initial commit
Browse files- .gitattributes +8 -0
- .gitignore +160 -0
- app.py +311 -0
- contracts/new_mech_abi.json +718 -0
- contracts/old_mech_abi.json +605 -0
- data/all_trades_profitability.csv +3 -0
- data/delivers.csv +3 -0
- data/fpmmTrades.csv +3 -0
- data/fpmms.csv +3 -0
- data/requests.csv +3 -0
- data/summary_profitability.csv +3 -0
- data/t_map.pkl +3 -0
- data/tools.csv +3 -0
- nbs/test.ipynb +363 -0
- nbs/weekly_analysis.ipynb +0 -0
- requirements.txt +9 -0
- scripts/markets.py +227 -0
- scripts/profitability.py +633 -0
- scripts/pull_data.py +145 -0
- scripts/tools.py +765 -0
- tabs/about.py +6 -0
- tabs/error.py +90 -0
- tabs/tool_win.py +83 -0
- tabs/trades.py +198 -0
.gitattributes
CHANGED
@@ -3,6 +3,7 @@
|
|
3 |
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
|
|
6 |
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
*.h5 filter=lfs diff=lfs merge=lfs -text
|
@@ -33,3 +34,10 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.csv filter=lfs diff=lfs merge=lfs -text
|
7 |
*.ftz filter=lfs diff=lfs merge=lfs -text
|
8 |
*.gz filter=lfs diff=lfs merge=lfs -text
|
9 |
*.h5 filter=lfs diff=lfs merge=lfs -text
|
|
|
34 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
35 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
36 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
37 |
+
data/fpmmTrades.csv filter=lfs diff=lfs merge=lfs -text
|
38 |
+
data/fpmms.csv filter=lfs diff=lfs merge=lfs -text
|
39 |
+
data/requests.csv filter=lfs diff=lfs merge=lfs -text
|
40 |
+
data/summary_profitability.csv filter=lfs diff=lfs merge=lfs -text
|
41 |
+
data/tools.csv filter=lfs diff=lfs merge=lfs -text
|
42 |
+
data/all_trades_profitability.csv filter=lfs diff=lfs merge=lfs -text
|
43 |
+
data/delivers.csv filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Byte-compiled / optimized / DLL files
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
|
6 |
+
# C extensions
|
7 |
+
*.so
|
8 |
+
|
9 |
+
# Distribution / packaging
|
10 |
+
.Python
|
11 |
+
build/
|
12 |
+
develop-eggs/
|
13 |
+
dist/
|
14 |
+
downloads/
|
15 |
+
eggs/
|
16 |
+
.eggs/
|
17 |
+
lib/
|
18 |
+
lib64/
|
19 |
+
parts/
|
20 |
+
sdist/
|
21 |
+
var/
|
22 |
+
wheels/
|
23 |
+
share/python-wheels/
|
24 |
+
*.egg-info/
|
25 |
+
.installed.cfg
|
26 |
+
*.egg
|
27 |
+
MANIFEST
|
28 |
+
|
29 |
+
# PyInstaller
|
30 |
+
# Usually these files are written by a python script from a template
|
31 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
32 |
+
*.manifest
|
33 |
+
*.spec
|
34 |
+
|
35 |
+
# Installer logs
|
36 |
+
pip-log.txt
|
37 |
+
pip-delete-this-directory.txt
|
38 |
+
|
39 |
+
# Unit test / coverage reports
|
40 |
+
htmlcov/
|
41 |
+
.tox/
|
42 |
+
.nox/
|
43 |
+
.coverage
|
44 |
+
.coverage.*
|
45 |
+
.cache
|
46 |
+
nosetests.xml
|
47 |
+
coverage.xml
|
48 |
+
*.cover
|
49 |
+
*.py,cover
|
50 |
+
.hypothesis/
|
51 |
+
.pytest_cache/
|
52 |
+
cover/
|
53 |
+
|
54 |
+
# Translations
|
55 |
+
*.mo
|
56 |
+
*.pot
|
57 |
+
|
58 |
+
# Django stuff:
|
59 |
+
*.log
|
60 |
+
local_settings.py
|
61 |
+
db.sqlite3
|
62 |
+
db.sqlite3-journal
|
63 |
+
|
64 |
+
# Flask stuff:
|
65 |
+
instance/
|
66 |
+
.webassets-cache
|
67 |
+
|
68 |
+
# Scrapy stuff:
|
69 |
+
.scrapy
|
70 |
+
|
71 |
+
# Sphinx documentation
|
72 |
+
docs/_build/
|
73 |
+
|
74 |
+
# PyBuilder
|
75 |
+
.pybuilder/
|
76 |
+
target/
|
77 |
+
|
78 |
+
# Jupyter Notebook
|
79 |
+
.ipynb_checkpoints
|
80 |
+
|
81 |
+
# IPython
|
82 |
+
profile_default/
|
83 |
+
ipython_config.py
|
84 |
+
|
85 |
+
# pyenv
|
86 |
+
# For a library or package, you might want to ignore these files since the code is
|
87 |
+
# intended to run in multiple environments; otherwise, check them in:
|
88 |
+
# .python-version
|
89 |
+
|
90 |
+
# pipenv
|
91 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
92 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
93 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
94 |
+
# install all needed dependencies.
|
95 |
+
#Pipfile.lock
|
96 |
+
|
97 |
+
# poetry
|
98 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
99 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
100 |
+
# commonly ignored for libraries.
|
101 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
102 |
+
#poetry.lock
|
103 |
+
|
104 |
+
# pdm
|
105 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
106 |
+
#pdm.lock
|
107 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
108 |
+
# in version control.
|
109 |
+
# https://pdm.fming.dev/#use-with-ide
|
110 |
+
.pdm.toml
|
111 |
+
|
112 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
113 |
+
__pypackages__/
|
114 |
+
|
115 |
+
# Celery stuff
|
116 |
+
celerybeat-schedule
|
117 |
+
celerybeat.pid
|
118 |
+
|
119 |
+
# SageMath parsed files
|
120 |
+
*.sage.py
|
121 |
+
|
122 |
+
# Environments
|
123 |
+
.env
|
124 |
+
.venv
|
125 |
+
env/
|
126 |
+
venv/
|
127 |
+
ENV/
|
128 |
+
env.bak/
|
129 |
+
venv.bak/
|
130 |
+
|
131 |
+
# Spyder project settings
|
132 |
+
.spyderproject
|
133 |
+
.spyproject
|
134 |
+
|
135 |
+
# Rope project settings
|
136 |
+
.ropeproject
|
137 |
+
|
138 |
+
# mkdocs documentation
|
139 |
+
/site
|
140 |
+
|
141 |
+
# mypy
|
142 |
+
.mypy_cache/
|
143 |
+
.dmypy.json
|
144 |
+
dmypy.json
|
145 |
+
|
146 |
+
# Pyre type checker
|
147 |
+
.pyre/
|
148 |
+
|
149 |
+
# pytype static type analyzer
|
150 |
+
.pytype/
|
151 |
+
|
152 |
+
# Cython debug symbols
|
153 |
+
cython_debug/
|
154 |
+
|
155 |
+
# PyCharm
|
156 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
157 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
158 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
159 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
160 |
+
#.idea/
|
app.py
ADDED
@@ -0,0 +1,311 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import subprocess
|
2 |
+
import logging
|
3 |
+
import gradio as gr
|
4 |
+
import pandas as pd
|
5 |
+
from apscheduler.schedulers.background import BackgroundScheduler
|
6 |
+
from apscheduler.triggers.cron import CronTrigger
|
7 |
+
from pytz import utc
|
8 |
+
from tabs.trades import (
|
9 |
+
prepare_trades,
|
10 |
+
get_overall_trades,
|
11 |
+
get_overall_winning_trades,
|
12 |
+
plot_trades_by_week,
|
13 |
+
plot_winning_trades_by_week,
|
14 |
+
plot_trade_details
|
15 |
+
)
|
16 |
+
from tabs.tool_win import (
|
17 |
+
get_tool_winning_rate,
|
18 |
+
get_overall_winning_rate,
|
19 |
+
plot_tool_winnings_overall,
|
20 |
+
plot_tool_winnings_by_tool
|
21 |
+
)
|
22 |
+
from tabs.error import (
|
23 |
+
get_error_data,
|
24 |
+
get_error_data_overall,
|
25 |
+
plot_error_data,
|
26 |
+
plot_tool_error_data,
|
27 |
+
plot_week_error_data
|
28 |
+
)
|
29 |
+
from tabs.about import about_olas_predict
|
30 |
+
|
31 |
+
|
32 |
+
def refresh_data():
|
33 |
+
# Run the pull_data.py script and wait for it to finish
|
34 |
+
try:
|
35 |
+
result = subprocess.run(["python", "./scripts/pull_data.py"], check=True)
|
36 |
+
logging.info("Script executed successfully: %s", result)
|
37 |
+
except subprocess.CalledProcessError as e:
|
38 |
+
logging.error("Failed to run script: %s", e)
|
39 |
+
return # Stop execution if the script fails
|
40 |
+
|
41 |
+
# Reload dataframes
|
42 |
+
try:
|
43 |
+
global tools_df, trades_df, error_df, error_overall_df, winning_rate_df, winning_rate_overall_df, trades_count_df, trades_winning_rate_df
|
44 |
+
logging.info("Refreshing data...")
|
45 |
+
tools_df = pd.read_csv("./data/tools.csv", low_memory=False)
|
46 |
+
trades_df = pd.read_csv("./data/all_trades_profitability.csv")
|
47 |
+
trades_df = prepare_trades(trades_df)
|
48 |
+
error_df = get_error_data(tools_df=tools_df, inc_tools=INC_TOOLS)
|
49 |
+
error_overall_df = get_error_data_overall(error_df=error_df)
|
50 |
+
winning_rate_df = get_tool_winning_rate(tools_df=tools_df, inc_tools=INC_TOOLS)
|
51 |
+
winning_rate_overall_df = get_overall_winning_rate(wins_df=winning_rate_df)
|
52 |
+
trades_count_df = get_overall_trades(trades_df=trades_df)
|
53 |
+
trades_winning_rate_df = get_overall_winning_trades(trades_df=trades_df)
|
54 |
+
logging.info("Data refreshed.")
|
55 |
+
except Exception as e:
|
56 |
+
logging.error("Failed to refresh data: %s", e)
|
57 |
+
|
58 |
+
tools_df = pd.read_csv("./data/tools.csv", low_memory=False)
|
59 |
+
trades_df = pd.read_csv("./data/all_trades_profitability.csv")
|
60 |
+
trades_df = prepare_trades(trades_df)
|
61 |
+
|
62 |
+
demo = gr.Blocks()
|
63 |
+
|
64 |
+
INC_TOOLS = [
|
65 |
+
'prediction-online',
|
66 |
+
'prediction-offline',
|
67 |
+
'claude-prediction-online',
|
68 |
+
'claude-prediction-offline',
|
69 |
+
'prediction-offline-sme',
|
70 |
+
'prediction-online-sme',
|
71 |
+
'prediction-request-rag',
|
72 |
+
'prediction-request-reasoning',
|
73 |
+
'prediction-url-cot-claude',
|
74 |
+
'prediction-request-rag-claude',
|
75 |
+
'prediction-request-reasoning-claude'
|
76 |
+
]
|
77 |
+
|
78 |
+
|
79 |
+
# TOOLS DATA
|
80 |
+
error_df = get_error_data(
|
81 |
+
tools_df=tools_df,
|
82 |
+
inc_tools=INC_TOOLS
|
83 |
+
)
|
84 |
+
error_overall_df = get_error_data_overall(
|
85 |
+
error_df=error_df
|
86 |
+
)
|
87 |
+
winning_rate_df = get_tool_winning_rate(
|
88 |
+
tools_df=tools_df,
|
89 |
+
inc_tools=INC_TOOLS
|
90 |
+
)
|
91 |
+
winning_rate_overall_df = get_overall_winning_rate(
|
92 |
+
wins_df=winning_rate_df
|
93 |
+
)
|
94 |
+
trades_count_df = get_overall_trades(
|
95 |
+
trades_df=trades_df
|
96 |
+
)
|
97 |
+
trades_winning_rate_df = get_overall_winning_trades(
|
98 |
+
trades_df=trades_df
|
99 |
+
)
|
100 |
+
|
101 |
+
with demo:
|
102 |
+
gr.HTML("<h1>Olas Predict Actual Performance</h1>")
|
103 |
+
gr.Markdown("This app shows the actual performance of Olas Predict tools on the live market.")
|
104 |
+
|
105 |
+
with gr.Tabs():
|
106 |
+
with gr.TabItem("🔥Trades Dashboard"):
|
107 |
+
with gr.Row():
|
108 |
+
gr.Markdown("# Plot of number of trades by week")
|
109 |
+
with gr.Row():
|
110 |
+
plot_trades_by_week = plot_trades_by_week(
|
111 |
+
trades_df=trades_count_df
|
112 |
+
)
|
113 |
+
with gr.Row():
|
114 |
+
gr.Markdown("# Plot of winning trades by week")
|
115 |
+
with gr.Row():
|
116 |
+
plot_winning_trades_by_week = plot_winning_trades_by_week(
|
117 |
+
trades_df=trades_winning_rate_df
|
118 |
+
)
|
119 |
+
with gr.Row():
|
120 |
+
gr.Markdown("# Plot of trade details")
|
121 |
+
with gr.Row():
|
122 |
+
trade_details_selector = gr.Dropdown(
|
123 |
+
label="Select a trade",
|
124 |
+
choices=[
|
125 |
+
"mech calls",
|
126 |
+
"collateral amount",
|
127 |
+
"earnings",
|
128 |
+
"net earnings",
|
129 |
+
"ROI"
|
130 |
+
],
|
131 |
+
value="mech calls"
|
132 |
+
)
|
133 |
+
with gr.Row():
|
134 |
+
trade_details_plot = plot_trade_details(
|
135 |
+
trade_detail="mech calls",
|
136 |
+
trades_df=trades_df
|
137 |
+
)
|
138 |
+
|
139 |
+
def update_trade_details(trade_detail):
|
140 |
+
return plot_trade_details(
|
141 |
+
trade_detail=trade_detail,
|
142 |
+
trades_df=trades_df
|
143 |
+
)
|
144 |
+
|
145 |
+
trade_details_selector.change(
|
146 |
+
update_trade_details,
|
147 |
+
inputs=trade_details_selector,
|
148 |
+
outputs=trade_details_plot
|
149 |
+
)
|
150 |
+
|
151 |
+
with gr.Row():
|
152 |
+
trade_details_selector
|
153 |
+
with gr.Row():
|
154 |
+
trade_details_plot
|
155 |
+
|
156 |
+
with gr.TabItem("🚀 Tool Winning Dashboard"):
|
157 |
+
with gr.Row():
|
158 |
+
gr.Markdown("# Plot showing overall winning rate")
|
159 |
+
|
160 |
+
with gr.Row():
|
161 |
+
winning_selector = gr.Dropdown(
|
162 |
+
label="Select Metric",
|
163 |
+
choices=['losses', 'wins', 'total_request', 'win_perc'],
|
164 |
+
value='win_perc',
|
165 |
+
)
|
166 |
+
|
167 |
+
with gr.Row():
|
168 |
+
winning_plot = plot_tool_winnings_overall(
|
169 |
+
wins_df=winning_rate_overall_df,
|
170 |
+
winning_selector="win_perc"
|
171 |
+
)
|
172 |
+
|
173 |
+
def update_tool_winnings_overall_plot(winning_selector):
|
174 |
+
return plot_tool_winnings_overall(
|
175 |
+
wins_df=winning_rate_overall_df,
|
176 |
+
winning_selector=winning_selector
|
177 |
+
)
|
178 |
+
|
179 |
+
winning_selector.change(
|
180 |
+
update_tool_winnings_overall_plot,
|
181 |
+
inputs=winning_selector,
|
182 |
+
outputs=winning_plot
|
183 |
+
)
|
184 |
+
|
185 |
+
with gr.Row():
|
186 |
+
winning_selector
|
187 |
+
with gr.Row():
|
188 |
+
winning_plot
|
189 |
+
|
190 |
+
with gr.Row():
|
191 |
+
gr.Markdown("# Plot showing winning rate by tool")
|
192 |
+
|
193 |
+
with gr.Row():
|
194 |
+
sel_tool = gr.Dropdown(
|
195 |
+
label="Select a tool",
|
196 |
+
choices=INC_TOOLS,
|
197 |
+
value=INC_TOOLS[0]
|
198 |
+
)
|
199 |
+
|
200 |
+
with gr.Row():
|
201 |
+
plot_tool_win_rate = plot_tool_winnings_by_tool(
|
202 |
+
wins_df=winning_rate_df,
|
203 |
+
tool=INC_TOOLS[0]
|
204 |
+
)
|
205 |
+
|
206 |
+
def update_tool_winnings_by_tool_plot(tool):
|
207 |
+
return plot_tool_winnings_by_tool(
|
208 |
+
wins_df=winning_rate_df,
|
209 |
+
tool=tool
|
210 |
+
)
|
211 |
+
|
212 |
+
sel_tool.change(
|
213 |
+
update_tool_winnings_by_tool_plot,
|
214 |
+
inputs=sel_tool,
|
215 |
+
outputs=plot_tool_win_rate
|
216 |
+
)
|
217 |
+
|
218 |
+
with gr.Row():
|
219 |
+
sel_tool
|
220 |
+
with gr.Row():
|
221 |
+
plot_tool_win_rate
|
222 |
+
|
223 |
+
with gr.TabItem("🏥 Tool Error Dashboard"):
|
224 |
+
with gr.Row():
|
225 |
+
gr.Markdown("# Plot showing overall error")
|
226 |
+
with gr.Row():
|
227 |
+
plot_error_data(
|
228 |
+
error_all_df=error_overall_df
|
229 |
+
)
|
230 |
+
with gr.Row():
|
231 |
+
gr.Markdown("# Plot showing error by tool")
|
232 |
+
with gr.Row():
|
233 |
+
sel_tool = gr.Dropdown(
|
234 |
+
label="Select a tool",
|
235 |
+
choices=INC_TOOLS,
|
236 |
+
value=INC_TOOLS[0]
|
237 |
+
)
|
238 |
+
|
239 |
+
with gr.Row():
|
240 |
+
plot_tool_error = plot_tool_error_data(
|
241 |
+
error_df=error_df,
|
242 |
+
tool=INC_TOOLS[0]
|
243 |
+
)
|
244 |
+
|
245 |
+
|
246 |
+
def update_tool_error_plot(tool):
|
247 |
+
return plot_tool_error_data(
|
248 |
+
error_df=error_df,
|
249 |
+
tool=tool
|
250 |
+
)
|
251 |
+
|
252 |
+
sel_tool.change(
|
253 |
+
update_tool_error_plot,
|
254 |
+
inputs=sel_tool,
|
255 |
+
outputs=plot_tool_error
|
256 |
+
)
|
257 |
+
with gr.Row():
|
258 |
+
sel_tool
|
259 |
+
with gr.Row():
|
260 |
+
plot_tool_error
|
261 |
+
|
262 |
+
with gr.Row():
|
263 |
+
gr.Markdown("# Plot showing error by week")
|
264 |
+
|
265 |
+
with gr.Row():
|
266 |
+
choices = error_overall_df['request_month_year_week'].unique().tolist()
|
267 |
+
# sort the choices by the latest week to be on the top
|
268 |
+
choices = sorted(choices)
|
269 |
+
sel_week = gr.Dropdown(
|
270 |
+
label="Select a week",
|
271 |
+
choices=choices,
|
272 |
+
value=choices[-1]
|
273 |
+
)
|
274 |
+
|
275 |
+
with gr.Row():
|
276 |
+
plot_week_error = plot_week_error_data(
|
277 |
+
error_df=error_df,
|
278 |
+
week=choices[-1]
|
279 |
+
)
|
280 |
+
|
281 |
+
def update_week_error_plot(selected_week):
|
282 |
+
return plot_week_error_data(
|
283 |
+
error_df=error_df,
|
284 |
+
week=selected_week
|
285 |
+
)
|
286 |
+
|
287 |
+
sel_tool.change(update_tool_error_plot, inputs=sel_tool, outputs=plot_tool_error)
|
288 |
+
sel_week.change(update_week_error_plot, inputs=sel_week, outputs=plot_week_error)
|
289 |
+
|
290 |
+
with gr.Row():
|
291 |
+
sel_tool
|
292 |
+
with gr.Row():
|
293 |
+
plot_tool_error
|
294 |
+
with gr.Row():
|
295 |
+
sel_week
|
296 |
+
with gr.Row():
|
297 |
+
plot_week_error
|
298 |
+
|
299 |
+
with gr.TabItem("ℹ️ About"):
|
300 |
+
with gr.Accordion("About Olas Predict"):
|
301 |
+
gr.Markdown(about_olas_predict)
|
302 |
+
|
303 |
+
# Create the scheduler
|
