Commit
·
8a5df04
1
Parent(s):
8cb40a4
cleaning non-used functions
Browse files- tabs/error.py +0 -89
- tabs/tool_win.py +0 -80
tabs/error.py
CHANGED
@@ -9,21 +9,6 @@ HEIGHT = 600
|
|
9 |
WIDTH = 1000
|
10 |
|
11 |
|
12 |
-
def get_error_data(tools_df: pd.DataFrame, inc_tools: List[str]) -> pd.DataFrame:
|
13 |
-
"""Gets the error data for the given tools and calculates the error percentage."""
|
14 |
-
tools_inc = tools_df[tools_df["tool"].isin(inc_tools)]
|
15 |
-
error = (
|
16 |
-
tools_inc.groupby(["tool", "request_month_year_week", "error"])
|
17 |
-
.size()
|
18 |
-
.unstack()
|
19 |
-
.fillna(0)
|
20 |
-
.reset_index()
|
21 |
-
)
|
22 |
-
error["error_perc"] = (error[1] / (error[0] + error[1])) * 100
|
23 |
-
error["total_requests"] = error[0] + error[1]
|
24 |
-
return error
|
25 |
-
|
26 |
-
|
27 |
def get_error_data_by_market(
|
28 |
tools_df: pd.DataFrame, inc_tools: List[str]
|
29 |
) -> pd.DataFrame:
|
@@ -43,19 +28,6 @@ def get_error_data_by_market(
|
|
43 |
return error
|
44 |
|
45 |
|
46 |
-
def get_error_data_overall(error_df: pd.DataFrame) -> pd.DataFrame:
|
47 |
-
"""Gets the error data for the given tools and calculates the error percentage."""
|
48 |
-
error_total = (
|
49 |
-
error_df.groupby("request_month_year_week")
|
50 |
-
.agg({"total_requests": "sum", 1: "sum", 0: "sum"})
|
51 |
-
.reset_index()
|
52 |
-
)
|
53 |
-
error_total["error_perc"] = (error_total[1] / error_total["total_requests"]) * 100
|
54 |
-
error_total.columns = error_total.columns.astype(str)
|
55 |
-
error_total["error_perc"] = error_total["error_perc"].apply(lambda x: round(x, 4))
|
56 |
-
return error_total
|
57 |
-
|
58 |
-
|
59 |
def get_error_data_overall_by_market(error_df: pd.DataFrame) -> pd.DataFrame:
|
60 |
"""Gets the error data for the given tools and calculates the error percentage."""
|
61 |
error_total = (
|
@@ -69,24 +41,6 @@ def get_error_data_overall_by_market(error_df: pd.DataFrame) -> pd.DataFrame:
|
|
69 |
return error_total
|
70 |
|
71 |
|
72 |
-
def plot_error_data(error_all_df: pd.DataFrame) -> gr.BarPlot:
|
73 |
-
"""Plots the error data for the given tools and calculates the error percentage."""
|
74 |
-
return gr.BarPlot(
|
75 |
-
value=error_all_df,
|
76 |
-
x="request_month_year_week",
|
77 |
-
y="error_perc",
|
78 |
-
title="Error Percentage",
|
79 |
-
x_title="Week",
|
80 |
-
y_title="Error Percentage",
|
81 |
-
show_label=True,
|
82 |
-
interactive=True,
|
83 |
-
show_actions_button=True,
|
84 |
-
tooltip=["request_month_year_week", "error_perc"],
|
85 |
-
height=HEIGHT,
|
86 |
-
width=WIDTH,
|
87 |
-
)
|
88 |
-
|
89 |
-
|
90 |
def plot_error_data_by_market(error_all_df: pd.DataFrame) -> gr.Plot:
|
91 |
|
92 |
# Sort the unique values of request_month_year_week
|
@@ -125,28 +79,6 @@ def plot_error_data_by_market(error_all_df: pd.DataFrame) -> gr.Plot:
|
|
125 |
return gr.Plot(value=fig)
|
126 |
|
127 |
|
128 |
-
def plot_tool_error_data(error_df: pd.DataFrame, tool: str) -> gr.BarPlot:
|
129 |
-
"""Plots the error data for the given tool."""
