rosacastillo commited on
Commit
8a5df04
·
1 Parent(s): 8cb40a4

cleaning non-used functions

Browse files
Files changed (2) hide show
  1. tabs/error.py +0 -89
  2. tabs/tool_win.py +0 -80
tabs/error.py CHANGED
@@ -9,21 +9,6 @@ HEIGHT = 600
9
  WIDTH = 1000
10
 
11
 
12
- def get_error_data(tools_df: pd.DataFrame, inc_tools: List[str]) -> pd.DataFrame:
13
- """Gets the error data for the given tools and calculates the error percentage."""
14
- tools_inc = tools_df[tools_df["tool"].isin(inc_tools)]
15
- error = (
16
- tools_inc.groupby(["tool", "request_month_year_week", "error"])
17
- .size()
18
- .unstack()
19
- .fillna(0)
20
- .reset_index()
21
- )
22
- error["error_perc"] = (error[1] / (error[0] + error[1])) * 100
23
- error["total_requests"] = error[0] + error[1]
24
- return error
25
-
26
-
27
  def get_error_data_by_market(
28
  tools_df: pd.DataFrame, inc_tools: List[str]
29
  ) -> pd.DataFrame:
@@ -43,19 +28,6 @@ def get_error_data_by_market(
43
  return error
44
 
45
 
46
- def get_error_data_overall(error_df: pd.DataFrame) -> pd.DataFrame:
47
- """Gets the error data for the given tools and calculates the error percentage."""
48
- error_total = (
49
- error_df.groupby("request_month_year_week")
50
- .agg({"total_requests": "sum", 1: "sum", 0: "sum"})
51
- .reset_index()
52
- )
53
- error_total["error_perc"] = (error_total[1] / error_total["total_requests"]) * 100
54
- error_total.columns = error_total.columns.astype(str)
55
- error_total["error_perc"] = error_total["error_perc"].apply(lambda x: round(x, 4))
56
- return error_total
57
-
58
-
59
  def get_error_data_overall_by_market(error_df: pd.DataFrame) -> pd.DataFrame:
60
  """Gets the error data for the given tools and calculates the error percentage."""
61
  error_total = (
@@ -69,24 +41,6 @@ def get_error_data_overall_by_market(error_df: pd.DataFrame) -> pd.DataFrame:
69
  return error_total
70
 
71
 
72
- def plot_error_data(error_all_df: pd.DataFrame) -> gr.BarPlot:
73
- """Plots the error data for the given tools and calculates the error percentage."""
74
- return gr.BarPlot(
75
- value=error_all_df,
76
- x="request_month_year_week",
77
- y="error_perc",
78
- title="Error Percentage",
79
- x_title="Week",
80
- y_title="Error Percentage",
81
- show_label=True,
82
- interactive=True,
83
- show_actions_button=True,
84
- tooltip=["request_month_year_week", "error_perc"],
85
- height=HEIGHT,
86
- width=WIDTH,
87
- )
88
-
89
-
90
  def plot_error_data_by_market(error_all_df: pd.DataFrame) -> gr.Plot:
91
 
92
  # Sort the unique values of request_month_year_week
@@ -125,28 +79,6 @@ def plot_error_data_by_market(error_all_df: pd.DataFrame) -> gr.Plot:
125
  return gr.Plot(value=fig)
126
 
127
 
128
- def plot_tool_error_data(error_df: pd.DataFrame, tool: str) -> gr.BarPlot:
129
- """Plots the error data for the given tool."""
130
- error_tool = error_df[error_df["tool"] == tool]
131
- error_tool.columns = error_tool.columns.astype(str)
132
- error_tool["error_perc"] = error_tool["error_perc"].apply(lambda x: round(x, 4))
133
-
134
- return gr.BarPlot(
135
- title="Error Percentage",
136
- x_title="Week",
137
- y_title="Error Percentage %",
138
- show_label=True,
139
- interactive=True,
140
- show_actions_button=True,
141
- tooltip=["request_month_year_week", "error_perc"],
142
- value=error_tool,
143
- x="request_month_year_week",
144
- y="error_perc",
145
- height=HEIGHT,
146
- width=WIDTH,
147
- )
148
-
149
-
150
  def plot_tool_error_data_by_market(error_df: pd.DataFrame, tool: str) -> gr.Plot:
151
  error_tool = error_df[error_df["tool"] == tool]
152
  error_tool.columns = error_tool.columns.astype(str)
@@ -188,27 +120,6 @@ def plot_tool_error_data_by_market(error_df: pd.DataFrame, tool: str) -> gr.Plot
188
  return gr.Plot(value=fig)
189
 