304 |
+
scheduler = BackgroundScheduler(timezone=utc)
|
305 |
+
scheduler.add_job(refresh_data, CronTrigger(hour=0, minute=0)) # Runs daily at 12 AM UTC
|
306 |
+
scheduler.start()
|
307 |
+
# scheduler = BackgroundScheduler(timezone=utc)
|
308 |
+
# scheduler.add_job(refresh_data, CronTrigger(hour='*')) # Runs every hour
|
309 |
+
# scheduler.start()
|
310 |
+
|
311 |
+
demo.queue(default_concurrency_limit=40).launch()
|
contracts/new_mech_abi.json
ADDED
@@ -0,0 +1,718 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"inputs": [
|
4 |
+
{
|
5 |
+
"internalType": "address",
|
6 |
+
"name": "_token",
|
7 |
+
"type": "address"
|
8 |
+
},
|
9 |
+
{
|
10 |
+
"internalType": "uint256",
|
11 |
+
"name": "_tokenId",
|
12 |
+
"type": "uint256"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"internalType": "uint256",
|
16 |
+
"name": "_price",
|
17 |
+
"type": "uint256"
|
18 |
+
}
|
19 |
+
],
|
20 |
+
"stateMutability": "nonpayable",
|
21 |
+
"type": "constructor"
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"inputs": [
|
25 |
+
{
|
26 |
+
"internalType": "uint256",
|
27 |
+
"name": "agentId",
|
28 |
+
"type": "uint256"
|
29 |
+
}
|
30 |
+
],
|
31 |
+
"name": "AgentNotFound",
|
32 |
+
"type": "error"
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"inputs": [
|
36 |
+
{
|
37 |
+
"internalType": "uint256",
|
38 |
+
"name": "provided",
|
39 |
+
"type": "uint256"
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"internalType": "uint256",
|
43 |
+
"name": "expected",
|
44 |
+
"type": "uint256"
|
45 |
+
}
|
46 |
+
],
|
47 |
+
"name": "NotEnoughPaid",
|
48 |
+
"type": "error"
|
49 |
+
},
|
50 |
+
{
|
51 |
+
"inputs": [
|
52 |
+
{
|
53 |
+
"internalType": "uint256",
|
54 |
+
"name": "provided",
|
55 |
+
"type": "uint256"
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"internalType": "uint256",
|
59 |
+
"name": "max",
|
60 |
+
"type": "uint256"
|
61 |
+
}
|
62 |
+
],
|
63 |
+
"name": "Overflow",
|
64 |
+
"type": "error"
|
65 |
+
},
|
66 |
+
{
|
67 |
+
"inputs": [
|
68 |
+
{
|
69 |
+
"internalType": "uint256",
|
70 |
+
"name": "requestId",
|
71 |
+
"type": "uint256"
|
72 |
+
}
|
73 |
+
],
|
74 |
+
"name": "RequestIdNotFound",
|
75 |
+
"type": "error"
|
76 |
+
},
|
77 |
+
{
|
78 |
+
"inputs": [],
|
79 |
+
"name": "ZeroAddress",
|
80 |
+
"type": "error"
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"anonymous": false,
|
84 |
+
"inputs": [
|
85 |
+
{
|
86 |
+
"indexed": true,
|
87 |
+
"internalType": "address",
|
88 |
+
"name": "sender",
|
89 |
+
"type": "address"
|
90 |
+
},
|
91 |
+
{
|
92 |
+
"indexed": false,
|
93 |
+
"internalType": "uint256",
|
94 |
+
"name": "requestId",
|
95 |
+
"type": "uint256"
|
96 |
+
},
|
97 |
+
{
|
98 |
+
"indexed": false,
|
99 |
+
"internalType": "bytes",
|
100 |
+
"name": "data",
|
101 |
+
"type": "bytes"
|
102 |
+
}
|
103 |
+
],
|
104 |
+
"name": "Deliver",
|
105 |
+
"type": "event"
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"anonymous": false,
|
109 |
+
"inputs": [
|
110 |
+
{
|
111 |
+
"indexed": false,
|
112 |
+
"internalType": "uint256",
|
113 |
+
"name": "price",
|
114 |
+
"type": "uint256"
|
115 |
+
}
|
116 |
+
],
|
117 |
+
"name": "PriceUpdated",
|
118 |
+
"type": "event"
|
119 |
+
},
|
120 |
+
{
|
121 |
+
"anonymous": false,
|
122 |
+
"inputs": [
|
123 |
+
{
|
124 |
+
"indexed": true,
|
125 |
+
"internalType": "address",
|
126 |
+
"name": "sender",
|
127 |
+
"type": "address"
|
128 |
+
},
|
129 |
+
{
|
130 |
+
"indexed": false,
|
131 |
+
"internalType": "uint256",
|
132 |
+
"name": "requestId",
|
133 |
+
"type": "uint256"
|
134 |
+
},
|
135 |
+
{
|
136 |
+
"indexed": false,
|
137 |
+
"internalType": "bytes",
|
138 |
+
"name": "data",
|
139 |
+
"type": "bytes"
|
140 |
+
}
|
141 |
+
],
|
142 |
+
"name": "Request",
|
143 |
+
"type": "event"
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"inputs": [
|
147 |
+
{
|
148 |
+
"internalType": "uint256",
|
149 |
+
"name": "requestId",
|
150 |
+
"type": "uint256"
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"internalType": "bytes",
|
154 |
+
"name": "data",
|
155 |
+
"type": "bytes"
|
156 |
+
}
|
157 |
+
],
|
158 |
+
"name": "deliver",
|
159 |
+
"outputs": [],
|
160 |
+
"stateMutability": "nonpayable",
|
161 |
+
"type": "function"
|
162 |
+
},
|
163 |
+
{
|
164 |
+
"inputs": [],
|
165 |
+
"name": "entryPoint",
|
166 |
+
"outputs": [
|
167 |
+
{
|
168 |
+
"internalType": "contract IEntryPoint",
|
169 |
+
"name": "",
|
170 |
+
"type": "address"
|
171 |
+
}
|
172 |
+
],
|
173 |
+
"stateMutability": "view",
|
174 |
+
"type": "function"
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"inputs": [
|
178 |
+
{
|
179 |
+
"internalType": "address",
|
180 |
+
"name": "to",
|
181 |
+
"type": "address"
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"internalType": "uint256",
|
185 |
+
"name": "value",
|
186 |
+
"type": "uint256"
|
187 |
+
},
|
188 |
+
{
|
189 |
+
"internalType": "bytes",
|
190 |
+
"name": "data",
|
191 |
+
"type": "bytes"
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"internalType": "enum Enum.Operation",
|
195 |
+
"name": "operation",
|
196 |
+
"type": "uint8"
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"internalType": "uint256",
|
200 |
+
"name": "txGas",
|
201 |
+
"type": "uint256"
|
202 |
+
}
|
203 |
+
],
|
204 |
+
"name": "exec",
|
205 |
+
"outputs": [
|
206 |
+
{
|
207 |
+
"internalType": "bytes",
|
208 |
+
"name": "returnData",
|
209 |
+
"type": "bytes"
|
210 |
+
}
|
211 |
+
],
|
212 |
+
"stateMutability": "nonpayable",
|
213 |
+
"type": "function"
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"inputs": [
|
217 |
+
{
|
218 |
+
"internalType": "address",
|
219 |
+
"name": "account",
|
220 |
+
"type": "address"
|
221 |
+
},
|
222 |
+
{
|
223 |
+
"internalType": "bytes",
|
224 |
+
"name": "data",
|
225 |
+
"type": "bytes"
|
226 |
+
}
|
227 |
+
],
|
228 |
+
"name": "getRequestId",
|
229 |
+
"outputs": [
|
230 |
+
{
|
231 |
+
"internalType": "uint256",
|
232 |
+
"name": "requestId",
|
233 |
+
"type": "uint256"
|
234 |
+
}
|
235 |
+
],
|
236 |
+
"stateMutability": "pure",
|
237 |
+
"type": "function"
|
238 |
+
},
|
239 |
+
{
|
240 |
+
"inputs": [
|
241 |
+
{
|
242 |
+
"internalType": "address",
|
243 |
+
"name": "account",
|
244 |
+
"type": "address"
|
245 |
+
}
|
246 |
+
],
|
247 |
+
"name": "getRequestsCount",
|
248 |
+
"outputs": [
|
249 |
+
{
|
250 |
+
"internalType": "uint256",
|
251 |
+
"name": "requestsCount",
|
252 |
+
"type": "uint256"
|
253 |
+
}
|
254 |
+
],
|
255 |
+
"stateMutability": "view",
|
256 |
+
"type": "function"
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"inputs": [
|
260 |
+
{
|
261 |
+
"internalType": "uint256",
|
262 |
+
"name": "size",
|
263 |
+
"type": "uint256"
|
264 |
+
},
|
265 |
+
{
|
266 |
+
"internalType": "uint256",
|
267 |
+
"name": "offset",
|
268 |
+
"type": "uint256"
|
269 |
+
}
|
270 |
+
],
|
271 |
+
"name": "getUndeliveredRequestIds",
|
272 |
+
"outputs": [
|
273 |
+
{
|
274 |
+
"internalType": "uint256[]",
|
275 |
+
"name": "requestIds",
|
276 |
+
"type": "uint256[]"
|
277 |
+
}
|
278 |
+
],
|
279 |
+
"stateMutability": "view",
|
280 |
+
"type": "function"
|
281 |
+
},
|
282 |
+
{
|
283 |
+
"inputs": [
|
284 |
+
{
|
285 |
+
"internalType": "address",
|
286 |
+
"name": "signer",
|
287 |
+
"type": "address"
|
288 |
+
}
|
289 |
+
],
|
290 |
+
"name": "isOperator",
|
291 |
+
"outputs": [
|
292 |
+
{
|
293 |
+
"internalType": "bool",
|
294 |
+
"name": "",
|
295 |
+
"type": "bool"
|
296 |
+
}
|
297 |
+
],
|
298 |
+
"stateMutability": "view",
|
299 |
+
"type": "function"
|
300 |
+
},
|
301 |
+
{
|
302 |
+
"inputs": [
|
303 |
+
{
|
304 |
+
"internalType": "bytes32",
|
305 |
+
"name": "hash",
|
306 |
+
"type": "bytes32"
|
307 |
+
},
|
308 |
+
{
|
309 |
+
"internalType": "bytes",
|
310 |
+
"name": "signature",
|
311 |
+
"type": "bytes"
|
312 |
+
}
|
313 |
+
],
|
314 |
+
"name": "isValidSignature",
|
315 |
+
"outputs": [
|
316 |
+
{
|
317 |
+
"internalType": "bytes4",
|
318 |
+
"name": "magicValue",
|
319 |
+
"type": "bytes4"
|
320 |
+
}
|
321 |
+
],
|
322 |
+
"stateMutability": "view",
|
323 |
+
"type": "function"
|
324 |
+
},
|
325 |
+
{
|
326 |
+
"inputs": [
|
327 |
+
{
|
328 |
+
"internalType": "uint256",
|
329 |
+
"name": "",
|
330 |
+
"type": "uint256"
|
331 |
+
},
|
332 |
+
{
|
333 |
+
"internalType": "uint256",
|
334 |
+
"name": "",
|
335 |
+
"type": "uint256"
|
336 |
+
}
|
337 |
+
],
|
338 |
+
"name": "mapRequestIds",
|
339 |
+
"outputs": [
|
340 |
+
{
|
341 |
+
"internalType": "uint256",
|
342 |
+
"name": "",
|
343 |
+
"type": "uint256"
|
344 |
+
}
|
345 |
+
],
|
346 |
+
"stateMutability": "view",
|
347 |
+
"type": "function"
|
348 |
+
},
|
349 |
+
{
|
350 |
+
"inputs": [
|
351 |
+
{
|
352 |
+
"internalType": "address",
|
353 |
+
"name": "",
|
354 |
+
"type": "address"
|
355 |
+
}
|
356 |
+
],
|
357 |
+
"name": "mapRequestsCounts",
|
358 |
+
"outputs": [
|
359 |
+
{
|
360 |
+
"internalType": "uint256",
|
361 |
+
"name": "",
|
362 |
+
"type": "uint256"
|
363 |
+
}
|
364 |
+
],
|
365 |
+
"stateMutability": "view",
|
366 |
+
"type": "function"
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"inputs": [],
|
370 |
+
"name": "nonce",
|
371 |
+
"outputs": [
|
372 |
+
{
|
373 |
+
"internalType": "uint256",
|
374 |
+
"name": "",
|
375 |
+
"type": "uint256"
|
376 |
+
}
|
377 |
+
],
|
378 |
+
"stateMutability": "view",
|
379 |
+
"type": "function"
|
380 |
+
},
|
381 |
+
{
|
382 |
+
"inputs": [],
|
383 |
+
"name": "numUndeliveredRequests",
|
384 |
+
"outputs": [
|
385 |
+
{
|
386 |
+
"internalType": "uint256",
|
387 |
+
"name": "",
|
388 |
+
"type": "uint256"
|
389 |
+
}
|
390 |
+
],
|
391 |
+
"stateMutability": "view",
|
392 |
+
"type": "function"
|
393 |
+
},
|
394 |
+
{
|
395 |
+
"inputs": [
|
396 |
+
{
|
397 |
+
"internalType": "address",
|
398 |
+
"name": "",
|
399 |
+
"type": "address"
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"internalType": "address",
|
403 |
+
"name": "",
|
404 |
+
"type": "address"
|
405 |
+
},
|
406 |
+
{
|
407 |
+
"internalType": "uint256[]",
|
408 |
+
"name": "",
|
409 |
+
"type": "uint256[]"
|
410 |
+
},
|
411 |
+
{
|
412 |
+
"internalType": "uint256[]",
|
413 |
+
"name": "",
|
414 |
+
"type": "uint256[]"
|
415 |
+
},
|
416 |
+
{
|
417 |
+
"internalType": "bytes",
|
418 |
+
"name": "",
|
419 |
+
"type": "bytes"
|
420 |
+
}
|
421 |
+
],
|
422 |
+
"name": "onERC1155BatchReceived",
|
423 |
+
"outputs": [
|
424 |
+
{
|
425 |
+
"internalType": "bytes4",
|
426 |
+
"name": "",
|
427 |
+
"type": "bytes4"
|
428 |
+
}
|
429 |
+
],
|
430 |
+
"stateMutability": "pure",
|
431 |
+
"type": "function"
|
432 |
+
},
|
433 |
+
{
|
434 |
+
"inputs": [
|
435 |
+
{
|
436 |
+
"internalType": "address",
|
437 |
+
"name": "",
|
438 |
+
"type": "address"
|
439 |
+
},
|
440 |
+
{
|
441 |
+
"internalType": "address",
|
442 |
+
"name": "",
|
443 |
+
"type": "address"
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"internalType": "uint256",
|
447 |
+
"name": "",
|
448 |
+
"type": "uint256"
|
449 |
+
},
|
450 |
+
{
|
451 |
+
"internalType": "uint256",
|
452 |
+
"name": "",
|
453 |
+
"type": "uint256"
|
454 |
+
},
|
455 |
+
{
|
456 |
+
"internalType": "bytes",
|
457 |
+
"name": "",
|
458 |
+
"type": "bytes"
|
459 |
+
}
|
460 |
+
],
|
461 |
+
"name": "onERC1155Received",
|
462 |
+
"outputs": [
|
463 |
+
{
|
464 |
+
"internalType": "bytes4",
|
465 |
+
"name": "",
|
466 |
+
"type": "bytes4"
|
467 |
+
}
|
468 |
+
],
|
469 |
+
"stateMutability": "pure",
|
470 |
+
"type": "function"
|
471 |
+
},
|
472 |
+
{
|
473 |
+
"inputs": [
|
474 |
+
{
|
475 |
+
"internalType": "address",
|
476 |
+
"name": "",
|
477 |
+
"type": "address"
|
478 |
+
},
|
479 |
+
{
|
480 |
+
"internalType": "address",
|
481 |
+
"name": "",
|
482 |
+
"type": "address"
|
483 |
+
},
|
484 |
+
{
|
485 |
+
"internalType": "uint256",
|
486 |
+
"name": "",
|
487 |
+
"type": "uint256"
|
488 |
+
},
|
489 |
+
{
|
490 |
+
"internalType": "bytes",
|
491 |
+
"name": "",
|
492 |
+
"type": "bytes"
|
493 |
+
}
|
494 |
+
],
|
495 |
+
"name": "onERC721Received",
|
496 |
+
"outputs": [
|
497 |
+
{
|
498 |
+
"internalType": "bytes4",
|
499 |
+
"name": "",
|
500 |
+
"type": "bytes4"
|
501 |
+
}
|
502 |
+
],
|
503 |
+
"stateMutability": "pure",
|
504 |
+
"type": "function"
|
505 |
+
},
|
506 |
+
{
|
507 |
+
"inputs": [],
|
508 |
+
"name": "price",
|
509 |
+
"outputs": [
|
510 |
+
{
|
511 |
+
"internalType": "uint256",
|
512 |
+
"name": "",
|
513 |
+
"type": "uint256"
|
514 |
+
}
|
515 |
+
],
|
516 |
+
"stateMutability": "view",
|
517 |
+
"type": "function"
|
518 |
+
},
|
519 |
+
{
|
520 |
+
"inputs": [
|
521 |
+
{
|
522 |
+
"internalType": "bytes",
|
523 |
+
"name": "data",
|
524 |
+
"type": "bytes"
|
525 |
+
}
|
526 |
+
],
|
527 |
+
"name": "request",
|
528 |
+
"outputs": [
|
529 |
+
{
|
530 |
+
"internalType": "uint256",
|
531 |
+
"name": "requestId",
|
532 |
+
"type": "uint256"
|
533 |
+
}
|
534 |
+
],
|
535 |
+
"stateMutability": "payable",
|
536 |
+
"type": "function"
|
537 |
+
},
|
538 |
+
{
|
539 |
+
"inputs": [
|
540 |
+
{
|
541 |
+
"internalType": "uint256",
|
542 |
+
"name": "newPrice",
|
543 |
+
"type": "uint256"
|
544 |
+
}
|
545 |
+
],
|
546 |
+
"name": "setPrice",
|
547 |
+
"outputs": [],
|
548 |
+
"stateMutability": "nonpayable",
|
549 |
+
"type": "function"
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"inputs": [
|
553 |
+
{
|
554 |
+
"internalType": "bytes",
|
555 |
+
"name": "initParams",
|
556 |
+
"type": "bytes"
|
557 |
+
}
|
558 |
+
],
|
559 |
+
"name": "setUp",
|
560 |
+
"outputs": [],
|
561 |
+
"stateMutability": "nonpayable",
|
562 |
+
"type": "function"
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"inputs": [],
|
566 |
+
"name": "token",
|
567 |
+
"outputs": [
|
568 |
+
{
|
569 |
+
"internalType": "contract IERC721",
|
570 |
+
"name": "",
|
571 |
+
"type": "address"
|
572 |
+
}
|
573 |
+
],
|
574 |
+
"stateMutability": "view",
|
575 |
+
"type": "function"
|
576 |
+
},
|
577 |
+
{
|
578 |
+
"inputs": [],
|
579 |
+
"name": "tokenId",
|
580 |
+
"outputs": [
|
581 |
+
{
|
582 |
+
"internalType": "uint256",
|
583 |
+
"name": "",
|
584 |
+
"type": "uint256"
|
585 |
+
}
|
586 |
+
],
|
587 |
+
"stateMutability": "view",
|
588 |
+
"type": "function"
|
589 |
+
},
|
590 |
+
{
|
591 |
+
"inputs": [
|
592 |
+
{
|
593 |
+
"internalType": "address",
|
594 |
+
"name": "",
|
595 |
+
"type": "address"
|
596 |
+
},
|
597 |
+
{
|
598 |
+
"internalType": "address",
|
599 |
+
"name": "",
|
600 |
+
"type": "address"
|
601 |
+
},
|
602 |
+
{
|
603 |
+
"internalType": "address",
|
604 |
+
"name": "",
|
605 |
+
"type": "address"
|
606 |
+
},
|
607 |
+
{
|
608 |
+
"internalType": "uint256",
|
609 |
+
"name": "",
|
610 |
+
"type": "uint256"
|
611 |
+
},
|
612 |
+
{
|
613 |
+
"internalType": "bytes",
|
614 |
+
"name": "",
|
615 |
+
"type": "bytes"
|
616 |
+
},
|
617 |
+
{
|
618 |
+
"internalType": "bytes",
|
619 |
+
"name": "",
|
620 |
+
"type": "bytes"
|
621 |
+
}
|
622 |
+
],
|
623 |
+
"name": "tokensReceived",
|
624 |
+
"outputs": [],
|
625 |
+
"stateMutability": "pure",
|
626 |
+
"type": "function"
|
627 |
+
},
|
628 |
+
{
|
629 |
+
"inputs": [
|
630 |
+
{
|
631 |
+
"components": [
|
632 |
+
{
|
633 |
+
"internalType": "address",
|
634 |
+
"name": "sender",
|
635 |
+
"type": "address"
|
636 |
+
},
|
637 |
+
{
|
638 |
+
"internalType": "uint256",
|
639 |
+
"name": "nonce",
|
640 |
+
"type": "uint256"
|
641 |
+
},
|
642 |
+
{
|
643 |
+
"internalType": "bytes",
|
644 |
+
"name": "initCode",
|
645 |
+
"type": "bytes"
|
646 |
+
},
|
647 |
+
{
|
648 |
+
"internalType": "bytes",
|
649 |
+
"name": "callData",
|
650 |
+
"type": "bytes"
|
651 |
+
},
|
652 |
+
{
|
653 |
+