|
130 |
-
error_tool = error_df[error_df["tool"] == tool]
|
131 |
-
error_tool.columns = error_tool.columns.astype(str)
|
132 |
-
error_tool["error_perc"] = error_tool["error_perc"].apply(lambda x: round(x, 4))
|
133 |
-
|
134 |
-
return gr.BarPlot(
|
135 |
-
title="Error Percentage",
|
136 |
-
x_title="Week",
|
137 |
-
y_title="Error Percentage %",
|
138 |
-
show_label=True,
|
139 |
-
interactive=True,
|
140 |
-
show_actions_button=True,
|
141 |
-
tooltip=["request_month_year_week", "error_perc"],
|
142 |
-
value=error_tool,
|
143 |
-
x="request_month_year_week",
|
144 |
-
y="error_perc",
|
145 |
-
height=HEIGHT,
|
146 |
-
width=WIDTH,
|
147 |
-
)
|
148 |
-
|
149 |
-
|
150 |
def plot_tool_error_data_by_market(error_df: pd.DataFrame, tool: str) -> gr.Plot:
|
151 |
error_tool = error_df[error_df["tool"] == tool]
|
152 |
error_tool.columns = error_tool.columns.astype(str)
|
@@ -188,27 +120,6 @@ def plot_tool_error_data_by_market(error_df: pd.DataFrame, tool: str) -> gr.Plot
|
|
188 |
return gr.Plot(value=fig)
|
189 |
|
190 |
|
191 |
-
def plot_week_error_data(error_df: pd.DataFrame, week: str) -> gr.BarPlot:
|
192 |
-
"""Plots the error data for the given week."""
|
193 |
-
error_week = error_df[error_df["request_month_year_week"] == week]
|
194 |
-
error_week.columns = error_week.columns.astype(str)
|
195 |
-
error_week["error_perc"] = error_week["error_perc"].apply(lambda x: round(x, 4))
|
196 |
-
return gr.BarPlot(
|
197 |
-
value=error_week,
|
198 |
-
x="tool",
|
199 |
-
y="error_perc",
|
200 |
-
title="Error Percentage",
|
201 |
-
x_title="Tool",
|
202 |
-
y_title="Error Percentage",
|
203 |
-
show_label=True,
|
204 |
-
interactive=True,
|
205 |
-
show_actions_button=True,
|
206 |
-
tooltip=["tool", "error_perc"],
|
207 |
-
height=HEIGHT,
|
208 |
-
width=WIDTH,
|
209 |
-
)
|
210 |
-
|
211 |
-
|
212 |
def plot_week_error_data_by_market(error_df: pd.DataFrame, week: str) -> gr.Plot:
|
213 |
error_week = error_df[error_df["request_month_year_week"] == week]
|
214 |
error_week.columns = error_week.columns.astype(str)
|
|
|
9 |
WIDTH = 1000
|
10 |
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
def get_error_data_by_market(
|
13 |
tools_df: pd.DataFrame, inc_tools: List[str]
|
14 |
) -> pd.DataFrame:
|
|
|
28 |
return error
|
29 |
|
30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
def get_error_data_overall_by_market(error_df: pd.DataFrame) -> pd.DataFrame:
|
32 |
"""Gets the error data for the given tools and calculates the error percentage."""
