one month
Browse files
app.py
CHANGED
@@ -42,50 +42,26 @@ logger = get_logger()
|
|
42 |
|
43 |
def get_last_one_month_data():
|
44 |
con = duckdb.connect(':memory:')
|
45 |
-
# one_month_ago = (datetime.now() - timedelta(days=30)).strftime('%Y-%m-%d')
|
46 |
|
47 |
# Query to fetch data from all_trades_profitability.parquet
|
48 |
query2 = f"""
|
49 |
SELECT *
|
50 |
FROM read_parquet('./data/all_trades_profitability.parquet')
|
51 |
"""
|
52 |
-
|
53 |
-
logger.info("Query 2: " + query2)
|
54 |
df2 = con.execute(query2).fetchdf()
|
55 |
-
logger.info("here2")
|
56 |
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
# Read a chunk of data
|
65 |
-
query1 = f"""
|
66 |
-
SELECT *
|
67 |
-
FROM read_parquet('{parquet_file_path}', OFFSET {offset}, ROWS {chunk_size})
|
68 |
-
"""
|
69 |
-
|
70 |
-
logger.info("Query 1: " + query1)
|
71 |
-
chunk_df = con.execute(query1).fetchdf()
|
72 |
-
|
73 |
-
# Break if the chunk is empty (end of file)
|
74 |
-
if chunk_df.empty:
|
75 |
-
break
|
76 |
-
|
77 |
-
# Collect the filtered chunk
|
78 |
-
all_filtered_data.append(chunk_df)
|
79 |
|
80 |
-
# Update offset
|
81 |
-
offset += chunk_size
|
82 |
-
|
83 |
-
# Concatenate all filtered chunks into a single DataFrame
|
84 |
-
df1 = pd.concat(all_filtered_data, ignore_index=True)
|
85 |
-
logger.info("here3")
|
86 |
-
|
87 |
con.close()
|
|
|
88 |
return df1, df2
|
|
|
89 |
|
90 |
def prepare_data():
|
91 |
tools_df, trades_df = get_last_one_month_data()
|
|
|
42 |
|
43 |
def get_last_one_month_data():
|
44 |
con = duckdb.connect(':memory:')
|
|
|
45 |
|
46 |
# Query to fetch data from all_trades_profitability.parquet
|
47 |
query2 = f"""
|
48 |
SELECT *
|
49 |
FROM read_parquet('./data/all_trades_profitability.parquet')
|
50 |
"""
|
|
|
|
|
51 |
df2 = con.execute(query2).fetchdf()
|
|
|
52 |
|
53 |
+
one_months_ago = (datetime.now() - timedelta(days=60)).strftime('%Y-%m-%d')
|
54 |
+
query1 = f"""
|
55 |
+
SELECT *
|
56 |
+
FROM read_parquet('./data/tools.parquet')
|
57 |
+
WHERE request_time >= '{one_months_ago}'
|
58 |
+
"""
|
59 |
+
df1 = con.execute(query1).fetchdf()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
con.close()
|
62 |
+
|
63 |
return df1, df2
|
64 |
+
|
65 |
|
66 |
def prepare_data():
|
67 |
tools_df, trades_df = get_last_one_month_data()
|