"internalType": "uint256",
|
654 |
+
"name": "callGasLimit",
|
655 |
+
"type": "uint256"
|
656 |
+
},
|
657 |
+
{
|
658 |
+
"internalType": "uint256",
|
659 |
+
"name": "verificationGasLimit",
|
660 |
+
"type": "uint256"
|
661 |
+
},
|
662 |
+
{
|
663 |
+
"internalType": "uint256",
|
664 |
+
"name": "preVerificationGas",
|
665 |
+
"type": "uint256"
|
666 |
+
},
|
667 |
+
{
|
668 |
+
"internalType": "uint256",
|
669 |
+
"name": "maxFeePerGas",
|
670 |
+
"type": "uint256"
|
671 |
+
},
|
672 |
+
{
|
673 |
+
"internalType": "uint256",
|
674 |
+
"name": "maxPriorityFeePerGas",
|
675 |
+
"type": "uint256"
|
676 |
+
},
|
677 |
+
{
|
678 |
+
"internalType": "bytes",
|
679 |
+
"name": "paymasterAndData",
|
680 |
+
"type": "bytes"
|
681 |
+
},
|
682 |
+
{
|
683 |
+
"internalType": "bytes",
|
684 |
+
"name": "signature",
|
685 |
+
"type": "bytes"
|
686 |
+
}
|
687 |
+
],
|
688 |
+
"internalType": "struct UserOperation",
|
689 |
+
"name": "userOp",
|
690 |
+
"type": "tuple"
|
691 |
+
},
|
692 |
+
{
|
693 |
+
"internalType": "bytes32",
|
694 |
+
"name": "userOpHash",
|
695 |
+
"type": "bytes32"
|
696 |
+
},
|
697 |
+
{
|
698 |
+
"internalType": "uint256",
|
699 |
+
"name": "missingAccountFunds",
|
700 |
+
"type": "uint256"
|
701 |
+
}
|
702 |
+
],
|
703 |
+
"name": "validateUserOp",
|
704 |
+
"outputs": [
|
705 |
+
{
|
706 |
+
"internalType": "uint256",
|
707 |
+
"name": "validationData",
|
708 |
+
"type": "uint256"
|
709 |
+
}
|
710 |
+
],
|
711 |
+
"stateMutability": "nonpayable",
|
712 |
+
"type": "function"
|
713 |
+
},
|
714 |
+
{
|
715 |
+
"stateMutability": "payable",
|
716 |
+
"type": "receive"
|
717 |
+
}
|
718 |
+
]
|
contracts/old_mech_abi.json
ADDED
@@ -0,0 +1,605 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"inputs": [
|
4 |
+
{
|
5 |
+
"internalType": "address",
|
6 |
+
"name": "_token",
|
7 |
+
"type": "address"
|
8 |
+
},
|
9 |
+
{
|
10 |
+
"internalType": "uint256",
|
11 |
+
"name": "_tokenId",
|
12 |
+
"type": "uint256"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"internalType": "uint256",
|
16 |
+
"name": "_price",
|
17 |
+
"type": "uint256"
|
18 |
+
}
|
19 |
+
],
|
20 |
+
"stateMutability": "nonpayable",
|
21 |
+
"type": "constructor"
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"inputs": [
|
25 |
+
{
|
26 |
+
"internalType": "uint256",
|
27 |
+
"name": "agentId",
|
28 |
+
"type": "uint256"
|
29 |
+
}
|
30 |
+
],
|
31 |
+
"name": "AgentNotFound",
|
32 |
+
"type": "error"
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"inputs": [
|
36 |
+
{
|
37 |
+
"internalType": "uint256",
|
38 |
+
"name": "provided",
|
39 |
+
"type": "uint256"
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"internalType": "uint256",
|
43 |
+
"name": "expected",
|
44 |
+
"type": "uint256"
|
45 |
+
}
|
46 |
+
],
|
47 |
+
"name": "NotEnoughPaid",
|
48 |
+
"type": "error"
|
49 |
+
},
|
50 |
+
{
|
51 |
+
"inputs": [],
|
52 |
+
"name": "ZeroAddress",
|
53 |
+
"type": "error"
|
54 |
+
},
|
55 |
+
{
|
56 |
+
"anonymous": false,
|
57 |
+
"inputs": [
|
58 |
+
{
|
59 |
+
"indexed": false,
|
60 |
+
"internalType": "uint256",
|
61 |
+
"name": "requestId",
|
62 |
+
"type": "uint256"
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"indexed": false,
|
66 |
+
"internalType": "bytes",
|
67 |
+
"name": "data",
|
68 |
+
"type": "bytes"
|
69 |
+
}
|
70 |
+
],
|
71 |
+
"name": "Deliver",
|
72 |
+
"type": "event"
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"anonymous": false,
|
76 |
+
"inputs": [
|
77 |
+
{
|
78 |
+
"indexed": true,
|
79 |
+
"internalType": "address",
|
80 |
+
"name": "sender",
|
81 |
+
"type": "address"
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"indexed": false,
|
85 |
+
"internalType": "bytes32",
|
86 |
+
"name": "taskHash",
|
87 |
+
"type": "bytes32"
|
88 |
+
}
|
89 |
+
],
|
90 |
+
"name": "Perform",
|
91 |
+
"type": "event"
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"anonymous": false,
|
95 |
+
"inputs": [
|
96 |
+
{
|
97 |
+
"indexed": false,
|
98 |
+
"internalType": "uint256",
|
99 |
+
"name": "price",
|
100 |
+
"type": "uint256"
|
101 |
+
}
|
102 |
+
],
|
103 |
+
"name": "PriceUpdated",
|
104 |
+
"type": "event"
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"anonymous": false,
|
108 |
+
"inputs": [
|
109 |
+
{
|
110 |
+
"indexed": true,
|
111 |
+
"internalType": "address",
|
112 |
+
"name": "sender",
|
113 |
+
"type": "address"
|
114 |
+
},
|
115 |
+
{
|
116 |
+
"indexed": false,
|
117 |
+
"internalType": "uint256",
|
118 |
+
"name": "requestId",
|
119 |
+
"type": "uint256"
|
120 |
+
},
|
121 |
+
{
|
122 |
+
"indexed": false,
|
123 |
+
"internalType": "bytes",
|
124 |
+
"name": "data",
|
125 |
+
"type": "bytes"
|
126 |
+
}
|
127 |
+
],
|
128 |
+
"name": "Request",
|
129 |
+
"type": "event"
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"inputs": [
|
133 |
+
{
|
134 |
+
"internalType": "uint256",
|
135 |
+
"name": "requestId",
|
136 |
+
"type": "uint256"
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"internalType": "bytes",
|
140 |
+
"name": "data",
|
141 |
+
"type": "bytes"
|
142 |
+
}
|
143 |
+
],
|
144 |
+
"name": "deliver",
|
145 |
+
"outputs": [],
|
146 |
+
"stateMutability": "nonpayable",
|
147 |
+
"type": "function"
|
148 |
+
},
|
149 |
+
{
|
150 |
+
"inputs": [],
|
151 |
+
"name": "entryPoint",
|
152 |
+
"outputs": [
|
153 |
+
{
|
154 |
+
"internalType": "contract IEntryPoint",
|
155 |
+
"name": "",
|
156 |
+
"type": "address"
|
157 |
+
}
|
158 |
+
],
|
159 |
+
"stateMutability": "view",
|
160 |
+
"type": "function"
|
161 |
+
},
|
162 |
+
{
|
163 |
+
"inputs": [
|
164 |
+
{
|
165 |
+
"internalType": "address",
|
166 |
+
"name": "to",
|
167 |
+
"type": "address"
|
168 |
+
},
|
169 |
+
{
|
170 |
+
"internalType": "uint256",
|
171 |
+
"name": "value",
|
172 |
+
"type": "uint256"
|
173 |
+
},
|
174 |
+
{
|
175 |
+
"internalType": "bytes",
|
176 |
+
"name": "data",
|
177 |
+
"type": "bytes"
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"internalType": "enum Enum.Operation",
|
181 |
+
"name": "operation",
|
182 |
+
"type": "uint8"
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"internalType": "uint256",
|
186 |
+
"name": "txGas",
|
187 |
+
"type": "uint256"
|
188 |
+
}
|
189 |
+
],
|
190 |
+
"name": "exec",
|
191 |
+
"outputs": [
|
192 |
+
{
|
193 |
+
"internalType": "bytes",
|
194 |
+
"name": "returnData",
|
195 |
+
"type": "bytes"
|
196 |
+
}
|
197 |
+
],
|
198 |
+
"stateMutability": "nonpayable",
|
199 |
+
"type": "function"
|
200 |
+
},
|
201 |
+
{
|
202 |
+
"inputs": [
|
203 |
+
{
|
204 |
+
"internalType": "address",
|
205 |
+
"name": "account",
|
206 |
+
"type": "address"
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"internalType": "bytes",
|
210 |
+
"name": "data",
|
211 |
+
"type": "bytes"
|
212 |
+
}
|
213 |
+
],
|
214 |
+
"name": "getRequestId",
|
215 |
+
"outputs": [
|
216 |
+
{
|
217 |
+
"internalType": "uint256",
|
218 |
+
"name": "requestId",
|
219 |
+
"type": "uint256"
|
220 |
+
}
|
221 |
+
],
|
222 |
+
"stateMutability": "pure",
|
223 |
+
"type": "function"
|
224 |
+
},
|
225 |
+
{
|
226 |
+
"inputs": [
|
227 |
+
{
|
228 |
+
"internalType": "address",
|
229 |
+
"name": "signer",
|
230 |
+
"type": "address"
|
231 |
+
}
|
232 |
+
],
|
233 |
+
"name": "isOperator",
|
234 |
+
"outputs": [
|
235 |
+
{
|
236 |
+
"internalType": "bool",
|
237 |
+
"name": "",
|
238 |
+
"type": "bool"
|
239 |
+
}
|
240 |
+
],
|
241 |
+
"stateMutability": "view",
|
242 |
+
"type": "function"
|
243 |
+
},
|
244 |
+
{
|
245 |
+
"inputs": [
|
246 |
+
{
|
247 |
+
"internalType": "bytes32",
|
248 |
+
"name": "hash",
|
249 |
+
"type": "bytes32"
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"internalType": "bytes",
|
253 |
+
"name": "signature",
|
254 |
+
"type": "bytes"
|
255 |
+
}
|
256 |
+
],
|
257 |
+
"name": "isValidSignature",
|
258 |
+
"outputs": [
|
259 |
+
{
|
260 |
+
"internalType": "bytes4",
|
261 |
+
"name": "magicValue",
|
262 |
+
"type": "bytes4"
|
263 |
+
}
|
264 |
+
],
|
265 |
+
"stateMutability": "view",
|
266 |
+
"type": "function"
|
267 |
+
},
|
268 |
+
{
|
269 |
+
"inputs": [],
|
270 |
+
"name": "nonce",
|
271 |
+
"outputs": [
|
272 |
+
{
|
273 |
+
"internalType": "uint256",
|
274 |
+
"name": "",
|
275 |
+
"type": "uint256"
|
276 |
+
}
|
277 |
+
],
|
278 |
+
"stateMutability": "view",
|
279 |
+
"type": "function"
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"inputs": [
|
283 |
+
{
|
284 |
+
"internalType": "address",
|
285 |
+
"name": "",
|
286 |
+
"type": "address"
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"internalType": "address",
|
290 |
+
"name": "",
|
291 |
+
"type": "address"
|
292 |
+
},
|
293 |
+
{
|
294 |
+
"internalType": "uint256[]",
|
295 |
+
"name": "",
|
296 |
+
"type": "uint256[]"
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"internalType": "uint256[]",
|
300 |
+
"name": "",
|
301 |
+
"type": "uint256[]"
|
302 |
+
},
|
303 |
+
{
|
304 |
+
"internalType": "bytes",
|
305 |
+
"name": "",
|
306 |
+
"type": "bytes"
|
307 |
+
}
|
308 |
+
],
|
309 |
+
"name": "onERC1155BatchReceived",
|
310 |
+
"outputs": [
|
311 |
+
{
|
312 |
+
"internalType": "bytes4",
|
313 |
+
"name": "",
|
314 |
+
"type": "bytes4"
|
315 |
+
}
|
316 |
+
],
|
317 |
+
"stateMutability": "pure",
|
318 |
+
"type": "function"
|
319 |
+
},
|
320 |
+
{
|
321 |
+
"inputs": [
|
322 |
+
{
|
323 |
+
"internalType": "address",
|
324 |
+
"name": "",
|
325 |
+
"type": "address"
|
326 |
+
},
|
327 |
+
{
|
328 |
+
"internalType": "address",
|
329 |
+
"name": "",
|
330 |
+
"type": "address"
|
331 |
+
},
|
332 |
+
{
|
333 |
+
"internalType": "uint256",
|
334 |
+
"name": "",
|
335 |
+
"type": "uint256"
|
336 |
+
},
|
337 |
+
{
|
338 |
+
"internalType": "uint256",
|
339 |
+
"name": "",
|
340 |
+
"type": "uint256"
|
341 |
+
},
|
342 |
+
{
|
343 |
+
"internalType": "bytes",
|
344 |
+
"name": "",
|
345 |
+
"type": "bytes"
|
346 |
+
}
|
347 |
+
],
|
348 |
+
"name": "onERC1155Received",
|
349 |
+
"outputs": [
|
350 |
+
{
|
351 |
+
"internalType": "bytes4",
|
352 |
+
"name": "",
|
353 |
+
"type": "bytes4"
|
354 |
+
}
|
355 |
+
],
|
356 |
+
"stateMutability": "pure",
|
357 |
+
"type": "function"
|
358 |
+
},
|
359 |
+
{
|
360 |
+
"inputs": [
|
361 |
+
{
|
362 |
+
"internalType": "address",
|
363 |
+
"name": "",
|
364 |
+
"type": "address"
|
365 |
+
},
|
366 |
+
{
|
367 |
+
"internalType": "address",
|
368 |
+
"name": "",
|
369 |
+
"type": "address"
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"internalType": "uint256",
|
373 |
+
"name": "",
|
374 |
+
"type": "uint256"
|
375 |
+
},
|
376 |
+
{
|
377 |
+
"internalType": "bytes",
|
378 |
+
"name": "",
|
379 |
+
"type": "bytes"
|
380 |
+
}
|
381 |
+
],
|
382 |
+
"name": "onERC721Received",
|
383 |
+
"outputs": [
|
384 |
+
{
|
385 |
+
"internalType": "bytes4",
|
386 |
+
"name": "",
|
387 |
+
"type": "bytes4"
|
388 |
+
}
|
389 |
+
],
|
390 |
+
"stateMutability": "pure",
|
391 |
+
"type": "function"
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"inputs": [],
|
395 |
+
"name": "price",
|
396 |
+
"outputs": [
|
397 |
+
{
|
398 |
+
"internalType": "uint256",
|
399 |
+
"name": "",
|
400 |
+
"type": "uint256"
|
401 |
+
}
|
402 |
+
],
|
403 |
+
"stateMutability": "view",
|
404 |
+
"type": "function"
|
405 |
+
},
|
406 |
+
{
|
407 |
+
"inputs": [
|
408 |
+
{
|
409 |
+
"internalType": "bytes",
|
410 |
+
"name": "data",
|
411 |
+
"type": "bytes"
|
412 |
+
}
|
413 |
+
],
|
414 |
+
"name": "request",
|
415 |
+
"outputs": [
|
416 |
+
{
|
417 |
+
"internalType": "uint256",
|
418 |
+
"name": "requestId",
|
419 |
+
"type": "uint256"
|
420 |
+
}
|
421 |
+
],
|
422 |
+
"stateMutability": "payable",
|
423 |
+
"type": "function"
|
424 |
+
},
|
425 |
+
{
|
426 |
+
"inputs": [
|
427 |
+
{
|
428 |
+
"internalType": "uint256",
|
429 |
+
"name": "newPrice",
|
430 |
+
"type": "uint256"
|
431 |
+
}
|
432 |
+
],
|
433 |
+
"name": "setPrice",
|
434 |
+
"outputs": [],
|
435 |
+
"stateMutability": "nonpayable",
|
436 |
+
"type": "function"
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"inputs": [
|
440 |
+
{
|
441 |
+
"internalType": "bytes",
|
442 |
+
"name": "initParams",
|
443 |
+
"type": "bytes"
|
444 |
+
}
|
445 |
+
],
|
446 |
+
"name": "setUp",
|
447 |
+
"outputs": [],
|
448 |
+
"stateMutability": "nonpayable",
|
449 |
+
"type": "function"
|
450 |
+
},
|
451 |
+
{
|
452 |
+
"inputs": [],
|
453 |
+
"name": "token",
|
454 |
+
"outputs": [
|
455 |
+
{
|
456 |
+
"internalType": "contract IERC721",
|
457 |
+
"name": "",
|
458 |
+
"type": "address"
|
459 |
+
}
|
460 |
+
],
|
461 |
+
"stateMutability": "view",
|
462 |
+
"type": "function"
|
463 |
+
},
|
464 |
+
{
|
465 |
+
"inputs": [],
|
466 |
+
"name": "tokenId",
|
467 |
+
"outputs": [
|
468 |
+
{
|
469 |
+
"internalType": "uint256",
|
470 |
+
"name": "",
|
471 |
+
"type": "uint256"
|
472 |
+
}
|
473 |
+
],
|
474 |
+
"stateMutability": "view",
|
475 |
+
"type": "function"
|
476 |
+
},
|
477 |
+
{
|
478 |
+
"inputs": [
|
479 |
+
{
|
480 |
+
"internalType": "address",
|
481 |
+
"name": "",
|
482 |
+
"type": "address"
|
483 |
+
},
|
484 |
+
{
|
485 |
+
"internalType": "address",
|
486 |
+
"name": "",
|
487 |
+
"type": "address"
|
488 |
+
},
|
489 |
+
{
|
490 |
+
"internalType": "address",
|
491 |
+
"name": "",
|
492 |
+
"type": "address"
|
493 |
+
},
|
494 |
+
{
|
495 |
+
"internalType": "uint256",
|
496 |
+
"name": "",
|
497 |
+
"type": "uint256"
|
498 |
+
},
|
499 |
+
{
|
500 |
+
"internalType": "bytes",
|
501 |
+
"name": "",
|
502 |
+
"type": "bytes"
|
503 |
+
},
|
504 |
+
{
|
505 |
+
"internalType": "bytes",
|
506 |
+
"name": "",
|
507 |
+
"type": "bytes"
|
508 |
+
}
|
509 |
+
],
|
510 |
+
"name": "tokensReceived",
|
511 |
+
"outputs": [],
|
512 |
+
"stateMutability": "pure",
|
513 |
+
"type": "function"
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"inputs": [
|
517 |
+
{
|
518 |
+
"components": [
|
519 |
+
{
|
520 |
+
"internalType": "address",
|
521 |
+
"name": "sender",
|
522 |
+
"type": "address"
|
523 |
+
},
|
524 |
+
{
|
525 |
+
"internalType": "uint256",
|
526 |
+
"name": "nonce",
|
527 |
+
"type": "uint256"
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"internalType": "bytes",
|
531 |
+
"name": "initCode",
|
532 |
+
"type": "bytes"
|
533 |
+
},
|
534 |
+
{
|
535 |
+
"internalType": "bytes",
|
536 |
+
"name": "callData",
|
537 |
+
"type": "bytes"
|
538 |
+
},
|
539 |
+
{
|
540 |
+
"internalType": "uint256",
|
541 |
+
"name": "callGasLimit",
|
542 |
+
"type": "uint256"
|
543 |
+
},
|
544 |
+
{
|
545 |
+
"internalType": "uint256",
|
546 |
+
"name": "verificationGasLimit",
|
547 |
+
"type": "uint256"
|
548 |
+
},
|
549 |
+
{
|
550 |
+
"internalType": "uint256",
|
551 |
+
"name": "preVerificationGas",
|
552 |
+
"type": "uint256"
|
553 |
+
},
|
554 |
+
{
|
555 |
+
"internalType": "uint256",
|
556 |
+
"name": "maxFeePerGas",
|
557 |
+
"type": "uint256"
|
558 |
+
},
|
559 |
+
{
|
560 |
+
"internalType": "uint256",
|
561 |
+
"name": "maxPriorityFeePerGas",
|
562 |
+
"type": "uint256"
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"internalType": "bytes",
|
566 |
+
"name": "paymasterAndData",
|
567 |
+
"type": "bytes"
|
568 |
+
},
|
569 |
+
{
|
570 |
+
"internalType": "bytes",
|
571 |
+
"name": "signature",
|
572 |
+
"type": "bytes"
|
573 |
+
}
|
574 |
+
],
|
575 |
+
"internalType": "struct UserOperation",
|
576 |
+
"name": "userOp",
|
577 |
+
"type": "tuple"
|
578 |
+
},
|
579 |
+
{
|
580 |
+
"internalType": "bytes32",
|
581 |
+
"name": "userOpHash",
|
582 |
+
"type": "bytes32"
|
583 |
+
},
|
584 |
+
{
|
585 |
+
"internalType": "uint256",
|
586 |
+
"name": "missingAccountFunds",
|
587 |
+
"type": "uint256"
|
588 |
+
}
|
589 |
+
],
|
590 |
+
"name": "validateUserOp",