|
33 |
error_total = (
|
|
|
41 |
return error_total
|
42 |
|
43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
def plot_error_data_by_market(error_all_df: pd.DataFrame) -> gr.Plot:
|
45 |
|
46 |
# Sort the unique values of request_month_year_week
|
|
|
79 |
return gr.Plot(value=fig)
|
80 |
|
81 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
def plot_tool_error_data_by_market(error_df: pd.DataFrame, tool: str) -> gr.Plot:
|
83 |
error_tool = error_df[error_df["tool"] == tool]
|
84 |
error_tool.columns = error_tool.columns.astype(str)
|
|
|
120 |
return gr.Plot(value=fig)
|
121 |
|
122 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
def plot_week_error_data_by_market(error_df: pd.DataFrame, week: str) -> gr.Plot:
|
124 |
error_week = error_df[error_df["request_month_year_week"] == week]
|
125 |
error_week.columns = error_week.columns.astype(str)
|
tabs/tool_win.py
CHANGED
@@ -26,37 +26,6 @@ def prepare_tools(tools: pd.DataFrame) -> pd.DataFrame:
|
|
26 |
return tools
|
27 |
|
28 |
|
29 |
-
def get_tool_winning_rate(tools_df: pd.DataFrame, inc_tools: List[str]) -> pd.DataFrame:
|
30 |
-
"""Gets the tool winning rate data for the given tools and calculates the winning percentage."""
|
31 |
-
tools_inc = tools_df[tools_df["tool"].isin(inc_tools)]
|
32 |
-
# tools_inc['error'] = tools_inc.apply(set_error, axis=1)
|
33 |
-
tools_non_error = tools_inc[tools_inc["error"] != 1]
|
34 |
-
tools_non_error.loc[:, "currentAnswer"] = tools_non_error["currentAnswer"].replace(
|
35 |
-
{"no": "No", "yes": "Yes"}
|
36 |
-
)
|
37 |
-
tools_non_error = tools_non_error[
|
38 |
-
tools_non_error["currentAnswer"].isin(["Yes", "No"])
|
39 |
-
]
|
40 |
-
tools_non_error = tools_non_error[tools_non_error["vote"].isin(["Yes", "No"])]
|
41 |
-
tools_non_error["win"] = (
|
42 |
-
tools_non_error["currentAnswer"] == tools_non_error["vote"]
|
43 |
-
).astype(int)
|
44 |
-
tools_non_error.columns = tools_non_error.columns.astype(str)
|
45 |
-
wins = (
|
46 |
-
tools_non_error.groupby(["tool", "request_month_year_week", "win"])
|
47 |
-
.size()
|
48 |
-
.unstack()
|
49 |
-
.fillna(0)
|
50 |
-
)
|
51 |
-
wins["win_perc"] = (wins[1] / (wins[0] + wins[1])) * 100
|
52 |
-
wins.reset_index(inplace=True)
|
53 |
-
wins["total_request"] = wins[0] + wins[1]
|
54 |
-
wins.columns = wins.columns.astype(str)
|
55 |
-
# Convert request_month_year_week to string and explicitly set type for Altair
|
56 |
-
wins["request_month_year_week"] = wins["request_month_year_week"].astype(str)
|
57 |
-
return wins
|
58 |
-
|
59 |
-
|
60 |
def get_tool_winning_rate_by_market(
|
61 |
tools_df: pd.DataFrame, inc_tools: List[str]
|
62 |
) -> pd.DataFrame:
|
@@ -91,17 +60,6 @@ def get_tool_winning_rate_by_market(
|
|
91 |
return wins
|
92 |
|
93 |
|
94 |
-
def get_overall_winning_rate(wins_df: pd.DataFrame) -> pd.DataFrame:
|
95 |
-
"""Gets the overall winning rate data for the given tools and calculates the winning percentage."""
|
96 |
-
overall_wins = (
|
97 |
-
wins_df.groupby("request_month_year_week")
|
98 |
-
.agg({"0": "sum", "1": "sum", "win_perc": "mean", "total_request": "sum"})
|
99 |
-
.rename(columns={"0": "losses", "1": "wins"})
|
100 |
-
.reset_index()
|
101 |
-
)
|
102 |
-
return overall_wins
|
103 |
-
|
104 |
-
|
105 |
def get_overall_winning_rate_by_market(wins_df: pd.DataFrame) -> pd.DataFrame:
|
106 |
"""Gets the overall winning rate data for the given tools and calculates the winning percentage."""
