rosacastillo commited on
Commit
c61a1f8
·
1 Parent(s): 773af00

Adjusting tools accuracy graphs

Browse files
Files changed (3) hide show
  1. app.py +1 -1
  2. tabs/tool_accuracy.py +24 -3
  3. tabs/trades.py +0 -1
app.py CHANGED
@@ -381,7 +381,7 @@ with demo:
381
  )
382
  with gr.Row():
383
  gr.Markdown(
384
- "The data used for this metric is from the past two months. This metric is computed using both the tool accuracy and the volume of requests received by the tool"
385
  )
386
  with gr.Row():
387
  _ = plot_tools_weighted_accuracy_graph(tools_accuracy_info)
 
381
  )
382
  with gr.Row():
383
  gr.Markdown(
384
+ "The data used for this metric is from the past two months. This metric is computed using both the tool accuracy and the volume of requests received by the tool. The minimum value of this custom metric is 0 and the maximum value is 1. The higher the better is the tool."
385
  )
386
  with gr.Row():
387
  _ = plot_tools_weighted_accuracy_graph(tools_accuracy_info)
tabs/tool_accuracy.py CHANGED
@@ -8,6 +8,21 @@ VOLUME_FACTOR_REGULARIZATION = 0.5
8
  UNSCALED_WEIGHTED_ACCURACY_INTERVAL = (-0.5, 100.5)
9
  SCALED_WEIGHTED_ACCURACY_INTERVAL = (0, 1)
10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
 
12
  def scale_value(
13
  value: float,
@@ -56,8 +71,11 @@ def plot_tools_accuracy_graph(tools_accuracy_info: pd.DataFrame):
56
  y="tool",
57
  hue="tool",
58
  dodge=False,
59
- palette="viridis",
60
  )
 
 
 
61
  return gr.Plot(value=plot.get_figure())
62
 
63
 
@@ -66,7 +84,7 @@ def plot_tools_weighted_accuracy_graph(tools_accuracy_info: pd.DataFrame):
66
  by="weighted_accuracy", ascending=False
67
  )
68
  # Create the Seaborn bar plot
69
- sns.set_theme(palette="viridis")
70
  plt.figure(figsize=(25, 10))
71
  plot = sns.barplot(
72
  tools_accuracy_info,
@@ -74,6 +92,9 @@ def plot_tools_weighted_accuracy_graph(tools_accuracy_info: pd.DataFrame):
74
  y="tool",
75
  hue="tool",
76
  dodge=False,
 
77
  )
78
- # Display the plot using gr.Plot
 
 
79
  return gr.Plot(value=plot.get_figure())
 
8
  UNSCALED_WEIGHTED_ACCURACY_INTERVAL = (-0.5, 100.5)
9
  SCALED_WEIGHTED_ACCURACY_INTERVAL = (0, 1)
10
 
11
+ # tools palette as dictionary
12
+ tools_palette = {
13
+ "prediction-request-reasoning": "darkorchid",
14
+ "claude-prediction-offline": "rebeccapurple",
15
+ "prediction-request-reasoning-claude": "slateblue",
16
+ "prediction-request-rag-claude": "steelblue",
17
+ "prediction-online": "darkcyan",
18
+ "prediction-offline": "mediumaquamarine",
19
+ "claude-prediction-online": "mediumseagreen",
20
+ "prediction-online-sme": "yellowgreen",
21
+ "prediction-url-cot-claude": "gold",
22
+ "prediction-offline-sme": "orange",
23
+ "prediction-request-rag": "chocolate",
24
+ }
25
+
26
 
27
  def scale_value(
28
  value: float,
 
71
  y="tool",
72
  hue="tool",
73
  dodge=False,
74
+ palette=tools_palette,
75
  )
76
+ plt.xlabel("Mech tool_accuracy (%)", fontsize=20)
77
+ plt.ylabel("tool", fontsize=20)
78
+ plt.tick_params(axis="y", labelsize=12)
79
  return gr.Plot(value=plot.get_figure())
80
 
81
 
 
84
  by="weighted_accuracy", ascending=False
85
  )
86
  # Create the Seaborn bar plot
87
+ # sns.set_theme(palette="viridis")
88
  plt.figure(figsize=(25, 10))
89
  plot = sns.barplot(
90
  tools_accuracy_info,
 
92
  y="tool",
93
  hue="tool",
94
  dodge=False,
95
+ palette=tools_palette,
96
  )
97
+ plt.xlabel("Weighted accuracy metric", fontsize=20)
98
+ plt.ylabel("tool", fontsize=20)
99
+ plt.tick_params(axis="y", labelsize=12)
100
  return gr.Plot(value=plot.get_figure())
tabs/trades.py CHANGED
@@ -73,7 +73,6 @@ def get_overall_winning_by_market_trades(trades_df: pd.DataFrame) -> pd.DataFram
73
  winning_trades = winning_trades.reset_index()
74
  winning_trades.columns = winning_trades.columns.astype(str)
75
  winning_trades.columns = ["month_year_week", "market_creator", "winning_trade"]
76
- print(winning_trades.head())
77
  return winning_trades
78
 
79
 
 
73
  winning_trades = winning_trades.reset_index()
74
  winning_trades.columns = winning_trades.columns.astype(str)
75
  winning_trades.columns = ["month_year_week", "market_creator", "winning_trade"]
 
76
  return winning_trades
77
 
78