|
591 |
+
"outputs": [
|
592 |
+
{
|
593 |
+
"internalType": "uint256",
|
594 |
+
"name": "validationData",
|
595 |
+
"type": "uint256"
|
596 |
+
}
|
597 |
+
],
|
598 |
+
"stateMutability": "nonpayable",
|
599 |
+
"type": "function"
|
600 |
+
},
|
601 |
+
{
|
602 |
+
"stateMutability": "payable",
|
603 |
+
"type": "receive"
|
604 |
+
}
|
605 |
+
]
|
data/all_trades_profitability.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c33e317ca70cc8797a84900df008aca7e359beb263244ba4c808ba872d02a5b4
|
3 |
+
size 29242992
|
data/delivers.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:28cdb01625315f40a2beb7849f2c792341f9f2c8acf70b622f61a5dcf76a0b57
|
3 |
+
size 1407762470
|
data/fpmmTrades.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d5f3f7c2270b0d8d74f4442242e8978d803e26c082b8446ec69bf95fa2d593c5
|
3 |
+
size 64770123
|
data/fpmms.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:02e46f743c4650d53fd33cb4edfc7bcaed91d738df5d1b51c5e12173aa4d5e3b
|
3 |
+
size 408719
|
data/requests.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ba420bf57f185dcc186a29d84d09b2b77b209cfc8abf14c9821ca8ecdf54187a
|
3 |
+
size 131633578
|
data/summary_profitability.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1a58af20c40c7b05a48809fadd3ec20812c05a0fea75c80104cd3ca67029ccc5
|
3 |
+
size 48347
|
data/t_map.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3dda22af540a436e3e36653d7c7fcca7b104fc26ca9de5c56a309f3995941bd4
|
3 |
+
size 6031686
|
data/tools.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:abef4e250d6e626b362587f9394c40a274fc9f45e6e8f879b933ff7115af01c2
|
3 |
+
size 1503054932
|
nbs/test.ipynb
ADDED
@@ -0,0 +1,363 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 3,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"import pickle\n",
|
10 |
+
"import pandas as pd\n",
|
11 |
+
"from pathlib import Path\n",
|
12 |
+
"from web3 import Web3\n",
|
13 |
+
"from concurrent.futures import ThreadPoolExecutor\n",
|
14 |
+
"from tqdm import tqdm\n",
|
15 |
+
"from functools import partial\n",
|
16 |
+
"from datetime import datetime\n"
|
17 |
+
]
|
18 |
+
},
|
19 |
+
{
|
20 |
+
"cell_type": "markdown",
|
21 |
+
"metadata": {},
|
22 |
+
"source": [
|
23 |
+
"### Make t_map"
|
24 |
+
]
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"cell_type": "code",
|
28 |
+
"execution_count": null,
|
29 |
+
"metadata": {},
|
30 |
+
"outputs": [],
|
31 |
+
"source": [
|
32 |
+
"tools = pd.read_csv(\"../data/tools.csv\")"
|
33 |
+
]
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"cell_type": "code",
|
37 |
+
"execution_count": null,
|
38 |
+
"metadata": {},
|
39 |
+
"outputs": [],
|
40 |
+
"source": [
|
41 |
+
"tools.columns"
|
42 |
+
]
|
43 |
+
},
|
44 |
+
{
|
45 |
+
"cell_type": "code",
|
46 |
+
"execution_count": null,
|
47 |
+
"metadata": {},
|
48 |
+
"outputs": [],
|
49 |
+
"source": [
|
50 |
+
"import pickle\n",
|
51 |
+
"t_map = tools[['request_block', 'request_time']].set_index('request_block').to_dict()['request_time']\n",
|
52 |
+
"\n",
|
53 |
+
"with open('../data/t_map.pkl', 'wb') as f:\n",
|
54 |
+
" pickle.dump(t_map, f)\n",
|
55 |
+
"\n"
|
56 |
+
]
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"cell_type": "code",
|
60 |
+
"execution_count": null,
|
61 |
+
"metadata": {},
|
62 |
+
"outputs": [],
|
63 |
+
"source": [
|
64 |
+
"with open('../data/t_map.pkl', 'rb') as f:\n",
|
65 |
+
" t_map = pickle.load(f)"
|
66 |
+
]
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"cell_type": "markdown",
|
70 |
+
"metadata": {},
|
71 |
+
"source": [
|
72 |
+
"### Markets"
|
73 |
+
]
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"cell_type": "code",
|
77 |
+
"execution_count": 4,
|
78 |
+
"metadata": {},
|
79 |
+
"outputs": [
|
80 |
+
{
|
81 |
+
"data": {
|
82 |
+
"text/plain": [
|
83 |
+
"Index(['id', 'currentAnswer', 'title'], dtype='object')"
|
84 |
+
]
|
85 |
+
},
|
86 |
+
"execution_count": 4,
|
87 |
+
"metadata": {},
|
88 |
+
"output_type": "execute_result"
|
89 |
+
}
|
90 |
+
],
|
91 |
+
"source": [
|
92 |
+
"fpmms = pd.read_csv(\"../data/fpmms.csv\")\n",
|
93 |
+
"fpmms.columns"
|
94 |
+
]
|
95 |
+
},
|
96 |
+
{
|
97 |
+
"cell_type": "code",
|
98 |
+
"execution_count": 6,
|
99 |
+
"metadata": {},
|
100 |
+
"outputs": [
|
101 |
+
{
|
102 |
+
"name": "stderr",
|
103 |
+
"output_type": "stream",
|
104 |
+
"text": [
|
105 |
+
"/var/folders/l_/g22b1g_n0gn4tmx9lkxqv5x00000gn/T/ipykernel_42934/371090584.py:1: DtypeWarning: Columns (2) have mixed types. Specify dtype option on import or set low_memory=False.\n",
|
106 |
+
" delivers = pd.read_csv(\"../data/delivers.csv\")\n"
|
107 |
+
]
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"data": {
|
111 |
+
"text/plain": [
|
112 |
+
"(263613, 12)"
|
113 |
+
]
|
114 |
+
},
|
115 |
+
"execution_count": 6,
|
116 |
+
"metadata": {},
|
117 |
+
"output_type": "execute_result"
|
118 |
+
}
|
119 |
+
],
|
120 |
+
"source": [
|
121 |
+
"delivers = pd.read_csv(\"../data/delivers.csv\")\n",
|
122 |
+
"delivers.shape\n"
|
123 |
+
]
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"cell_type": "code",
|
127 |
+
"execution_count": 7,
|
128 |
+
"metadata": {},
|
129 |
+
"outputs": [
|
130 |
+
{
|
131 |
+
"data": {
|
132 |
+
"text/plain": [
|
133 |
+
"(245092, 6)"
|
134 |
+
]
|
135 |
+
},
|
136 |
+
"execution_count": 7,
|
137 |
+
"metadata": {},
|
138 |
+
"output_type": "execute_result"
|
139 |
+
}
|
140 |
+
],
|
141 |
+
"source": [
|
142 |
+
"requests = pd.read_csv(\"../data/requests.csv\")\n",
|
143 |
+
"requests.columns\n",
|
144 |
+
"\n",
|
145 |
+
"requests.shape"
|
146 |
+
]
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"cell_type": "code",
|
150 |
+
"execution_count": 8,
|
151 |
+
"metadata": {},
|
152 |
+
"outputs": [
|
153 |
+
{
|
154 |
+
"name": "stderr",
|
155 |
+
"output_type": "stream",
|
156 |
+
"text": [
|
157 |
+
"/var/folders/l_/g22b1g_n0gn4tmx9lkxqv5x00000gn/T/ipykernel_42934/3254331204.py:1: DtypeWarning: Columns (7,10) have mixed types. Specify dtype option on import or set low_memory=False.\n",
|
158 |
+
" tools = pd.read_csv(\"../data/tools.csv\")\n"
|
159 |
+
]
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"data": {
|
163 |
+
"text/plain": [
|
164 |
+
"Index(['request_id', 'request_block', 'prompt_request', 'tool', 'nonce',\n",
|
165 |
+
" 'trader_address', 'deliver_block', 'error', 'error_message',\n",
|
166 |
+
" 'prompt_response', 'mech_address', 'p_yes', 'p_no', 'confidence',\n",
|
167 |
+
" 'info_utility', 'vote', 'win_probability', 'title', 'currentAnswer',\n",
|
168 |
+
" 'request_time', 'request_month_year', 'request_month_year_week'],\n",
|
169 |
+
" dtype='object')"
|
170 |
+
]
|
171 |
+
},
|
172 |
+
"execution_count": 8,
|
173 |
+
"metadata": {},
|
174 |
+
"output_type": "execute_result"
|
175 |
+
}
|
176 |
+
],
|
177 |
+
"source": [
|
178 |
+
"tools = pd.read_csv(\"../data/tools.csv\")\n",
|
179 |
+
"tools.columns"
|
180 |
+
]
|
181 |
+
},
|
182 |
+
{
|
183 |
+
"cell_type": "code",
|
184 |
+
"execution_count": 9,
|
185 |
+
"metadata": {},
|
186 |
+
"outputs": [
|
187 |
+
{
|
188 |
+
"data": {
|
189 |
+
"text/plain": [
|
190 |
+
"841"
|
191 |
+
]
|
192 |
+
},
|
193 |
+
"execution_count": 9,
|
194 |
+
"metadata": {},
|
195 |
+
"output_type": "execute_result"
|
196 |
+
}
|
197 |
+
],
|
198 |
+
"source": [
|
199 |
+
"tools['request_time'].isna().sum()"
|
200 |
+
]
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"cell_type": "code",
|
204 |
+
"execution_count": 10,
|
205 |
+
"metadata": {},
|
206 |
+
"outputs": [],
|
207 |
+
"source": [
|
208 |
+
"def block_number_to_timestamp(block_number: int, web3: Web3) -> str:\n",
|
209 |
+
" \"\"\"Convert a block number to a timestamp.\"\"\"\n",
|
210 |
+
" block = web3.eth.get_block(block_number)\n",
|
211 |
+
" timestamp = datetime.utcfromtimestamp(block['timestamp'])\n",
|
212 |
+
" return timestamp.strftime('%Y-%m-%d %H:%M:%S')\n",
|
213 |
+
"\n",
|
214 |
+
"\n",
|
215 |
+
"def parallelize_timestamp_conversion(df: pd.DataFrame, function: callable) -> list:\n",
|
216 |
+
" \"\"\"Parallelize the timestamp conversion.\"\"\"\n",
|
217 |
+
" block_numbers = df['request_block'].tolist()\n",
|
218 |
+
" with ThreadPoolExecutor(max_workers=10) as executor:\n",
|
219 |
+
" results = list(tqdm(executor.map(function, block_numbers), total=len(block_numbers))) \n",
|
220 |
+
" return results\n"
|
221 |
+
]
|
222 |
+
},
|
223 |
+
{
|
224 |
+
"cell_type": "code",
|
225 |
+
"execution_count": 11,
|
226 |
+
"metadata": {},
|
227 |
+
"outputs": [],
|
228 |
+
"source": [
|
229 |
+
"rpc = \"https://lb.nodies.app/v1/406d8dcc043f4cb3959ed7d6673d311a\"\n",
|
230 |
+
"web3 = Web3(Web3.HTTPProvider(rpc))\n",
|
231 |
+
"\n",
|
232 |
+
"partial_block_number_to_timestamp = partial(block_number_to_timestamp, web3=web3)"
|
233 |
+
]
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"cell_type": "code",
|
237 |
+
"execution_count": 15,
|
238 |
+
"metadata": {},
|
239 |
+
"outputs": [
|
240 |
+
{
|
241 |
+
"name": "stderr",
|
242 |
+
"output_type": "stream",
|
243 |
+
"text": [
|
244 |
+
"100%|██████████| 841/841 [00:25<00:00, 33.18it/s]\n"
|
245 |
+
]
|
246 |
+
}
|
247 |
+
],
|
248 |
+
"source": [
|
249 |
+
"missing_time_indices = tools[tools['request_time'].isna()].index\n",
|
250 |
+
"if not missing_time_indices.empty:\n",
|
251 |
+
" partial_block_number_to_timestamp = partial(block_number_to_timestamp, web3=web3)\n",
|
252 |
+
" missing_timestamps = parallelize_timestamp_conversion(tools.loc[missing_time_indices], partial_block_number_to_timestamp)\n",
|
253 |
+
" \n",
|
254 |
+
" # Update the original DataFrame with the missing timestamps\n",
|
255 |
+
" for i, timestamp in zip(missing_time_indices, missing_timestamps):\n",
|
256 |
+
" tools.at[i, 'request_time'] = timestamp"
|
257 |
+
]
|
258 |
+
},
|
259 |
+
{
|
260 |
+
"cell_type": "code",
|
261 |
+
"execution_count": 16,
|
262 |
+
"metadata": {},
|
263 |
+
"outputs": [
|
264 |
+
{
|
265 |
+
"data": {
|
266 |
+
"text/plain": [
|
267 |
+
"0"
|
268 |
+
]
|
269 |
+
},
|
270 |
+
"execution_count": 16,
|
271 |
+
"metadata": {},
|
272 |
+
"output_type": "execute_result"
|
273 |
+
}
|
274 |
+
],
|
275 |
+
"source": [
|
276 |
+
"tools['request_time'].isna().sum()"
|
277 |
+
]
|
278 |
+
},
|
279 |
+
{
|
280 |
+
"cell_type": "code",
|
281 |
+
"execution_count": 17,
|
282 |
+
"metadata": {},
|
283 |
+
"outputs": [],
|
284 |
+
"source": [
|
285 |
+
"tools['request_month_year'] = pd.to_datetime(tools['request_time']).dt.strftime('%Y-%m')\n",
|
286 |
+
"tools['request_month_year_week'] = pd.to_datetime(tools['request_time']).dt.to_period('W').astype(str)"
|
287 |
+
]
|
288 |
+
},
|
289 |
+
{
|
290 |
+
"cell_type": "code",
|
291 |
+
"execution_count": 18,
|
292 |
+
"metadata": {},
|
293 |
+
"outputs": [
|
294 |
+
{
|
295 |
+
"data": {
|
296 |
+
"text/plain": [
|
297 |
+
"0"
|
298 |
+
]
|
299 |
+
},
|
300 |
+
"execution_count": 18,
|
301 |
+
"metadata": {},
|
302 |
+
"output_type": "execute_result"
|
303 |
+
}
|
304 |
+
],
|
305 |
+
"source": [
|
306 |
+
"tools['request_month_year_week'].isna().sum()\n"
|
307 |
+
]
|
308 |
+
},
|
309 |
+
{
|
310 |
+
"cell_type": "code",
|
311 |
+
"execution_count": 19,
|
312 |
+
"metadata": {},
|
313 |
+
"outputs": [],
|
314 |
+
"source": [
|
315 |
+
"tools.to_csv(\"../data/tools.csv\", index=False)"
|
316 |
+
]
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"cell_type": "code",
|
320 |
+
"execution_count": 23,
|
321 |
+
"metadata": {},
|
322 |
+
"outputs": [],
|
323 |
+
"source": [
|
324 |
+
"with open('../data/t_map.pkl', 'rb') as f:\n",
|
325 |
+
" t_map = pickle.load(f)\n",
|
326 |
+
"new_timestamps = tools[['request_block', 'request_time']].dropna().set_index('request_block').to_dict()['request_time']\n",
|
327 |
+
"t_map.update(new_timestamps)\n",
|
328 |
+
"\n",
|
329 |
+
"with open('../data/t_map.pkl', 'wb') as f:\n",
|
330 |
+
" pickle.dump(t_map, f)\n",
|
331 |
+
"\n"
|
332 |
+
]
|
333 |
+
},
|
334 |
+
{
|
335 |
+
"cell_type": "code",
|
336 |
+
"execution_count": null,
|
337 |
+
"metadata": {},
|
338 |
+
"outputs": [],
|
339 |
+
"source": []
|
340 |
+
}
|
341 |
+
],
|
342 |
+
"metadata": {
|
343 |
+
"kernelspec": {
|
344 |
+
"display_name": "autogen",
|
345 |
+
"language": "python",
|
346 |
+
"name": "python3"
|
347 |
+
},
|
348 |
+
"language_info": {
|
349 |
+
"codemirror_mode": {
|
350 |
+
"name": "ipython",
|
351 |
+
"version": 3
|
352 |
+
},
|
353 |
+
"file_extension": ".py",
|
354 |
+
"mimetype": "text/x-python",
|
355 |
+
"name": "python",
|
356 |
+
"nbconvert_exporter": "python",
|
357 |
+
"pygments_lexer": "ipython3",
|
358 |
+
"version": "3.10.13"
|
359 |
+
}
|
360 |
+
},
|
361 |
+
"nbformat": 4,
|
362 |
+
"nbformat_minor": 2
|
363 |
+
}
|
nbs/weekly_analysis.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pandas
|
2 |
+
matplotlib
|
3 |
+
huggingface-hub
|
4 |
+
pyarrow
|
5 |
+
web3
|
6 |
+
requests
|
7 |
+
gradio
|
8 |
+
apscheduler
|
9 |
+
pytz
|
scripts/markets.py
ADDED
@@ -0,0 +1,227 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# ------------------------------------------------------------------------------
|
3 |
+
#
|
4 |
+
# Copyright 2023 Valory AG
|
5 |
+
#
|
6 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
7 |
+
# you may not use this file except in compliance with the License.
|
8 |
+
# You may obtain a copy of the License at
|
9 |
+
#
|
10 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
11 |
+
#
|
12 |
+
# Unless required by applicable law or agreed to in writing, software
|
13 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
14 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
15 |
+
# See the License for the specific language governing permissions and
|
16 |
+
# limitations under the License.
|
17 |
+
#
|
18 |
+
# ------------------------------------------------------------------------------
|
19 |
+
|
20 |
+
import functools
|
21 |
+
import warnings
|
22 |
+
from string import Template
|
23 |
+
from typing import Optional, Generator, Callable
|
24 |
+
|
25 |
+
import pandas as pd
|
26 |
+
import requests
|
27 |
+
from tqdm import tqdm
|
28 |
+
|
29 |
+
from typing import List, Dict
|
30 |
+
from pathlib import Path
|
31 |
+
|
32 |
+
ResponseItemType = List[Dict[str, str]]
|
33 |
+
SubgraphResponseType = Dict[str, ResponseItemType]
|
34 |
+
|
35 |
+
|
36 |
+
CREATOR = "0x89c5cc945dd550BcFfb72Fe42BfF002429F46Fec"
|
37 |
+
BATCH_SIZE = 1000
|
38 |
+
OMEN_SUBGRAPH = "https://api.thegraph.com/subgraphs/name/protofire/omen-xdai"
|
39 |
+
FPMMS_FIELD = "fixedProductMarketMakers"
|
40 |
+
QUERY_FIELD = "query"
|
41 |
+
ERROR_FIELD = "errors"
|
42 |
+
DATA_FIELD = "data"
|
43 |
+
ID_FIELD = "id"
|
44 |
+
ANSWER_FIELD = "currentAnswer"
|
45 |
+
QUESTION_FIELD = "question"
|
46 |
+
OUTCOMES_FIELD = "outcomes"
|
47 |
+
TITLE_FIELD = "title"
|
48 |
+
MAX_UINT_HEX = "0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff"
|
49 |
+
DEFAULT_FILENAME = "fpmms.csv"
|
50 |
+
SCRIPTS_DIR = Path(__file__).parent
|
51 |
+
ROOT_DIR = SCRIPTS_DIR.parent
|
52 |
+
DATA_DIR = ROOT_DIR / "data"
|
53 |
+
FPMMS_QUERY = Template(
|
54 |
+
"""
|
55 |
+
{
|
56 |
+
${fpmms_field}(
|
57 |
+
where: {
|
58 |
+
creator: "${creator}",
|
59 |
+
id_gt: "${fpmm_id}",
|
60 |
+
isPendingArbitration: false
|
61 |
+
},
|
62 |
+
orderBy: ${id_field}
|
63 |
+
first: ${first}
|
64 |
+
){
|
65 |
+
${id_field}
|
66 |
+
${answer_field}
|
67 |
+
${question_field} {
|
68 |
+
${outcomes_field}
|
69 |
+
}
|
70 |
+
${title_field}
|
71 |
+
}
|
72 |
+
}
|
73 |
+
"""
|
74 |
+
)
|
75 |
+
|
76 |
+
|
77 |
+
class RetriesExceeded(Exception):
|
78 |
+
"""Exception to raise when retries are exceeded during data-fetching."""