190
 
191
- def plot_week_error_data(error_df: pd.DataFrame, week: str) -> gr.BarPlot:
192
- """Plots the error data for the given week."""
193
- error_week = error_df[error_df["request_month_year_week"] == week]
194
- error_week.columns = error_week.columns.astype(str)
195
- error_week["error_perc"] = error_week["error_perc"].apply(lambda x: round(x, 4))
196
- return gr.BarPlot(
197
- value=error_week,
198
- x="tool",
199
- y="error_perc",
200
- title="Error Percentage",
201
- x_title="Tool",
202
- y_title="Error Percentage",
203
- show_label=True,
204
- interactive=True,
205
- show_actions_button=True,
206
- tooltip=["tool", "error_perc"],
207
- height=HEIGHT,
208
- width=WIDTH,
209
- )
210
-
211
-
212
  def plot_week_error_data_by_market(error_df: pd.DataFrame, week: str) -> gr.Plot:
213
  error_week = error_df[error_df["request_month_year_week"] == week]
214
  error_week.columns = error_week.columns.astype(str)
 
9
  WIDTH = 1000
10
 
11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
  def get_error_data_by_market(
13
  tools_df: pd.DataFrame, inc_tools: List[str]
14
  ) -> pd.DataFrame:
 
28
  return error
29
 
30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31
  def get_error_data_overall_by_market(error_df: pd.DataFrame) -> pd.DataFrame:
32
  """Gets the error data for the given tools and calculates the error percentage."""
33
  error_total = (
 
41
  return error_total
42
 
43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44
  def plot_error_data_by_market(error_all_df: pd.DataFrame) -> gr.Plot:
45
 
46
  # Sort the unique values of request_month_year_week
 
79
  return gr.Plot(value=fig)
80
 
81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82
  def plot_tool_error_data_by_market(error_df: pd.DataFrame, tool: str) -> gr.Plot:
83
  error_tool = error_df[error_df["tool"] == tool]
84
  error_tool.columns = error_tool.columns.astype(str)
 
120
  return gr.Plot(value=fig)
121
 
122
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
123
  def plot_week_error_data_by_market(error_df: pd.DataFrame, week: str) -> gr.Plot:
124
  error_week = error_df[error_df["request_month_year_week"] == week]
125
  error_week.columns = error_week.columns.astype(str)
tabs/tool_win.py CHANGED
@@ -26,37 +26,6 @@ def prepare_tools(tools: pd.DataFrame) -> pd.DataFrame:
26
  return tools
27
 
28
 
29
- def get_tool_winning_rate(tools_df: pd.DataFrame, inc_tools: List[str]) -> pd.DataFrame:
30
- """Gets the tool winning rate data for the given tools and calculates the winning percentage."""
31
- tools_inc = tools_df[tools_df["tool"].isin(inc_tools)]
32
- # tools_inc['error'] = tools_inc.apply(set_error, axis=1)
33
- tools_non_error = tools_inc[tools_inc["error"] != 1]
34
- tools_non_error.loc[:, "currentAnswer"] = tools_non_error["currentAnswer"].replace(
35
- {"no": "No", "yes": "Yes"}
36
- )
37
- tools_non_error = tools_non_error[
38
- tools_non_error["currentAnswer"].isin(["Yes", "No"])
39
- ]
40
- tools_non_error = tools_non_error[tools_non_error["vote"].isin(["Yes", "No"])]
41
- tools_non_error["win"] = (
42
- tools_non_error["currentAnswer"] == tools_non_error["vote"]
43
- ).astype(int)
44
- tools_non_error.columns = tools_non_error.columns.astype(str)
45
- wins = (
46
- tools_non_error.groupby(["tool", "request_month_year_week", "win"])
47
- .size()
48
- .unstack()
49
- .fillna(0)
50
- )
51
- wins["win_perc"] = (wins[1] / (wins[0] + wins[1])) * 100
52
- wins.reset_index(inplace=True)
53
- wins["total_request"] = wins[0] + wins[1]
54
- wins.columns = wins.columns.astype(str)
55
- # Convert request_month_year_week to string and explicitly set type for Altair
56
- wins["request_month_year_week"] = wins["request_month_year_week"].astype(str)
57
- return wins
58
-
59
-
60
  def get_tool_winning_rate_by_market(
61
  tools_df: pd.DataFrame, inc_tools: List[str]
62
  ) -> pd.DataFrame:
@@ -91,17 +60,6 @@ def get_tool_winning_rate_by_market(
91
  return wins
92
 