|
107 |
overall_wins = (
|
@@ -113,26 +71,6 @@ def get_overall_winning_rate_by_market(wins_df: pd.DataFrame) -> pd.DataFrame:
|
|
113 |
return overall_wins
|
114 |
|
115 |
|
116 |
-
def plot_tool_winnings_overall(
|
117 |
-
wins_df: pd.DataFrame, winning_selector: str = "win_perc"
|
118 |
-
) -> gr.BarPlot:
|
119 |
-
"""Plots the overall winning rate data for the given tools and calculates the winning percentage."""
|
120 |
-
return gr.BarPlot(
|
121 |
-
title="Winning Rate",
|
122 |
-
x_title="Date",
|
123 |
-
y_title=winning_selector,
|
124 |
-
show_label=True,
|
125 |
-
interactive=True,
|
126 |
-
show_actions_button=True,
|
127 |
-
tooltip=["request_month_year_week", winning_selector],
|
128 |
-
value=wins_df,
|
129 |
-
x="request_month_year_week",
|
130 |
-
y=winning_selector,
|
131 |
-
height=HEIGHT,
|
132 |
-
width=WIDTH,
|
133 |
-
)
|
134 |
-
|
135 |
-
|
136 |
def sort_key(date_str):
|
137 |
month, year_week = date_str.split("-")
|
138 |
month_order = [
|
@@ -197,24 +135,6 @@ def integrated_plot_tool_winnings_overall_per_market_by_week(
|
|
197 |
return gr.Plot(value=fig)
|
198 |
|
199 |
|
200 |
-
def plot_tool_winnings_by_tool(wins_df: pd.DataFrame, tool: str) -> gr.BarPlot:
|
201 |
-
"""Plots the winning rate data for the given tool."""
|
202 |
-
return gr.BarPlot(
|
203 |
-
title="Winning Rate",
|
204 |
-
x_title="Week",
|
205 |
-
y_title="Winning Rate",
|
206 |
-
x="request_month_year_week",
|
207 |
-
y="win_perc",
|
208 |
-
value=wins_df[wins_df["tool"] == tool],
|
209 |
-
show_label=True,
|
210 |
-
interactive=True,
|
211 |
-
show_actions_button=True,
|
212 |
-
tooltip=["request_month_year_week", "win_perc"],
|
213 |
-
height=HEIGHT,
|
214 |
-
width=WIDTH,
|
215 |
-
)
|
216 |
-
|
217 |
-
|
218 |
def integrated_tool_winnings_by_tool_per_market(
|
219 |
wins_df: pd.DataFrame, tool: str
|
220 |
) -> gr.Plot:
|
|
|
26 |
return tools
|
27 |
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
def get_tool_winning_rate_by_market(
|
30 |
tools_df: pd.DataFrame, inc_tools: List[str]
|
31 |
) -> pd.DataFrame:
|
|
|
60 |
return wins
|
61 |
|
62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
def get_overall_winning_rate_by_market(wins_df: pd.DataFrame) -> pd.DataFrame:
|
64 |
"""Gets the overall winning rate data for the given tools and calculates the winning percentage."""
|
65 |
overall_wins = (
|
|
|
71 |
return overall_wins
|
72 |
|
73 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
def sort_key(date_str):
|
75 |
month, year_week = date_str.split("-")
|
76 |
month_order = [
|
|
|
135 |
return gr.Plot(value=fig)
|
136 |
|
137 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
def integrated_tool_winnings_by_tool_per_market(
|
139 |
wins_df: pd.DataFrame, tool: str
|
140 |
) -> gr.Plot:
|