|
79 |
+
|
80 |
+
def __init__(
|
81 |
+
self, msg="Maximum retries were exceeded while trying to fetch the data!"
|
82 |
+
):
|
83 |
+
super().__init__(msg)
|
84 |
+
|
85 |
+
|
86 |
+
def hacky_retry(func: Callable, n_retries: int = 3) -> Callable:
|
87 |
+
"""Create a hacky retry strategy.
|
88 |
+
Unfortunately, we cannot use `requests.packages.urllib3.util.retry.Retry`,
|
89 |
+
because the subgraph does not return the appropriate status codes in case of failure.
|
90 |
+
Instead, it always returns code 200. Thus, we raise exceptions manually inside `make_request`,
|
91 |
+
catch those exceptions in the hacky retry decorator and try again.
|
92 |
+
Finally, if the allowed number of retries is exceeded, we raise a custom `RetriesExceeded` exception.
|
93 |
+
|
94 |
+
:param func: the input request function.
|
95 |
+
:param n_retries: the maximum allowed number of retries.
|
96 |
+
:return: The request method with the hacky retry strategy applied.
|
97 |
+
"""
|
98 |
+
|
99 |
+
@functools.wraps(func)
|
100 |
+
def wrapper_hacky_retry(*args, **kwargs) -> SubgraphResponseType:
|
101 |
+
"""The wrapper for the hacky retry.
|
102 |
+
|
103 |
+
:return: a response dictionary.
|
104 |
+
"""
|
105 |
+
retried = 0
|
106 |
+
|
107 |
+
while retried <= n_retries:
|
108 |
+
try:
|
109 |
+
if retried > 0:
|
110 |
+
warnings.warn(f"Retrying {retried}/{n_retries}...")
|
111 |
+
|
112 |
+
return func(*args, **kwargs)
|
113 |
+
except (ValueError, ConnectionError) as e:
|
114 |
+
warnings.warn(e.args[0])
|
115 |
+
finally:
|
116 |
+
retried += 1
|
117 |
+
|
118 |
+
raise RetriesExceeded()
|
119 |
+
|
120 |
+
return wrapper_hacky_retry
|
121 |
+
|
122 |
+
|
123 |
+
@hacky_retry
|
124 |
+
def query_subgraph(url: str, query: str, key: str) -> SubgraphResponseType:
|
125 |
+
"""Query a subgraph.
|
126 |
+
|
127 |
+
Args:
|
128 |
+
url: the subgraph's URL.
|
129 |
+
query: the query to be used.
|
130 |
+
key: the key to use in order to access the required data.
|
131 |
+
|
132 |
+
Returns:
|
133 |
+
a response dictionary.
|
134 |
+
"""
|
135 |
+
content = {QUERY_FIELD: query}
|
136 |
+
headers = {
|
137 |
+
"Accept": "application/json",
|
138 |
+
"Content-Type": "application/json",
|
139 |
+
}
|
140 |
+
res = requests.post(url, json=content, headers=headers)
|
141 |
+
|
142 |
+
if res.status_code != 200:
|
143 |
+
raise ConnectionError(
|
144 |
+
"Something went wrong while trying to communicate with the subgraph "
|
145 |
+
f"(Error: {res.status_code})!\n{res.text}"
|
146 |
+
)
|
147 |
+
|
148 |
+
body = res.json()
|
149 |
+
if ERROR_FIELD in body.keys():
|
150 |
+
raise ValueError(f"The given query is not correct: {body[ERROR_FIELD]}")
|
151 |
+
|
152 |
+
data = body.get(DATA_FIELD, {}).get(key, None)
|
153 |
+
if data is None:
|
154 |
+
raise ValueError(f"Unknown error encountered!\nRaw response: \n{body}")
|
155 |
+
|
156 |
+
return data
|
157 |
+
|
158 |
+
|
159 |
+
def fpmms_fetcher() -> Generator[ResponseItemType, int, None]:
|
160 |
+
"""An indefinite fetcher for the FPMMs."""
|
161 |
+
while True:
|
162 |
+
fpmm_id = yield
|
163 |
+
fpmms_query = FPMMS_QUERY.substitute(
|
164 |
+
creator=CREATOR,
|
165 |
+
fpmm_id=fpmm_id,
|
166 |
+
fpmms_field=FPMMS_FIELD,
|
167 |
+
first=BATCH_SIZE,
|
168 |
+
id_field=ID_FIELD,
|
169 |
+
answer_field=ANSWER_FIELD,
|
170 |
+
question_field=QUESTION_FIELD,
|
171 |
+
outcomes_field=OUTCOMES_FIELD,
|
172 |
+
title_field=TITLE_FIELD,
|
173 |
+
)
|
174 |
+
yield query_subgraph(OMEN_SUBGRAPH, fpmms_query, FPMMS_FIELD)
|
175 |
+
|
176 |
+
|
177 |
+
def fetch_fpmms() -> pd.DataFrame:
|
178 |
+
"""Fetch all the fpmms of the creator."""
|
179 |
+
latest_id = ""
|
180 |
+
fpmms = []
|
181 |
+
fetcher = fpmms_fetcher()
|
182 |
+
for _ in tqdm(fetcher, unit="fpmms", unit_scale=BATCH_SIZE):
|
183 |
+
batch = fetcher.send(latest_id)
|
184 |
+
if len(batch) == 0:
|
185 |
+
break
|
186 |
+
|
187 |
+
latest_id = batch[-1].get(ID_FIELD, "")
|
188 |
+
if latest_id == "":
|
189 |
+
raise ValueError(f"Unexpected data format retrieved: {batch}")
|
190 |
+
|
191 |
+
fpmms.extend(batch)
|
192 |
+
|
193 |
+
return pd.DataFrame(fpmms)
|
194 |
+
|
195 |
+
|
196 |
+
def get_answer(fpmm: pd.Series) -> str:
|
197 |
+
"""Get an answer from its index, using Series of an FPMM."""
|
198 |
+
return fpmm[QUESTION_FIELD][OUTCOMES_FIELD][fpmm[ANSWER_FIELD]]
|
199 |
+
|
200 |
+
|
201 |
+
def transform_fpmms(fpmms: pd.DataFrame) -> pd.DataFrame:
|
202 |
+
"""Transform an FPMMS dataframe."""
|
203 |
+
transformed = fpmms.dropna()
|
204 |
+
transformed = transformed.drop_duplicates([ID_FIELD])
|
205 |
+
transformed = transformed.loc[transformed[ANSWER_FIELD] != MAX_UINT_HEX]
|
206 |
+
transformed.loc[:, ANSWER_FIELD] = (
|
207 |
+
transformed[ANSWER_FIELD].str.slice(-1).astype(int)
|
208 |
+
)
|
209 |
+
transformed.loc[:, ANSWER_FIELD] = transformed.apply(get_answer, axis=1)
|
210 |
+
transformed = transformed.drop(columns=[QUESTION_FIELD])
|
211 |
+
|
212 |
+
return transformed
|
213 |
+
|
214 |
+
|
215 |
+
def etl(filename: Optional[str] = None) -> pd.DataFrame:
|
216 |
+
"""Fetch, process, store and return the markets as a Dataframe."""
|
217 |
+
fpmms = fetch_fpmms()
|
218 |
+
fpmms = transform_fpmms(fpmms)
|
219 |
+
|
220 |
+
if filename:
|
221 |
+
fpmms.to_csv(DATA_DIR / filename, index=False)
|
222 |
+
|
223 |
+
return fpmms
|
224 |
+
|
225 |
+
|
226 |
+
if __name__ == "__main__":
|
227 |
+
etl(DEFAULT_FILENAME)
|
scripts/profitability.py
ADDED
@@ -0,0 +1,633 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# ------------------------------------------------------------------------------
|
3 |
+
#
|
4 |
+
# Copyright 2023 Valory AG
|
5 |
+
#
|
6 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
7 |
+
# you may not use this file except in compliance with the License.
|
8 |
+
# You may obtain a copy of the License at
|
9 |
+
#
|
10 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
11 |
+
#
|
12 |
+
# Unless required by applicable law or agreed to in writing, software
|
13 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
14 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
15 |
+
# See the License for the specific language governing permissions and
|
16 |
+
# limitations under the License.
|
17 |
+
#
|
18 |
+
# ------------------------------------------------------------------------------
|
19 |
+
|
20 |
+
import time
|
21 |
+
import requests
|
22 |
+
import datetime
|
23 |
+
import pandas as pd
|
24 |
+
from collections import defaultdict
|
25 |
+
from typing import Any, Union
|
26 |
+
from string import Template
|
27 |
+
from enum import Enum
|
28 |
+
from tqdm import tqdm
|
29 |
+
import numpy as np
|
30 |
+
from pathlib import Path
|
31 |
+
|
32 |
+
IRRELEVANT_TOOLS = [
|
33 |
+
"openai-text-davinci-002",
|
34 |
+
"openai-text-davinci-003",
|
35 |
+
"openai-gpt-3.5-turbo",
|
36 |
+
"openai-gpt-4",
|
37 |
+
"stabilityai-stable-diffusion-v1-5",
|
38 |
+
"stabilityai-stable-diffusion-xl-beta-v2-2-2",
|
39 |
+
"stabilityai-stable-diffusion-512-v2-1",
|
40 |
+
"stabilityai-stable-diffusion-768-v2-1",
|
41 |
+
"deepmind-optimization-strong",
|
42 |
+
"deepmind-optimization",
|
43 |
+
]
|
44 |
+
QUERY_BATCH_SIZE = 1000
|
45 |
+
DUST_THRESHOLD = 10000000000000
|
46 |
+
INVALID_ANSWER_HEX = (
|
47 |
+
"0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff"
|
48 |
+
)
|
49 |
+
INVALID_ANSWER = -1
|
50 |
+
FPMM_CREATOR = "0x89c5cc945dd550bcffb72fe42bff002429f46fec"
|
51 |
+
DEFAULT_FROM_DATE = "1970-01-01T00:00:00"
|
52 |
+
DEFAULT_TO_DATE = "2038-01-19T03:14:07"
|
53 |
+
DEFAULT_FROM_TIMESTAMP = 0
|
54 |
+
DEFAULT_TO_TIMESTAMP = 2147483647
|
55 |
+
WXDAI_CONTRACT_ADDRESS = "0xe91D153E0b41518A2Ce8Dd3D7944Fa863463a97d"
|
56 |
+
DEFAULT_MECH_FEE = 0.01
|
57 |
+
DUST_THRESHOLD = 10000000000000
|
58 |
+
SCRIPTS_DIR = Path(__file__).parent
|
59 |
+
ROOT_DIR = SCRIPTS_DIR.parent
|
60 |
+
DATA_DIR = ROOT_DIR / "data"
|
61 |
+
|
62 |
+
class MarketState(Enum):
|
63 |
+
"""Market state"""
|
64 |
+
|
65 |
+
OPEN = 1
|
66 |
+
PENDING = 2
|
67 |
+
FINALIZING = 3
|
68 |
+
ARBITRATING = 4
|
69 |
+
CLOSED = 5
|
70 |
+
|
71 |
+
def __str__(self) -> str:
|
72 |
+
"""Prints the market status."""
|
73 |
+
return self.name.capitalize()
|
74 |
+
|
75 |
+
|
76 |
+
class MarketAttribute(Enum):
|
77 |
+
"""Attribute"""
|
78 |
+
|
79 |
+
NUM_TRADES = "Num_trades"
|
80 |
+
WINNER_TRADES = "Winner_trades"
|
81 |
+
NUM_REDEEMED = "Num_redeemed"
|
82 |
+
INVESTMENT = "Investment"
|
83 |
+
FEES = "Fees"
|
84 |
+
MECH_CALLS = "Mech_calls"
|
85 |
+
MECH_FEES = "Mech_fees"
|
86 |
+
EARNINGS = "Earnings"
|
87 |
+
NET_EARNINGS = "Net_earnings"
|
88 |
+
REDEMPTIONS = "Redemptions"
|
89 |
+
ROI = "ROI"
|
90 |
+
|
91 |
+
def __str__(self) -> str:
|
92 |
+
"""Prints the attribute."""
|
93 |
+
return self.value
|
94 |
+
|
95 |
+
def __repr__(self) -> str:
|
96 |
+
"""Prints the attribute representation."""
|
97 |
+
return self.name
|
98 |
+
|
99 |
+
@staticmethod
|
100 |
+
def argparse(s: str) -> "MarketAttribute":
|
101 |
+
"""Performs string conversion to MarketAttribute."""
|
102 |
+
try:
|
103 |
+
return MarketAttribute[s.upper()]
|
104 |
+
except KeyError as e:
|
105 |
+
raise ValueError(f"Invalid MarketAttribute: {s}") from e
|
106 |
+
|
107 |
+
|
108 |
+
ALL_TRADES_STATS_DF_COLS = [
|
109 |
+
"trader_address",
|
110 |
+
"trade_id",
|
111 |
+
"creation_timestamp",
|
112 |
+
"title",
|
113 |
+
"market_status",
|
114 |
+
"collateral_amount",
|
115 |
+
"outcome_index",
|
116 |
+
"trade_fee_amount",
|
117 |
+
"outcomes_tokens_traded",
|
118 |
+
"current_answer",
|
119 |
+
"is_invalid",
|
120 |
+
"winning_trade",
|
121 |
+
"earnings",
|
122 |
+
"redeemed",
|
123 |
+
"redeemed_amount",
|
124 |
+
"num_mech_calls",
|
125 |
+
"mech_fee_amount",
|
126 |
+
"net_earnings",
|
127 |
+
"roi",
|
128 |
+
]
|
129 |
+
|
130 |
+
SUMMARY_STATS_DF_COLS = [
|
131 |
+
"trader_address",
|
132 |
+
"num_trades",
|
133 |
+
"num_winning_trades",
|
134 |
+
"num_redeemed",
|
135 |
+
"total_investment",
|
136 |
+
"total_trade_fees",
|
137 |
+
"num_mech_calls",
|
138 |
+
"total_mech_fees",
|
139 |
+
"total_earnings",
|
140 |
+
"total_redeemed_amount",
|
141 |
+
"total_net_earnings",
|
142 |
+
"total_net_earnings_wo_mech_fees",
|
143 |
+
"total_roi",
|
144 |
+
"total_roi_wo_mech_fees",
|
145 |
+
"mean_mech_calls_per_trade",
|
146 |
+
"mean_mech_fee_amount_per_trade",
|
147 |
+
]
|
148 |
+
headers = {
|
149 |
+
"Accept": "application/json, multipart/mixed",
|
150 |
+
"Content-Type": "application/json",
|
151 |
+
}
|
152 |
+
|
153 |
+
|
154 |
+
omen_xdai_trades_query = Template(
|
155 |
+
"""
|
156 |
+
{
|
157 |
+
fpmmTrades(
|
158 |
+
where: {
|
159 |
+
type: Buy,
|
160 |
+
fpmm_: {
|
161 |
+
creator: "${fpmm_creator}"
|
162 |
+
creationTimestamp_gte: "${fpmm_creationTimestamp_gte}",
|
163 |
+
creationTimestamp_lt: "${fpmm_creationTimestamp_lte}"
|
164 |
+
},
|
165 |
+
creationTimestamp_gte: "${creationTimestamp_gte}",
|
166 |
+
creationTimestamp_lte: "${creationTimestamp_lte}"
|
167 |
+
id_gt: "${id_gt}"
|
168 |
+
}
|
169 |
+
first: ${first}
|
170 |
+
orderBy: id
|
171 |
+
orderDirection: asc
|
172 |
+
) {
|
173 |
+
id
|
174 |
+
title
|
175 |
+
collateralToken
|
176 |
+
outcomeTokenMarginalPrice
|
177 |
+
oldOutcomeTokenMarginalPrice
|
178 |
+
type
|
179 |
+
creator {
|
180 |
+
id
|
181 |
+
}
|
182 |
+
creationTimestamp
|
183 |
+
collateralAmount
|
184 |
+
collateralAmountUSD
|
185 |
+
feeAmount
|
186 |
+
outcomeIndex
|
187 |
+
outcomeTokensTraded
|
188 |
+
transactionHash
|
189 |
+
fpmm {
|
190 |
+
id
|
191 |
+
outcomes
|
192 |
+
title
|
193 |
+
answerFinalizedTimestamp
|
194 |
+
currentAnswer
|
195 |
+
isPendingArbitration
|
196 |
+
arbitrationOccurred
|
197 |
+
openingTimestamp
|
198 |
+
condition {
|
199 |
+
id
|
200 |
+
}
|
201 |
+
}
|
202 |
+
}
|
203 |
+
}
|
204 |
+
"""
|
205 |
+
)
|
206 |
+
|
207 |
+
|
208 |
+
conditional_tokens_gc_user_query = Template(
|
209 |
+
"""
|
210 |
+
{
|
211 |
+
user(id: "${id}") {
|
212 |
+
userPositions(
|
213 |
+
first: ${first}
|
214 |
+
where: {
|
215 |
+
id_gt: "${userPositions_id_gt}"
|
216 |
+
}
|
217 |
+
orderBy: id
|
218 |
+
) {
|
219 |
+
balance
|
220 |
+
id
|
221 |
+
position {
|
222 |
+
id
|
223 |
+
conditionIds
|
224 |
+
}
|
225 |
+
totalBalance
|
226 |
+
wrappedBalance
|
227 |
+
}
|
228 |
+
}
|
229 |
+
}
|
230 |
+
"""
|
231 |
+
)
|
232 |
+
|
233 |
+
|
234 |
+
def _to_content(q: str) -> dict[str, Any]:
|
235 |
+
"""Convert the given query string to payload content, i.e., add it under a `queries` key and convert it to bytes."""
|
236 |
+
finalized_query = {
|
237 |
+
"query": q,
|
238 |
+
"variables": None,
|
239 |
+
"extensions": {"headers": None},
|
240 |
+
}
|
241 |
+
return finalized_query
|
242 |
+
|
243 |
+
|
244 |
+
def _query_omen_xdai_subgraph(
|
245 |
+
from_timestamp: float,
|
246 |
+
to_timestamp: float,
|
247 |
+
fpmm_from_timestamp: float,
|
248 |
+
fpmm_to_timestamp: float,
|
249 |
+
) -> dict[str, Any]:
|
250 |
+
"""Query the subgraph."""
|
251 |
+
url = "https://api.thegraph.com/subgraphs/name/protofire/omen-xdai"
|
252 |
+
|
253 |
+
grouped_results = defaultdict(list)
|
254 |
+
id_gt = ""
|
255 |
+
|
256 |
+
while True:
|
257 |
+
query = omen_xdai_trades_query.substitute(
|
258 |
+
fpmm_creator=FPMM_CREATOR.lower(),
|
259 |
+
creationTimestamp_gte=int(from_timestamp),
|
260 |
+
creationTimestamp_lte=int(to_timestamp),
|
261 |
+
fpmm_creationTimestamp_gte=int(fpmm_from_timestamp),
|
262 |
+
fpmm_creationTimestamp_lte=int(fpmm_to_timestamp),
|
263 |
+
first=QUERY_BATCH_SIZE,
|
264 |
+
id_gt=id_gt,
|
265 |
+
)
|
266 |
+
content_json = _to_content(query)
|
267 |
+
res = requests.post(url, headers=headers, json=content_json)
|
268 |
+
result_json = res.json()
|
269 |
+
user_trades = result_json.get("data", {}).get("fpmmTrades", [])
|
270 |
+
|
271 |
+
if not user_trades:
|
272 |
+
break
|
273 |
+
|
274 |
+
for trade in user_trades:
|
275 |
+
fpmm_id = trade.get("fpmm", {}).get("id")
|
276 |
+
grouped_results[fpmm_id].append(trade)
|
277 |
+
|
278 |
+
id_gt = user_trades[len(user_trades) - 1]["id"]
|
279 |
+
|
280 |
+
all_results = {
|
281 |
+
"data": {
|
282 |
+
"fpmmTrades": [
|
283 |
+
trade
|
284 |
+
for trades_list in grouped_results.values()
|
285 |
+
for trade in trades_list
|
286 |
+
]
|
287 |
+
}
|
288 |
+
}
|
289 |
+
|
290 |
+
return all_results
|
291 |
+
|
292 |
+
|
293 |
+
def _query_conditional_tokens_gc_subgraph(creator: str) -> dict[str, Any]:
|
294 |
+
"""Query the subgraph."""