93
 
94
- def get_overall_winning_rate(wins_df: pd.DataFrame) -> pd.DataFrame:
95
- """Gets the overall winning rate data for the given tools and calculates the winning percentage."""
96
- overall_wins = (
97
- wins_df.groupby("request_month_year_week")
98
- .agg({"0": "sum", "1": "sum", "win_perc": "mean", "total_request": "sum"})
99
- .rename(columns={"0": "losses", "1": "wins"})
100
- .reset_index()
101
- )
102
- return overall_wins
103
-
104
-
105
  def get_overall_winning_rate_by_market(wins_df: pd.DataFrame) -> pd.DataFrame:
106
  """Gets the overall winning rate data for the given tools and calculates the winning percentage."""
107
  overall_wins = (
@@ -113,26 +71,6 @@ def get_overall_winning_rate_by_market(wins_df: pd.DataFrame) -> pd.DataFrame:
113
  return overall_wins
114
 
115
 
116
- def plot_tool_winnings_overall(
117
- wins_df: pd.DataFrame, winning_selector: str = "win_perc"
118
- ) -> gr.BarPlot:
119
- """Plots the overall winning rate data for the given tools and calculates the winning percentage."""
120
- return gr.BarPlot(
121
- title="Winning Rate",
122
- x_title="Date",
123
- y_title=winning_selector,
124
- show_label=True,
125
- interactive=True,
126
- show_actions_button=True,
127
- tooltip=["request_month_year_week", winning_selector],
128
- value=wins_df,
129
- x="request_month_year_week",
130
- y=winning_selector,
131
- height=HEIGHT,
132
- width=WIDTH,
133
- )
134
-
135
-
136
  def sort_key(date_str):
137
  month, year_week = date_str.split("-")
138
  month_order = [
@@ -197,24 +135,6 @@ def integrated_plot_tool_winnings_overall_per_market_by_week(
197
  return gr.Plot(value=fig)
198
 
199
 
200
- def plot_tool_winnings_by_tool(wins_df: pd.DataFrame, tool: str) -> gr.BarPlot:
201
- """Plots the winning rate data for the given tool."""
202
- return gr.BarPlot(
203
- title="Winning Rate",
204
- x_title="Week",
205
- y_title="Winning Rate",
206
- x="request_month_year_week",
207
- y="win_perc",
208
- value=wins_df[wins_df["tool"] == tool],
209
- show_label=True,
210
- interactive=True,
211
- show_actions_button=True,
212
- tooltip=["request_month_year_week", "win_perc"],
213
- height=HEIGHT,
214
- width=WIDTH,
215
- )
216
-
217
-
218
  def integrated_tool_winnings_by_tool_per_market(
219
  wins_df: pd.DataFrame, tool: str
220
  ) -> gr.Plot:
 
26
  return tools
27
 
28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
  def get_tool_winning_rate_by_market(
30
  tools_df: pd.DataFrame, inc_tools: List[str]
31
  ) -> pd.DataFrame:
 
60
  return wins
61
 
62
 
 
 
 
 
 
 
 
 
 
 
 
63
  def get_overall_winning_rate_by_market(wins_df: pd.DataFrame) -> pd.DataFrame:
64
  """Gets the overall winning rate data for the given tools and calculates the winning percentage."""
65
  overall_wins = (
 
71
  return overall_wins
72
 
73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74
  def sort_key(date_str):
75
  month, year_week = date_str.split("-")
76
  month_order = [
 
135
  return gr.Plot(value=fig)
136
 
137
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
138
  def integrated_tool_winnings_by_tool_per_market(
139
  wins_df: pd.DataFrame, tool: str
140
  ) -> gr.Plot: