell_type": "markdown",
|
344 |
-
"metadata": {},
|
345 |
-
"source": [
|
346 |
-
"### duck db"
|
347 |
-
]
|
348 |
-
},
|
349 |
-
{
|
350 |
-
"cell_type": "code",
|
351 |
-
"execution_count": null,
|
352 |
-
"metadata": {},
|
353 |
-
"outputs": [],
|
354 |
-
"source": [
|
355 |
-
"import duckdb\n",
|
356 |
-
"from datetime import datetime, timedelta\n",
|
357 |
-
"\n",
|
358 |
-
"# Calculate the date for two months ago\n",
|
359 |
-
"two_months_ago = (datetime.now() - timedelta(days=60)).strftime('%Y-%m-%d')\n",
|
360 |
-
"\n",
|
361 |
-
"# Connect to an in-memory DuckDB instance\n",
|
362 |
-
"con = duckdb.connect(':memory:')\n",
|
363 |
-
"\n",
|
364 |
-
"# Perform a SQL query to select data from the past two months directly from the Parquet file\n",
|
365 |
-
"query = f\"\"\"\n",
|
366 |
-
"SELECT *\n",
|
367 |
-
"FROM read_parquet('/Users/arshath/play/openautonomy/olas-prediction-live-dashboard_old/data/tools.parquet')\n",
|
368 |
-
"WHERE request_time >= '{two_months_ago}'\n",
|
369 |
-
"\"\"\"\n",
|
370 |
-
"\n",
|
371 |
-
"# Fetch the result as a pandas DataFrame\n",
|
372 |
-
"df = con.execute(query).fetchdf()\n",
|
373 |
-
"\n",
|
374 |
-
"# Close the connection\n",
|
375 |
-
"con.close()\n",
|
376 |
-
"\n",
|
377 |
-
"# Print the DataFrame\n",
|
378 |
-
"print(df)"
|
379 |
-
]
|
380 |
-
},
|
381 |
-
{
|
382 |
-
"cell_type": "code",
|
383 |
-
"execution_count": null,
|
384 |
-
"metadata": {},
|
385 |
-
"outputs": [],
|
386 |
-
"source": []
|
387 |
-
}
|
388 |
-
],
|
389 |
-
"metadata": {
|
390 |
-
"kernelspec": {
|
391 |
-
"display_name": "akash",
|
392 |
-
"language": "python",
|
393 |
-
"name": "python3"
|
394 |
-
},
|
395 |
-
"language_info": {
|
396 |
-
"codemirror_mode": {
|
397 |
-
"name": "ipython",
|
398 |
-
"version": 3
|
399 |
-
},
|
400 |
-
"file_extension": ".py",
|
401 |
-
"mimetype": "text/x-python",
|
402 |
-
"name": "python",
|
403 |
-
"nbconvert_exporter": "python",
|
404 |
-
"pygments_lexer": "ipython3",
|
405 |
-
"version": "3.10.14"
|
406 |
-
}
|
407 |
-
},
|
408 |
-
"nbformat": 4,
|
409 |
-
"nbformat_minor": 2
|
410 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
winning_trades_percentage.csv
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:86e278f91e287f692ad257528b82f60a53062ae697adbd911807eecbfb3c8b94
|
3 |
-
size 26777
|
|
|
|
|
|
|
|