|
295 |
+
url = "https://api.thegraph.com/subgraphs/name/gnosis/conditional-tokens-gc"
|
296 |
+
|
297 |
+
all_results: dict[str, Any] = {"data": {"user": {"userPositions": []}}}
|
298 |
+
userPositions_id_gt = ""
|
299 |
+
while True:
|
300 |
+
query = conditional_tokens_gc_user_query.substitute(
|
301 |
+
id=creator.lower(),
|
302 |
+
first=QUERY_BATCH_SIZE,
|
303 |
+
userPositions_id_gt=userPositions_id_gt,
|
304 |
+
)
|
305 |
+
content_json = {"query": query}
|
306 |
+
res = requests.post(url, headers=headers, json=content_json)
|
307 |
+
result_json = res.json()
|
308 |
+
user_data = result_json.get("data", {}).get("user", {})
|
309 |
+
|
310 |
+
if not user_data:
|
311 |
+
break
|
312 |
+
|
313 |
+
user_positions = user_data.get("userPositions", [])
|
314 |
+
|
315 |
+
if user_positions:
|
316 |
+
all_results["data"]["user"]["userPositions"].extend(user_positions)
|
317 |
+
userPositions_id_gt = user_positions[len(user_positions) - 1]["id"]
|
318 |
+
else:
|
319 |
+
break
|
320 |
+
|
321 |
+
if len(all_results["data"]["user"]["userPositions"]) == 0:
|
322 |
+
return {"data": {"user": None}}
|
323 |
+
|
324 |
+
return all_results
|
325 |
+
|
326 |
+
|
327 |
+
def convert_hex_to_int(x: Union[str, float]) -> Union[int, float]:
|
328 |
+
"""Convert hex to int"""
|
329 |
+
if isinstance(x, float):
|
330 |
+
return np.nan
|
331 |
+
elif isinstance(x, str):
|
332 |
+
if x == INVALID_ANSWER_HEX:
|
333 |
+
return -1
|
334 |
+
else:
|
335 |
+
return int(x, 16)
|
336 |
+
|
337 |
+
|
338 |
+
def wei_to_unit(wei: int) -> float:
|
339 |
+
"""Converts wei to currency unit."""
|
340 |
+
return wei / 10**18
|
341 |
+
|
342 |
+
|
343 |
+
def _is_redeemed(user_json: dict[str, Any], fpmmTrade: dict[str, Any]) -> bool:
|
344 |
+
"""Returns whether the user has redeemed the position."""
|
345 |
+
user_positions = user_json["data"]["user"]["userPositions"]
|
346 |
+
outcomes_tokens_traded = int(fpmmTrade["outcomeTokensTraded"])
|
347 |
+
condition_id = fpmmTrade["fpmm.condition.id"]
|
348 |
+
|
349 |
+
for position in user_positions:
|
350 |
+
position_condition_ids = position["position"]["conditionIds"]
|
351 |
+
balance = int(position["balance"])
|
352 |
+
|
353 |
+
if condition_id in position_condition_ids:
|
354 |
+
if balance == 0:
|
355 |
+
return True
|
356 |
+
# return early
|
357 |
+
return False
|
358 |
+
return False
|
359 |
+
|
360 |
+
|
361 |
+
def create_fpmmTrades(rpc: str):
|
362 |
+
"""Create fpmmTrades for all trades."""
|
363 |
+
trades_json = _query_omen_xdai_subgraph(
|
364 |
+
from_timestamp=DEFAULT_FROM_TIMESTAMP,
|
365 |
+
to_timestamp=DEFAULT_TO_TIMESTAMP,
|
366 |
+
fpmm_from_timestamp=DEFAULT_FROM_TIMESTAMP,
|
367 |
+
fpmm_to_timestamp=DEFAULT_TO_TIMESTAMP,
|
368 |
+
)
|
369 |
+
|
370 |
+
# convert to dataframe
|
371 |
+
df = pd.DataFrame(trades_json["data"]["fpmmTrades"])
|
372 |
+
|
373 |
+
# convert creator to address
|
374 |
+
df["creator"] = df["creator"].apply(lambda x: x["id"])
|
375 |
+
|
376 |
+
# normalize fpmm column
|
377 |
+
fpmm = pd.json_normalize(df["fpmm"])
|
378 |
+
fpmm.columns = [f"fpmm.{col}" for col in fpmm.columns]
|
379 |
+
df = pd.concat([df, fpmm], axis=1)
|
380 |
+
|
381 |
+
# drop fpmm column
|
382 |
+
df.drop(["fpmm"], axis=1, inplace=True)
|
383 |
+
|
384 |
+
# change creator to creator_address
|
385 |
+
df.rename(columns={"creator": "trader_address"}, inplace=True)
|
386 |
+
|
387 |
+
# save to csv
|
388 |
+
df.to_csv(DATA_DIR / "fpmmTrades.csv", index=False)
|
389 |
+
|
390 |
+
return df
|
391 |
+
|
392 |
+
|
393 |
+
def prepare_profitalibity_data(rpc: str):
|
394 |
+
"""Prepare data for profitalibity analysis."""
|
395 |
+
|
396 |
+
# Check if tools.py is in the same directory
|
397 |
+
try:
|
398 |
+
# load tools.csv
|
399 |
+
tools = pd.read_csv(DATA_DIR / "tools.csv")
|
400 |
+
|
401 |
+
# make sure creator_address is in the columns
|
402 |
+
assert "trader_address" in tools.columns, "trader_address column not found"
|
403 |
+
|
404 |
+
# lowercase and strip creator_address
|
405 |
+
tools["trader_address"] = tools["trader_address"].str.lower().str.strip()
|
406 |
+
|
407 |
+
# drop duplicates
|
408 |
+
tools.drop_duplicates(inplace=True)
|
409 |
+
|
410 |
+
print("tools.csv loaded")
|
411 |
+
except FileNotFoundError:
|
412 |
+
print("tools.csv not found. Please run tools.py first.")
|
413 |
+
return
|
414 |
+
|
415 |
+
# Check if fpmmTrades.csv is in the same directory
|
416 |
+
try:
|
417 |
+
# load fpmmTrades.csv
|
418 |
+
fpmmTrades = pd.read_csv(DATA_DIR / "fpmmTrades.csv")
|
419 |
+
print("fpmmTrades.csv loaded")
|
420 |
+
except FileNotFoundError:
|
421 |
+
print("fpmmTrades.csv not found. Creating fpmmTrades.csv...")
|
422 |
+
fpmmTrades = create_fpmmTrades(rpc)
|
423 |
+
fpmmTrades.to_csv(DATA_DIR / "fpmmTrades.csv", index=False)
|
424 |
+
fpmmTrades = pd.read_csv(DATA_DIR / "fpmmTrades.csv")
|
425 |
+
|
426 |
+
# make sure trader_address is in the columns
|
427 |
+
assert "trader_address" in fpmmTrades.columns, "trader_address column not found"
|
428 |
+
|
429 |
+
# lowercase and strip creator_address
|
430 |
+
fpmmTrades["trader_address"] = fpmmTrades["trader_address"].str.lower().str.strip()
|
431 |
+
|
432 |
+
return fpmmTrades, tools
|
433 |
+
|
434 |
+
|
435 |
+
def determine_market_status(trade, current_answer):
|
436 |
+
"""Determine the market status of a trade."""
|
437 |
+
if current_answer is np.nan and time.time() >= trade["fpmm.openingTimestamp"]:
|
438 |
+
return MarketState.PENDING
|
439 |
+
elif current_answer == np.nan:
|
440 |
+
return MarketState.OPEN
|
441 |
+
elif trade["fpmm.isPendingArbitration"]:
|
442 |
+
return MarketState.ARBITRATING
|
443 |
+
elif time.time() < trade["fpmm.answerFinalizedTimestamp"]:
|
444 |
+
return MarketState.FINALIZING
|
445 |
+
return MarketState.CLOSED
|
446 |
+
|
447 |
+
|
448 |
+
def analyse_trader(
|
449 |
+
trader_address: str, fpmmTrades: pd.DataFrame, tools: pd.DataFrame
|
450 |
+
) -> pd.DataFrame:
|
451 |
+
"""Analyse a trader's trades"""
|
452 |
+
# Filter trades and tools for the given trader
|
453 |
+
trades = fpmmTrades[fpmmTrades["trader_address"] == trader_address]
|
454 |
+
tools_usage = tools[tools["trader_address"] == trader_address]
|
455 |
+
|
456 |
+
# Prepare the DataFrame
|
457 |
+
trades_df = pd.DataFrame(columns=ALL_TRADES_STATS_DF_COLS)
|
458 |
+
if trades.empty:
|
459 |
+
return trades_df
|
460 |
+
|
461 |
+
# Fetch user's conditional tokens gc graph
|
462 |
+
try:
|
463 |
+
user_json = _query_conditional_tokens_gc_subgraph(trader_address)
|
464 |
+
except Exception as e:
|
465 |
+
print(f"Error fetching user data: {e}")
|
466 |
+
return trades_df
|
467 |
+
|
468 |
+
# Iterate over the trades
|
469 |
+
for i, trade in tqdm(trades.iterrows(), total=len(trades), desc="Analysing trades"):
|
470 |
+
try:
|
471 |
+
# Parsing and computing shared values
|
472 |
+
creation_timestamp_utc = datetime.datetime.fromtimestamp(
|
473 |
+
trade["creationTimestamp"], tz=datetime.timezone.utc
|
474 |
+
)
|
475 |
+
collateral_amount = wei_to_unit(float(trade["collateralAmount"]))
|
476 |
+
fee_amount = wei_to_unit(float(trade["feeAmount"]))
|
477 |
+
outcome_tokens_traded = wei_to_unit(float(trade["outcomeTokensTraded"]))
|
478 |
+
earnings, winner_trade = (0, False)
|
479 |
+
redemption = _is_redeemed(user_json, trade)
|
480 |
+
current_answer = trade["fpmm.currentAnswer"]
|
481 |
+
|
482 |
+
# Determine market status
|
483 |
+
market_status = determine_market_status(trade, current_answer)
|
484 |
+
|
485 |
+
# Skip non-closed markets
|
486 |
+
if market_status != MarketState.CLOSED:
|
487 |
+
print(
|
488 |
+
f"Skipping trade {i} because market is not closed. Market Status: {market_status}"
|
489 |
+
)
|
490 |
+
continue
|
491 |
+
current_answer = convert_hex_to_int(current_answer)
|
492 |
+
|
493 |
+
# Compute invalidity
|
494 |
+
is_invalid = current_answer == INVALID_ANSWER
|
495 |
+
|
496 |
+
# Compute earnings and winner trade status
|
497 |
+
if is_invalid:
|
498 |
+
earnings = collateral_amount
|
499 |
+
winner_trade = False
|
500 |
+
elif trade["outcomeIndex"] == current_answer:
|
501 |
+
earnings = outcome_tokens_traded
|
502 |
+
winner_trade = True
|
503 |
+
|
504 |
+
# Compute mech calls
|
505 |
+
num_mech_calls = (
|
506 |
+
tools_usage["prompt_request"].apply(lambda x: trade["title"] in x).sum()
|
507 |
+
)
|
508 |
+
net_earnings = (
|
509 |
+
earnings
|
510 |
+
- fee_amount
|
511 |
+
- (num_mech_calls * DEFAULT_MECH_FEE)
|
512 |
+
- collateral_amount
|
513 |
+
)
|
514 |
+
|
515 |
+
# Assign values to DataFrame
|
516 |
+
trades_df.loc[i] = {
|
517 |
+
"trader_address": trader_address,
|
518 |
+
"trade_id": trade["id"],
|
519 |
+
"market_status": market_status.name,
|
520 |
+
"creation_timestamp": creation_timestamp_utc,
|
521 |
+
"title": trade["title"],
|
522 |
+
"collateral_amount": collateral_amount,
|
523 |
+
"outcome_index": trade["outcomeIndex"],
|
524 |
+
"trade_fee_amount": fee_amount,
|
525 |
+
"outcomes_tokens_traded": outcome_tokens_traded,
|
526 |
+
"current_answer": current_answer,
|
527 |
+
"is_invalid": is_invalid,
|
528 |
+
"winning_trade": winner_trade,
|
529 |
+
"earnings": earnings,
|
530 |
+
"redeemed": redemption,
|
531 |
+
"redeemed_amount": earnings if redemption else 0,
|
532 |
+
"num_mech_calls": num_mech_calls,
|
533 |
+
"mech_fee_amount": num_mech_calls * DEFAULT_MECH_FEE,
|
534 |
+
"net_earnings": net_earnings,
|
535 |
+
"roi": net_earnings / collateral_amount,
|
536 |
+
}
|
537 |
+
|
538 |
+
except Exception as e:
|
539 |
+
print(f"Error processing trade {i}: {e}")
|
540 |
+
continue
|
541 |
+
|
542 |
+
return trades_df
|
543 |
+
|
544 |
+
|
545 |
+
def analyse_all_traders(trades: pd.DataFrame, tools: pd.DataFrame) -> pd.DataFrame:
|
546 |
+
"""Analyse all creators."""
|
547 |
+
all_traders = []
|
548 |
+
for trader in tqdm(
|
549 |
+
trades["trader_address"].unique(),
|
550 |
+
total=len(trades["trader_address"].unique()),
|
551 |
+
desc="Analysing creators",
|
552 |
+
):
|
553 |
+
all_traders.append(analyse_trader(trader, trades, tools))
|
554 |
+
|
555 |
+
# concat all creators
|
556 |
+
all_creators_df = pd.concat(all_traders)
|
557 |
+
|
558 |
+
return all_creators_df
|
559 |
+
|
560 |
+
|
561 |
+
def summary_analyse(df):
|
562 |
+
"""Summarise profitability analysis."""
|
563 |
+
# Ensure DataFrame is not empty
|
564 |
+
if df.empty:
|
565 |
+
return pd.DataFrame(columns=SUMMARY_STATS_DF_COLS)
|
566 |
+
|
567 |
+
# Group by trader_address
|
568 |
+
grouped = df.groupby("trader_address")
|
569 |
+
|
570 |
+
# Create summary DataFrame
|
571 |
+
summary_df = grouped.agg(
|
572 |
+
num_trades=("trader_address", "size"),
|
573 |
+
num_winning_trades=("winning_trade", lambda x: float((x).sum())),
|
574 |
+
num_redeemed=("redeemed", lambda x: float(x.sum())),
|
575 |
+
total_investment=("collateral_amount", "sum"),
|
576 |
+
total_trade_fees=("trade_fee_amount", "sum"),
|
577 |
+
num_mech_calls=("num_mech_calls", "sum"),
|
578 |
+
total_mech_fees=("mech_fee_amount", "sum"),
|
579 |
+
total_earnings=("earnings", "sum"),
|
580 |
+
total_redeemed_amount=("redeemed_amount", "sum"),
|
581 |
+
total_net_earnings=("net_earnings", "sum"),
|
582 |
+
)
|
583 |
+
|
584 |
+
# Calculating additional columns
|
585 |
+
summary_df["total_roi"] = (
|
586 |
+
summary_df["total_net_earnings"] / summary_df["total_investment"]
|
587 |
+
)
|
588 |
+
summary_df["mean_mech_calls_per_trade"] = (
|
589 |
+
summary_df["num_mech_calls"] / summary_df["num_trades"]
|
590 |
+
)
|
591 |
+
summary_df["mean_mech_fee_amount_per_trade"] = (
|
592 |
+
summary_df["total_mech_fees"] / summary_df["num_trades"]
|
593 |
+
)
|
594 |
+
summary_df["total_net_earnings_wo_mech_fees"] = (
|
595 |
+
summary_df["total_net_earnings"] + summary_df["total_mech_fees"]
|
596 |
+
)
|
597 |
+
summary_df["total_roi_wo_mech_fees"] = (
|
598 |
+
summary_df["total_net_earnings_wo_mech_fees"] / summary_df["total_investment"]
|
599 |
+
)
|
600 |
+
|
601 |
+
# Resetting index to include trader_address
|
602 |
+
summary_df.reset_index(inplace=True)
|
603 |
+
|
604 |
+
return summary_df
|
605 |
+
|
606 |
+
|
607 |
+
def run_profitability_analysis(rpc):
|
608 |
+
"""Create all trades analysis."""
|
609 |
+
|
610 |
+
# load dfs from csv for analysis
|
611 |
+
print("Preparing data...")
|
612 |
+
fpmmTrades, tools = prepare_profitalibity_data(rpc)
|
613 |
+
|
614 |
+
# all trades profitability df
|
615 |
+
print("Analysing trades...")
|
616 |
+
all_trades_df = analyse_all_traders(fpmmTrades, tools)
|
617 |
+
|
618 |
+
# summarize profitability df
|
619 |
+
print("Summarising trades...")
|
620 |
+
summary_df = summary_analyse(all_trades_df)
|
621 |
+
|
622 |
+
# save to csv
|
623 |
+
all_trades_df.to_csv(DATA_DIR / "all_trades_profitability.csv", index=False)
|
624 |
+
summary_df.to_csv(DATA_DIR / "summary_profitability.csv", index=False)
|
625 |
+
|
626 |
+
print("Done!")
|
627 |
+
|
628 |
+
return all_trades_df, summary_df
|
629 |
+
|
630 |
+
|
631 |
+
if __name__ == "__main__":
|
632 |
+
rpc = "https://lb.nodies.app/v1/406d8dcc043f4cb3959ed7d6673d311a"
|
633 |
+
run_profitability_analysis(rpc)
|
scripts/pull_data.py
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import re
|
3 |
+
import os
|
4 |
+
import pickle
|
5 |
+
from datetime import datetime
|
6 |
+
from concurrent.futures import ThreadPoolExecutor
|
7 |
+
from tqdm import tqdm
|
8 |
+
from web3 import Web3
|
9 |
+
from typing import Optional
|
10 |
+
import pandas as pd
|
11 |
+
from pathlib import Path
|
12 |
+
from functools import partial
|
13 |
+
from markets import (
|
14 |
+
etl as mkt_etl,
|
15 |
+
DEFAULT_FILENAME as MARKETS_FILENAME,
|
16 |
+
)
|
17 |
+
from tools import (
|
18 |
+
etl as tools_etl,
|
19 |
+
DEFAULT_FILENAME as TOOLS_FILENAME,
|
20 |
+
)
|
21 |
+
from profitability import run_profitability_analysis
|
22 |
+
import gc
|
23 |
+
|
24 |
+
logging.basicConfig(level=logging.INFO)
|
25 |
+
|
26 |
+
SCRIPTS_DIR = Path(__file__).parent
|
27 |
+
ROOT_DIR = SCRIPTS_DIR.parent
|
28 |
+
DATA_DIR = ROOT_DIR / "data"
|
29 |
+
|
30 |
+
def get_question(text: str) -> str:
|
31 |
+
"""Get the question from a text."""
|
32 |
+
# Regex to find text within double quotes
|
33 |
+
pattern = r'"([^"]*)"'
|
34 |
+
|
35 |
+
# Find all occurrences
|
36 |
+
questions = re.findall(pattern, text)
|
37 |
+
|
38 |
+
# Assuming you want the first question if there are multiple
|
39 |
+
question = questions[0] if questions else None
|
40 |
+
|
41 |
+
return question
|
42 |
+
|
43 |
+
|
44 |
+
def current_answer(text: str, fpmms: pd.DataFrame) -> Optional[str]:
|
45 |
+
"""Get the current answer for a question."""
|
46 |
+
row = fpmms[fpmms['title'] == text]
|
47 |
+
if row.shape[0] == 0:
|
48 |
+
return None
|
49 |
+
return row['currentAnswer'].values[0]
|
50 |
+
|
51 |
+
|
52 |
+
def block_number_to_timestamp(block_number: int, web3: Web3) -> str:
|
53 |
+
"""Convert a block number to a timestamp."""
|
54 |
+
block = web3.eth.get_block(block_number)
|
55 |
+
timestamp = datetime.utcfromtimestamp(block['timestamp'])
|
56 |
+
return timestamp.strftime('%Y-%m-%d %H:%M:%S')
|
57 |
+
|
58 |
+
|
59 |
+
def parallelize_timestamp_conversion(df: pd.DataFrame, function: callable) -> list:
|
60 |
+
"""Parallelize the timestamp conversion."""
|
61 |
+
block_numbers = df['request_block'].tolist()
|
62 |
+
with ThreadPoolExecutor(max_workers=10) as executor:
|
63 |
+
results = list(tqdm(executor.map(function, block_numbers), total=len(block_numbers)))
|
64 |
+
return results
|
65 |
+
|
66 |
+
|
67 |
+
def weekly_analysis():
|
68 |
+
"""Run weekly analysis for the FPMMS project."""
|
69 |
+
rpc = "https://lb.nodies.app/v1/406d8dcc043f4cb3959ed7d6673d311a"
|
70 |
+
web3 = Web3(Web3.HTTPProvider(rpc))
|
71 |
+
|
72 |
+
# Run markets ETL
|
73 |
+
logging.info("Running markets ETL")
|
74 |
+
mkt_etl(MARKETS_FILENAME)
|
75 |
+
logging.info("Markets ETL completed")
|
76 |
+
|
77 |
+
# Run tools ETL
|
78 |
+
logging.info("Running tools ETL")
|
79 |
+
tools_etl(
|
80 |
+
rpcs=[rpc],
|
81 |
+
filename=TOOLS_FILENAME,
|
82 |
+
full_contents=True,
|
83 |
+
)
|
84 |
+
logging.info("Tools ETL completed")
|
85 |
+
|
86 |
+
# Run profitability analysis
|
87 |
+
logging.info("Running profitability analysis")
|
88 |
+
if os.path.exists(DATA_DIR / "fpmmTrades.csv"):
|
89 |
+
os.remove(DATA_DIR / "fpmmTrades.csv")
|
90 |
+
run_profitability_analysis(
|
91 |
+
rpc=rpc,
|
92 |
+
)
|
93 |
+
logging.info("Profitability analysis completed")
|
94 |
+
|
95 |
+
# Get currentAnswer from FPMMS
|
96 |
+
fpmms = pd.read_csv(DATA_DIR / MARKETS_FILENAME)
|
97 |
+
tools = pd.read_csv(DATA_DIR / TOOLS_FILENAME)
|
98 |
+
|
99 |
+
# Get the question from the tools
|
100 |
+
logging.info("Getting the question and current answer for the tools")
|
101 |
+
tools['title'] = tools['prompt_request'].apply(lambda x: get_question(x))
|
102 |
+
tools['currentAnswer'] = tools['title'].apply(lambda x: current_answer(x, fpmms))
|
103 |
+
|
104 |
+
tools['currentAnswer'] = tools['currentAnswer'].str.replace('yes', 'Yes')
|
105 |
+
tools['currentAnswer'] = tools['currentAnswer'].str.replace('no', 'No')
|
106 |
+
|
107 |
+
# Convert block number to timestamp
|
108 |
+
logging.info("Converting block number to timestamp")
|
109 |
+
t_map = pickle.load(open(DATA_DIR / "t_map.pkl", "rb"))
|
110 |
+
tools['request_time'] = tools['request_block'].map(t_map)
|
111 |
+
|
112 |
+
# Identify tools with missing request_time and fill them
|
113 |
+
missing_time_indices = tools[tools['request_time'].isna()].index
|
114 |
+
if not missing_time_indices.empty:
|
115 |
+
partial_block_number_to_timestamp = partial(block_number_to_timestamp, web3=web3)
|
116 |
+
missing_timestamps = parallelize_timestamp_conversion(tools.loc[missing_time_indices], partial_block_number_to_timestamp)
|
117 |
+
|
118 |
+
# Update the original DataFrame with the missing timestamps
|
119 |
+
for i, timestamp in zip(missing_time_indices, missing_timestamps):
|
120 |
+
tools.at[i, 'request_time'] = timestamp
|
121 |
+
|
122 |
+
tools['request_month_year'] = pd.to_datetime(tools['request_time']).dt.strftime('%Y-%m')
|
123 |
+
tools['request_month_year_week'] = pd.to_datetime(tools['request_time']).dt.to_period('W').astype(str)
|
124 |
+
|
125 |
+
# Save the tools
|
126 |
+
tools.to_csv(DATA_DIR / TOOLS_FILENAME, index=False)
|
127 |
+
|
128 |
+
# Update t_map with new timestamps
|
129 |
+
new_timestamps = tools[['request_block', 'request_time']].dropna().set_index('request_block').to_dict()['request_time']
|
130 |
+
t_map.update(new_timestamps)
|
131 |
+
|
132 |
+
with open(DATA_DIR / "t_map.pkl", "wb") as f:
|
133 |
+
pickle.dump(t_map, f)
|
134 |
+
# clean and release all memory
|
135 |
+
del tools
|
136 |
+
del fpmms
|
137 |
+
del t_map
|
138 |
+
gc.collect()
|
139 |
+
|
140 |
+
logging.info("Weekly analysis files generated and saved")
|
141 |
+
|
142 |
+
|
143 |
+
if __name__ == "__main__":
|
144 |
+
weekly_analysis()
|
145 |
+
|
scripts/tools.py
ADDED
@@ -0,0 +1,765 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# ------------------------------------------------------------------------------
|
3 |
+
#
|
4 |
+
# Copyright 2023 Valory AG
|
5 |
+
#
|
6 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
7 |
+
# you may not use this file except in compliance with the License.
|
8 |
+
# You may obtain a copy of the License at
|
9 |
+
#
|
10 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
11 |
+
#
|
12 |
+
# Unless required by applicable law or agreed to in writing, software
|
13 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
14 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
15 |
+
# See the License for the specific language governing permissions and
|
16 |
+
# limitations under the License.
|
17 |
+
#
|
18 |
+
# ------------------------------------------------------------------------------
|
19 |
+
|
20 |
+
import json
|
21 |
+
import os.path
|
22 |
+
import re
|
23 |
+
import sys
|
24 |
+
import time
|
25 |
+
import random
|
26 |
+
from dataclasses import dataclass
|
27 |
+
from enum import Enum
|
28 |
+
from io import StringIO
|
29 |
+
from typing import (
|
30 |
+
Optional,
|
31 |
+
List,
|
32 |
+
Dict,
|
33 |
+
Any,
|
34 |
+
Union,
|
35 |
+
Callable,
|
36 |
+
Tuple,
|
37 |
+
)
|
38 |
+
|
39 |
+
import pandas as pd
|
40 |
+
import requests
|
41 |
+
from json.decoder import JSONDecodeError
|
42 |
+
from eth_typing import ChecksumAddress
|
43 |
+
from eth_utils import to_checksum_address
|
44 |
+
from requests.adapters import HTTPAdapter
|
45 |
+
from requests.exceptions import (
|
46 |
+
ReadTimeout as RequestsReadTimeoutError,
|
47 |
+
HTTPError as RequestsHTTPError,
|
48 |
+
)
|
49 |
+
from tqdm import tqdm
|
50 |
+
from urllib3 import Retry
|
51 |
+
from urllib3.exceptions import (
|
52 |
+
ReadTimeoutError as Urllib3ReadTimeoutError,
|
53 |
+
HTTPError as Urllib3HTTPError,
|
54 |
+
)
|
55 |
+
from web3 import Web3, HTTPProvider
|
56 |
+
from web3.exceptions import MismatchedABI
|
57 |
+
from web3.types import BlockParams
|
58 |
+
from concurrent.futures import ThreadPoolExecutor, as_completed
|
59 |
+
from pathlib import Path
|
60 |
+
|
61 |
+
|
62 |
+
CONTRACTS_PATH = "contracts"
|
63 |
+
MECH_TO_INFO = {
|
64 |
+
# this block number is when the creator had its first tx ever, and after this mech's creation
|
65 |
+
"0xff82123dfb52ab75c417195c5fdb87630145ae81": ("old_mech_abi.json", 28911547),
|
66 |
+
# this block number is when this mech was created
|
67 |
+
"0x77af31de935740567cf4ff1986d04b2c964a786a": ("new_mech_abi.json", 30776879),
|
68 |
+
}
|
69 |
+
# optionally set the latest block to stop searching for the delivered events
|
70 |
+
LATEST_BLOCK: Optional[int] = None
|
71 |
+
LATEST_BLOCK_NAME: BlockParams = "latest"
|
72 |
+
BLOCK_DATA_NUMBER = "number"
|
73 |
+
BLOCKS_CHUNK_SIZE = 10_000
|
74 |
+
REDUCE_FACTOR = 0.25
|
75 |
+
EVENT_ARGUMENTS = "args"
|
76 |
+
DATA = "data"
|
77 |
+
REQUEST_ID = "requestId"
|
78 |
+
REQUEST_ID_FIELD = "request_id"
|
79 |
+
REQUEST_SENDER = "sender"
|
80 |
+
PROMPT_FIELD = "prompt"
|
81 |
+
BLOCK_FIELD = "block"
|
82 |
+
CID_PREFIX = "f01701220"
|
83 |
+
HTTP = "http://"
|
84 |
+
HTTPS = HTTP[:4] + "s" + HTTP[4:]
|
85 |
+
IPFS_ADDRESS = f"{HTTPS}gateway.autonolas.tech/ipfs/"
|
86 |
+
IPFS_LINKS_SERIES_NAME = "ipfs_links"
|
87 |
+
BACKOFF_FACTOR = 1
|
88 |
+
STATUS_FORCELIST = [404, 500, 502, 503, 504]
|
89 |
+
DEFAULT_FILENAME = "tools.csv"
|
90 |
+
RE_RPC_FILTER_ERROR = r"Filter with id: '\d+' does not exist."
|
91 |
+
ABI_ERROR = "The event signature did not match the provided ABI"
|
92 |
+
SLEEP = 0.5
|
93 |
+
HTTP_TIMEOUT = 10
|
94 |
+
N_IPFS_RETRIES = 1
|
95 |
+
N_RPC_RETRIES = 100
|
96 |
+
RPC_POLL_INTERVAL = 0.05
|
97 |
+
IPFS_POLL_INTERVAL = 0.05
|
98 |
+
FORMAT_UPDATE_BLOCK_NUMBER = 30411638
|
99 |
+
IRRELEVANT_TOOLS = [
|
100 |
+
"openai-text-davinci-002",
|
101 |
+
"openai-text-davinci-003",
|
102 |
+
"openai-gpt-3.5-turbo",
|
103 |
+
"openai-gpt-4",
|
104 |
+
"stabilityai-stable-diffusion-v1-5",
|
105 |
+
"stabilityai-stable-diffusion-xl-beta-v2-2-2",
|
106 |
+
"stabilityai-stable-diffusion-512-v2-1",
|
107 |
+
"stabilityai-stable-diffusion-768-v2-1",
|
108 |
+
"deepmind-optimization-strong",
|
109 |
+
"deepmind-optimization",
|
110 |
+
]
|
111 |
+
# this is how frequently we will keep a snapshot of the progress so far in terms of blocks' batches
|
112 |
+
# for example, the value 1 means that for every `BLOCKS_CHUNK_SIZE` blocks that we search, we also store the snapshot
|
113 |
+
SNAPSHOT_RATE = 10
|
114 |
+
NUM_WORKERS = 10
|
115 |
+
GET_CONTENTS_BATCH_SIZE = 1000
|
116 |
+
SCRIPTS_DIR = Path(__file__).parent
|
117 |
+
ROOT_DIR = SCRIPTS_DIR.parent
|
118 |
+
DATA_DIR = ROOT_DIR / "data"
|
119 |
+
|
120 |
+
class MechEventName(Enum):
|
121 |
+
"""The mech's event names."""
|
122 |
+
|
123 |
+
REQUEST = "Request"
|
124 |
+
DELIVER = "Deliver"
|
125 |
+
|
126 |
+
|
127 |
+
@dataclass
|
128 |
+
class MechEvent:
|
129 |
+
"""A mech's on-chain event representation."""
|
130 |
+
|
131 |
+
for_block: int
|
132 |
+
requestId: int
|
133 |
+
data: bytes
|
134 |
+
sender: str
|
135 |
+
|
136 |
+
def _ipfs_link(self) -> Optional[str]:
|
137 |
+
"""Get the ipfs link for the data."""
|
138 |
+
return f"{IPFS_ADDRESS}{CID_PREFIX}{self.data.hex()}"
|
139 |
+
|
140 |
+
@property
|
141 |
+
def ipfs_request_link(self) -> Optional[str]:
|
142 |
+
"""Get the IPFS link for the request."""
|
143 |
+
return f"{self._ipfs_link()}/metadata.json"
|
144 |
+
|
145 |
+
@property
|
146 |
+
def ipfs_deliver_link(self) -> Optional[str]:
|
147 |
+
"""Get the IPFS link for the deliver."""
|
148 |
+
if self.requestId is None:
|
149 |
+
return None
|
150 |
+
return f"{self._ipfs_link()}/{self.requestId}"
|
151 |
+
|
152 |
+
def ipfs_link(self, event_name: MechEventName) -> Optional[str]:
|
153 |
+
"""Get the ipfs link based on the event."""
|
154 |
+
if event_name == MechEventName.REQUEST:
|
155 |
+
if self.for_block < FORMAT_UPDATE_BLOCK_NUMBER:
|
156 |
+
return self._ipfs_link()
|
157 |
+
return self.ipfs_request_link
|
158 |
+
if event_name == MechEventName.DELIVER:
|
159 |
+
return self.ipfs_deliver_link
|
160 |
+
return None
|
161 |
+
|
162 |
+
|
163 |
+
@dataclass(init=False)
|
164 |
+
class MechRequest:
|
165 |
+
"""A structure for a request to a mech."""
|
166 |
+
|
167 |
+
request_id: Optional[int]
|
168 |
+
request_block: Optional[int]
|
169 |
+
prompt_request: Optional[str]
|
170 |
+
tool: Optional[str]
|
171 |
+
nonce: Optional[str]
|
172 |
+
trader_address: Optional[str]
|
173 |
+
|
174 |
+
def __init__(self, **kwargs: Any) -> None:
|
175 |
+
"""Initialize the request ignoring extra keys."""
|
176 |
+
self.request_id = int(kwargs.pop(REQUEST_ID, 0))
|
177 |
+
self.request_block = int(kwargs.pop(BLOCK_FIELD, 0))
|
178 |
+
self.prompt_request = kwargs.pop(PROMPT_FIELD, None)
|
179 |
+
self.tool = kwargs.pop("tool", None)
|
180 |
+
self.nonce = kwargs.pop("nonce", None)
|
181 |
+
self.trader_address = kwargs.pop("sender", None)
|
182 |
+
|
183 |
+
|
184 |
+
@dataclass(init=False)
|
185 |
+
class PredictionResponse:
|
186 |
+
"""A response of a prediction."""
|
187 |
+
|
188 |
+
p_yes: float
|
189 |
+
p_no: float
|
190 |
+
confidence: float
|
191 |
+
info_utility: float
|
192 |
+
vote: Optional[str]
|
193 |
+
win_probability: Optional[float]
|
194 |
+
|
195 |
+
def __init__(self, **kwargs: Any) -> None:
|
196 |
+
"""Initialize the mech's prediction ignoring extra keys."""
|
197 |
+
try:
|
198 |
+
self.p_yes = float(kwargs.pop("p_yes"))
|
199 |
+
self.p_no = float(kwargs.pop("p_no"))
|
200 |
+
self.confidence = float(kwargs.pop("confidence"))
|
201 |
+
self.info_utility = float(kwargs.pop("info_utility"))
|
202 |
+
self.win_probability = 0
|
203 |
+
|
204 |
+
# Validate probabilities
|
205 |
+
probabilities = {
|
206 |
+
"p_yes": self.p_yes,
|
207 |
+
"p_no": self.p_no,
|
208 |
+
"confidence": self.confidence,
|
209 |
+
"info_utility": self.info_utility,
|
210 |
+
}
|
211 |
+
|
212 |
+
for name, prob in probabilities.items():
|
213 |
+
if not 0 <= prob <= 1:
|
214 |
+
raise ValueError(f"{name} probability is out of bounds: {prob}")
|
215 |
+
|
216 |
+
if self.p_yes + self.p_no != 1:
|
217 |
+
raise ValueError(
|
218 |
+
f"Sum of p_yes and p_no is not 1: {self.p_yes} + {self.p_no}"
|
219 |
+
)
|
220 |
+
|
221 |
+
self.vote = self.get_vote()
|
222 |
+
self.win_probability = self.get_win_probability()
|
223 |
+
|
224 |
+
except KeyError as e:
|
225 |
+
raise KeyError(f"Missing key in PredictionResponse: {e}")
|
226 |
+
except ValueError as e:
|
227 |
+
raise ValueError(f"Invalid value in PredictionResponse: {e}")
|
228 |
+
|
229 |
+
def get_vote(self) -> Optional[str]:
|
230 |
+
"""Return the vote."""
|
231 |
+
if self.p_no == self.p_yes:
|
232 |
+
return None
|
233 |
+
if self.p_no > self.p_yes:
|
234 |
+
return "No"
|
235 |
+
return "Yes"
|
236 |
+
|
237 |
+
def get_win_probability(self) -> Optional[float]:
|
238 |
+
"""Return the probability estimation for winning with vote."""
|
239 |
+
return max(self.p_no, self.p_yes)
|
240 |
+
|
241 |
+
|
242 |
+
@dataclass(init=False)
|
243 |
+
class MechResponse:
|
244 |
+
"""A structure for the response of a mech."""
|
245 |
+
|
246 |
+
request_id: int
|
247 |
+
deliver_block: Optional[int]
|
248 |
+
result: Optional[PredictionResponse]
|
249 |
+
error: Optional[str]
|
250 |
+
error_message: Optional[str]
|
251 |
+
prompt_response: Optional[str]
|
252 |
+
mech_address: Optional[str]
|
253 |
+
|
254 |
+
def __init__(self, **kwargs: Any) -> None:
|
255 |
+
"""Initialize the mech's response ignoring extra keys."""
|
256 |
+
self.error = kwargs.get("error", None)
|
257 |
+
self.request_id = int(kwargs.get(REQUEST_ID, 0))
|
258 |
+
self.deliver_block = int(kwargs.get(BLOCK_FIELD, 0))
|
259 |
+
self.result = kwargs.get("result", None)
|
260 |
+
self.prompt_response = kwargs.get(PROMPT_FIELD, None)
|
261 |
+
self.mech_address = kwargs.get("sender", None)
|
262 |
+
|
263 |
+
if self.result != "Invalid response":
|
264 |
+
self.error_message = kwargs.get("error_message", None)
|
265 |
+
|
266 |
+
try:
|
267 |
+
if isinstance(self.result, str):
|
268 |
+
kwargs = json.loads(self.result)
|
269 |
+
self.result = PredictionResponse(**kwargs)
|
270 |
+
self.error = str(False)
|
271 |
+
|
272 |
+
except JSONDecodeError:
|
273 |
+
self.error_message = "Response parsing error"
|
274 |
+
self.error = str(True)
|
275 |
+
|
276 |
+
except Exception as e:
|
277 |
+
self.error_message = str(e)
|
278 |
+
self.error = str(True)
|
279 |
+
|
280 |
+
else:
|
281 |
+
self.error_message = "Invalid response from tool"
|
282 |
+
self.error = str(True)
|
283 |
+
self.result = None
|
284 |
+
|
285 |
+
|
286 |
+
EVENT_TO_MECH_STRUCT = {
|
287 |
+
MechEventName.REQUEST: MechRequest,
|
288 |
+
MechEventName.DELIVER: MechResponse,
|
289 |
+
}
|
290 |
+
|
291 |
+
|
292 |
+
def parse_args() -> str:
|
293 |
+
"""Parse the arguments and return the RPC."""
|
294 |
+
if len(sys.argv) != 2:
|
295 |
+
raise ValueError("Expected the RPC as a positional argument.")
|
296 |
+
return sys.argv[1]
|
297 |
+
|
298 |
+
|
299 |
+
def read_abi(abi_path: str) -> str:
|
300 |
+
"""Read and return the wxDAI contract's ABI."""
|
301 |
+
with open(abi_path) as abi_file:
|
302 |
+
return abi_file.read()
|
303 |
+
|
304 |
+
|
305 |
+
def reduce_window(contract_instance, event, from_block, batch_size, latest_block):
|
306 |
+
"""Dynamically reduce the batch size window."""
|
307 |
+
keep_fraction = 1 - REDUCE_FACTOR
|
308 |
+
events_filter = contract_instance.events[event].build_filter()
|
309 |
+
events_filter.fromBlock = from_block
|
310 |
+
batch_size = int(batch_size * keep_fraction)
|
311 |
+
events_filter.toBlock = min(from_block + batch_size, latest_block)
|
312 |
+
tqdm.write(f"RPC timed out! Resizing batch size to {batch_size}.")
|
313 |
+
time.sleep(SLEEP)
|
314 |
+
return events_filter, batch_size
|
315 |
+
|
316 |
+
|
317 |
+
def get_events(
|
318 |
+
w3: Web3,
|
319 |
+
event: str,
|
320 |
+
mech_address: ChecksumAddress,
|
321 |
+
mech_abi_path: str,
|
322 |
+
earliest_block: int,
|
323 |
+
latest_block: int,
|
324 |
+
) -> List:
|
325 |
+
"""Get the delivered events."""
|
326 |
+
abi = read_abi(mech_abi_path)
|
327 |
+
contract_instance = w3.eth.contract(address=mech_address, abi=abi)
|
328 |
+
|
329 |
+
events = []
|
330 |
+
from_block = earliest_block
|
331 |
+
batch_size = BLOCKS_CHUNK_SIZE
|
332 |
+
with tqdm(
|
333 |
+
total=latest_block - from_block,
|
334 |
+
desc=f"Searching {event} events for mech {mech_address}",
|
335 |
+
unit="blocks",
|
336 |
+
) as pbar:
|
337 |
+
while from_block < latest_block:
|
338 |
+
events_filter = contract_instance.events[event].build_filter()
|
339 |
+
events_filter.fromBlock = from_block
|
340 |
+
events_filter.toBlock = min(from_block + batch_size, latest_block)
|
341 |
+
|
342 |
+
entries = None
|
343 |
+
retries = 0
|
344 |
+
while entries is None:
|
345 |
+
try:
|
346 |
+
entries = events_filter.deploy(w3).get_all_entries()
|
347 |
+
retries = 0
|
348 |
+
except (RequestsHTTPError, Urllib3HTTPError) as exc:
|
349 |
+
if "Request Entity Too Large" in exc.args[0]:
|
350 |
+
events_filter, batch_size = reduce_window(
|
351 |
+
contract_instance,
|
352 |
+
event,
|
353 |
+
from_block,
|
354 |
+
batch_size,
|
355 |
+
latest_block,
|
356 |
+
)
|
357 |
+
except (Urllib3ReadTimeoutError, RequestsReadTimeoutError):
|
358 |
+
events_filter, batch_size = reduce_window(
|
359 |
+
contract_instance, event, from_block, batch_size, latest_block
|
360 |
+
)
|
361 |
+
except Exception as exc:
|
362 |
+
retries += 1
|
363 |
+
if retries == N_RPC_RETRIES:
|
364 |
+
tqdm.write(
|
365 |
+
f"Skipping events for blocks {events_filter.fromBlock} - {events_filter.toBlock} "
|
366 |
+
f"as the retries have been exceeded."
|
367 |
+
)
|
368 |
+
break
|
369 |
+
sleep = SLEEP * retries
|
370 |
+
if (
|
371 |
+
(
|
372 |
+
isinstance(exc, ValueError)
|
373 |
+
and re.match(
|
374 |
+
RE_RPC_FILTER_ERROR, exc.args[0].get("message", "")
|
375 |
+
)
|
376 |
+
is None
|
377 |
+
)
|
378 |
+
and not isinstance(exc, ValueError)
|
379 |
+
and not isinstance(exc, MismatchedABI)
|
380 |
+
):
|
381 |
+
tqdm.write(
|
382 |
+
f"An error was raised from the RPC: {exc}\n Retrying in {sleep} seconds."
|
383 |
+
)
|
384 |
+
time.sleep(sleep)
|
385 |
+
|
386 |
+
from_block += batch_size
|
387 |
+
pbar.update(batch_size)
|
388 |
+
|
389 |
+
if entries is None:
|
390 |
+
continue
|
391 |
+
|
392 |
+
chunk = list(entries)
|
393 |
+
events.extend(chunk)
|
394 |
+
time.sleep(RPC_POLL_INTERVAL)
|
395 |
+
|
396 |
+
return events
|
397 |
+
|
398 |
+
|
399 |
+
def parse_events(raw_events: List) -> List[MechEvent]:
|
400 |
+
"""Parse all the specified MechEvents."""
|
401 |
+
parsed_events = []
|
402 |
+
for event in raw_events:
|
403 |
+
for_block = event.get("blockNumber", 0)
|
404 |
+
args = event.get(EVENT_ARGUMENTS, {})
|
405 |
+
request_id = args.get(REQUEST_ID, 0)
|
406 |
+
data = args.get(DATA, b"")
|
407 |
+
sender = args.get(REQUEST_SENDER, "")
|
408 |
+
parsed_event = MechEvent(for_block, request_id, data, sender)
|
409 |
+
parsed_events.append(parsed_event)
|
410 |
+
|
411 |
+
return parsed_events
|
412 |
+
|
413 |
+
|
414 |
+
def create_session() -> requests.Session:
|
415 |
+
"""Create a session with a retry strategy."""
|
416 |
+
session = requests.Session()
|
417 |
+
retry_strategy = Retry(
|
418 |
+
total=N_IPFS_RETRIES + 1,
|
419 |
+
backoff_factor=BACKOFF_FACTOR,
|
420 |
+
status_forcelist=STATUS_FORCELIST,
|
421 |
+
)
|
422 |
+
adapter = HTTPAdapter(max_retries=retry_strategy)
|
423 |
+
for protocol in (HTTP, HTTPS):
|
424 |
+
session.mount(protocol, adapter)
|
425 |
+
|
426 |
+
return session
|
427 |
+
|
428 |
+
|
429 |
+
def request(
|
430 |
+
session: requests.Session, url: str, timeout: int = HTTP_TIMEOUT
|
431 |
+
) -> Optional[requests.Response]:
|
432 |
+
"""Perform a request with a session."""
|
433 |
+
try:
|
434 |
+
response = session.get(url, timeout=timeout)
|
435 |
+
response.raise_for_status()
|
436 |
+
except requests.exceptions.HTTPError as exc:
|
437 |
+
tqdm.write(f"HTTP error occurred: {exc}.")
|
438 |
+
except Exception as exc:
|
439 |
+
tqdm.write(f"Unexpected error occurred: {exc}.")
|
440 |
+
else:
|
441 |
+
return response
|
442 |
+
return None
|
443 |
+
|
444 |
+
|
445 |
+
def limit_text(text: str, limit: int = 200) -> str:
|
446 |
+
"""Limit the given text"""
|
447 |
+
if len(text) > limit:
|
448 |
+
return f"{text[:limit]}..."
|
449 |
+
return text
|
450 |
+
|
451 |
+
|
452 |
+
def parse_ipfs_response(
|
453 |
+
session: requests.Session,
|
454 |
+
url: str,
|
455 |
+
event: MechEvent,
|
456 |
+
event_name: MechEventName,
|
457 |
+
response: requests.Response,
|
458 |
+
) -> Optional[Dict[str, str]]:
|
459 |
+
"""Parse a response from IPFS."""
|
460 |
+
try:
|
461 |
+
return response.json()
|
462 |
+
except requests.exceptions.JSONDecodeError:
|
463 |
+
# this is a workaround because the `metadata.json` file was introduced and removed multiple times
|
464 |
+
if event_name == MechEventName.REQUEST and url != event.ipfs_request_link:
|
465 |
+
url = event.ipfs_request_link
|
466 |
+
response = request(session, url)
|
467 |
+
if response is None:
|
468 |
+
tqdm.write(f"Skipping {event=}.")
|
469 |
+
return None
|
470 |
+
|
471 |
+
try:
|
472 |
+
return response.json()
|
473 |
+
except requests.exceptions.JSONDecodeError:
|
474 |
+
pass
|
475 |
+
|
476 |
+
tqdm.write(f"Failed to parse response into json for {url=}.")
|
477 |
+
return None
|
478 |
+
|
479 |
+
|
480 |
+
def parse_ipfs_tools_content(
|
481 |
+
raw_content: Dict[str, str], event: MechEvent, event_name: MechEventName
|
482 |
+
) -> Optional[Union[MechRequest, MechResponse]]:
|
483 |
+
"""Parse tools content from IPFS."""
|
484 |
+
struct = EVENT_TO_MECH_STRUCT.get(event_name)
|
485 |
+
raw_content[REQUEST_ID] = str(event.requestId)
|
486 |
+
raw_content[BLOCK_FIELD] = str(event.for_block)
|
487 |
+
raw_content["sender"] = str(event.sender)
|
488 |
+
|
489 |
+
try:
|
490 |
+
mech_response = struct(**raw_content)
|
491 |
+
except (ValueError, TypeError, KeyError):
|
492 |
+
tqdm.write(f"Could not parse {limit_text(str(raw_content))}")
|
493 |
+
return None
|
494 |
+
|
495 |
+
if event_name == MechEventName.REQUEST and mech_response.tool in IRRELEVANT_TOOLS:
|
496 |
+
return None
|
497 |
+
|
498 |
+
return mech_response
|
499 |
+
|
500 |
+
|
501 |
+
def get_contents(
|
502 |
+
session: requests.Session, events: List[MechEvent], event_name: MechEventName
|
503 |
+
) -> pd.DataFrame:
|
504 |
+
"""Fetch the tools' responses."""
|
505 |
+
contents = []
|
506 |
+
for event in tqdm(events, desc=f"Tools' results", unit="results"):
|
507 |
+
url = event.ipfs_link(event_name)
|
508 |
+
response = request(session, url)
|
509 |
+
if response is None:
|
510 |
+
tqdm.write(f"Skipping {event=}.")
|
511 |
+
continue
|
512 |
+
|
513 |
+
raw_content = parse_ipfs_response(session, url, event, event_name, response)
|
514 |
+
if raw_content is None:
|
515 |
+
continue
|
516 |
+
|
517 |
+
mech_response = parse_ipfs_tools_content(raw_content, event, event_name)
|
518 |
+
if mech_response is None:
|
519 |
+
continue
|
520 |
+
contents.append(mech_response)
|
521 |
+
time.sleep(IPFS_POLL_INTERVAL)
|
522 |
+
|
523 |
+
return pd.DataFrame(contents)
|
524 |
+
|
525 |
+
|
526 |
+
def check_for_dicts(df: pd.DataFrame) -> List[str]:
|
527 |
+
"""Check for columns that contain dictionaries."""
|
528 |
+
dict_columns = []
|
529 |
+
for column in df.columns:
|
530 |
+
if df[column].apply(lambda x: isinstance(x, dict)).any():
|
531 |
+
dict_columns.append(column)
|
532 |
+
return dict_columns
|
533 |
+
|
534 |
+
|
535 |
+
def drop_dict_rows(df: pd.DataFrame,
|
536 |
+
dict_columns: List[str]) -> pd.DataFrame:
|
537 |
+
"""Drop rows that contain dictionaries."""
|
538 |
+
for column in dict_columns:
|
539 |
+
df = df[~df[column].apply(lambda x: isinstance(x, dict))]
|
540 |
+
return df
|
541 |
+
|
542 |
+
|
543 |
+
def clean(df: pd.DataFrame) -> pd.DataFrame:
|
544 |
+
"""Clean the dataframe."""
|
545 |
+
dict_columns = check_for_dicts(df)
|
546 |
+
df = drop_dict_rows(df, dict_columns)
|
547 |
+
cleaned = df.drop_duplicates()
|
548 |
+
cleaned[REQUEST_ID_FIELD] = cleaned[REQUEST_ID_FIELD].astype("str")
|
549 |
+
return cleaned
|
550 |
+
|
551 |
+
|
552 |
+
def transform_request(contents: pd.DataFrame) -> pd.DataFrame:
|
553 |
+
"""Transform the requests dataframe."""
|
554 |
+
return clean(contents)
|
555 |
+
|
556 |
+
|
557 |
+
def transform_deliver(contents: pd.DataFrame, full_contents=False) -> pd.DataFrame:
|
558 |
+
"""Transform the delivers dataframe."""
|
559 |
+
unpacked_result = pd.json_normalize(contents.result)
|
560 |
+
# # drop result column if it exists
|
561 |
+
if "result" in unpacked_result.columns:
|
562 |
+
unpacked_result.drop(columns=["result"], inplace=True)
|
563 |
+
|
564 |
+
# drop prompt column if it exists
|
565 |
+
if "prompt" in unpacked_result.columns:
|
566 |
+
unpacked_result.drop(columns=["prompt"], inplace=True)
|
567 |
+
|
568 |
+
# rename prompt column to prompt_deliver
|
569 |
+
unpacked_result.rename(columns={"prompt": "prompt_deliver"}, inplace=True)
|
570 |
+
contents = pd.concat((contents, unpacked_result), axis=1)
|
571 |
+
|
572 |
+
if "result" in contents.columns:
|
573 |
+
contents.drop(columns=["result"], inplace=True)
|
574 |
+
|
575 |
+
if "prompt" in contents.columns:
|
576 |
+
contents.drop(columns=["prompt"], inplace=True)
|
577 |
+
|
578 |
+
return clean(contents)
|
579 |
+
|
580 |
+
|
581 |
+
def gen_event_filename(event_name: MechEventName) -> str:
|
582 |
+
"""Generate the filename of an event."""
|
583 |
+
return f"{event_name.value.lower()}s.csv"
|
584 |
+
|
585 |
+
|
586 |
+
def read_n_last_lines(filename: str, n: int = 1) -> str:
|
587 |
+
"""Return the `n` last lines' content of a file."""
|
588 |
+
num_newlines = 0
|
589 |
+
with open(filename, "rb") as f:
|
590 |
+
try:
|
591 |
+
f.seek(-2, os.SEEK_END)
|
592 |
+
while num_newlines < n:
|
593 |
+
f.seek(-2, os.SEEK_CUR)
|
594 |
+
if f.read(1) == b"\n":
|
595 |
+
num_newlines += 1
|
596 |
+
except OSError:
|
597 |
+
f.seek(0)
|
598 |
+
last_line = f.readline().decode()
|
599 |
+
return last_line
|
600 |
+
|
601 |
+
|
602 |
+
def get_earliest_block(event_name: MechEventName) -> int:
|
603 |
+
"""Get the earliest block number to use when filtering for events."""
|
604 |
+
filename = gen_event_filename(event_name)
|
605 |
+
if not os.path.exists(DATA_DIR / filename):
|
606 |
+
return 0
|
607 |
+
|
608 |
+
cols = pd.read_csv(DATA_DIR / filename, index_col=0, nrows=0).columns.tolist()
|
609 |
+
last_line_buff = StringIO(read_n_last_lines(DATA_DIR/filename))
|
610 |
+
last_line_series = pd.read_csv(last_line_buff, names=cols)
|
611 |
+
block_field = f"{event_name.value.lower()}_{BLOCK_FIELD}"
|
612 |
+
return int(last_line_series[block_field].values[0])
|
613 |
+
|
614 |
+
|
615 |
+
def store_progress(
|
616 |
+
filename: str,
|
617 |
+
event_to_contents: Dict[MechEventName, pd.DataFrame],
|
618 |
+
tools: pd.DataFrame,
|
619 |
+
) -> None:
|
620 |
+
"""Store the given progress."""
|
621 |
+
if filename:
|
622 |
+
for event_name, content in event_to_contents.items():
|
623 |
+
event_filename = gen_event_filename(event_name)
|
624 |
+
|
625 |
+
if "result" in content.columns:
|
626 |
+
content.drop(columns=["result"], inplace=True)
|
627 |
+
|
628 |
+
content.to_csv(DATA_DIR / event_filename, index=False, escapechar="\\")
|
629 |
+
|
630 |
+
# drop result and error columns
|
631 |
+
if "result" in tools.columns:
|
632 |
+
tools.drop(columns=["result"], inplace=True)
|
633 |
+
|
634 |
+
tools.to_csv(DATA_DIR / filename, index=False, escapechar="\\")
|
635 |
+
|
636 |
+
|
637 |
+
def etl(
|
638 |
+
rpcs: List[str], filename: Optional[str] = None, full_contents: bool = True
|
639 |
+
) -> pd.DataFrame:
|
640 |
+
"""Fetch from on-chain events, process, store and return the tools' results on all the questions as a Dataframe."""
|
641 |
+
w3s = [Web3(HTTPProvider(r)) for r in rpcs]
|
642 |
+
session = create_session()
|
643 |
+
event_to_transformer = {
|
644 |
+
MechEventName.REQUEST: transform_request,
|
645 |
+
MechEventName.DELIVER: transform_deliver,
|
646 |
+
}
|
647 |
+
mech_to_info = {
|
648 |
+
to_checksum_address(address): (
|
649 |
+
os.path.join(CONTRACTS_PATH, filename),
|
650 |
+
earliest_block,
|
651 |
+
)
|
652 |
+
for address, (filename, earliest_block) in MECH_TO_INFO.items()
|
653 |
+
}
|
654 |
+
event_to_contents = {}
|
655 |
+
|
656 |
+
latest_block = LATEST_BLOCK
|
657 |
+
if latest_block is None:
|
658 |
+
latest_block = w3s[0].eth.get_block(LATEST_BLOCK_NAME)[BLOCK_DATA_NUMBER]
|
659 |
+
|
660 |
+
next_start_block = None
|
661 |
+
|
662 |
+
# Loop through events in event_to_transformer
|
663 |
+
for event_name, transformer in event_to_transformer.items():
|
664 |
+
if next_start_block is None:
|
665 |
+
next_start_block_base = get_earliest_block(event_name)
|
666 |
+
|
667 |
+
# Loop through mech addresses in mech_to_info
|
668 |
+
events = []
|
669 |
+
for address, (abi, earliest_block) in mech_to_info.items():
|
670 |
+
if next_start_block_base == 0:
|
671 |
+
next_start_block = earliest_block
|
672 |
+
else:
|
673 |
+
next_start_block = next_start_block_base
|
674 |
+
|
675 |
+
print(
|
676 |
+
f"Searching for {event_name.value} events for mech {address} from block {next_start_block} to {latest_block}."
|
677 |
+
)
|
678 |
+
|
679 |
+
# parallelize the fetching of events
|
680 |
+
with ThreadPoolExecutor(max_workers=NUM_WORKERS) as executor:
|
681 |
+
futures = []
|
682 |
+
for i in range(
|
683 |
+
next_start_block, latest_block, BLOCKS_CHUNK_SIZE * SNAPSHOT_RATE
|
684 |
+
):
|
685 |
+
futures.append(
|
686 |
+
executor.submit(
|
687 |
+
get_events,
|
688 |
+
random.choice(w3s),
|
689 |
+
event_name.value,
|
690 |
+
address,
|
691 |
+
abi,
|
692 |
+
i,
|
693 |
+
min(i + BLOCKS_CHUNK_SIZE * SNAPSHOT_RATE, latest_block),
|
694 |
+
)
|
695 |
+
)
|
696 |
+
|
697 |
+
for future in tqdm(
|
698 |
+
as_completed(futures),
|
699 |
+
total=len(futures),
|
700 |
+
desc=f"Fetching {event_name.value} Events",
|
701 |
+
):
|
702 |
+
current_mech_events = future.result()
|
703 |
+
events.extend(current_mech_events)
|
704 |
+
|
705 |
+
parsed = parse_events(events)
|
706 |
+
|
707 |
+
contents = []
|
708 |
+
with ThreadPoolExecutor(max_workers=NUM_WORKERS) as executor:
|
709 |
+
futures = []
|
710 |
+
for i in range(0, len(parsed), GET_CONTENTS_BATCH_SIZE):
|
711 |
+
futures.append(
|
712 |
+
executor.submit(
|
713 |
+
get_contents,
|
714 |
+
session,
|
715 |
+
parsed[i : i + GET_CONTENTS_BATCH_SIZE],
|
716 |
+
event_name,
|
717 |
+
)
|
718 |
+
)
|
719 |
+
|
720 |
+
for future in tqdm(
|
721 |
+
as_completed(futures),
|
722 |
+
total=len(futures),
|
723 |
+
desc=f"Fetching {event_name.value} Contents",
|
724 |
+
):
|
725 |
+
current_mech_contents = future.result()
|
726 |
+
contents.append(current_mech_contents)
|
727 |
+
|
728 |
+
contents = pd.concat(contents, ignore_index=True)
|
729 |
+
|
730 |
+
full_contents = True
|
731 |
+
if event_name == MechEventName.REQUEST:
|
732 |
+
transformed = transformer(contents)
|
733 |
+
elif event_name == MechEventName.DELIVER:
|
734 |
+
transformed = transformer(contents, full_contents=full_contents)
|
735 |
+
|
736 |
+
events_filename = gen_event_filename(event_name)
|
737 |
+
|
738 |
+
if os.path.exists(DATA_DIR / events_filename):
|
739 |
+
old = pd.read_csv(DATA_DIR / events_filename)
|
740 |
+
|
741 |
+
# Reset index to avoid index conflicts
|
742 |
+
old.reset_index(drop=True, inplace=True)
|
743 |
+
transformed.reset_index(drop=True, inplace=True)
|
744 |
+
|
745 |
+
# Concatenate DataFrames
|
746 |
+
transformed = pd.concat([old, transformed], ignore_index=True)
|
747 |
+
|
748 |
+
# Drop duplicates if necessary
|
749 |
+
transformed.drop_duplicates(subset=REQUEST_ID_FIELD, inplace=True)
|
750 |
+
|
751 |
+
event_to_contents[event_name] = transformed.copy()
|
752 |
+
|
753 |
+
# Store progress
|
754 |
+
tools = pd.merge(*event_to_contents.values(), on=REQUEST_ID_FIELD)
|
755 |
+
store_progress(filename, event_to_contents, tools)
|
756 |
+
|
757 |
+
return tools
|
758 |
+
|
759 |
+
|
760 |
+
if __name__ == "__main__":
|
761 |
+
RPCs = [
|
762 |
+
"https://lb.nodies.app/v1/406d8dcc043f4cb3959ed7d6673d311a",
|
763 |
+
]
|
764 |
+
|
765 |
+
tools = etl(rpcs=RPCs, filename=DEFAULT_FILENAME, full_contents=True)
|
tabs/about.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
about_olas_predict = """\
|
3 |
+
Olas is a network of autonomous services that can run complex logic in a decentralized manner, interacting with on- and off-chain data autonomously and continuously. For other use cases check out [olas.network](https://olas.network/).
|
4 |
+
Since 'Olas' means 'waves' in Spanish, it is sometimes referred to as the 'ocean of services' 🌊.
|
5 |
+
The project is co-created by [Valory](https://www.valory.xyz/). Valory aspires to enable communities, organizations and countries to co-own AI systems, beginning with decentralized autonomous agents.
|
6 |
+
"""
|
tabs/error.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import gradio as gr
|
3 |
+
from typing import List
|
4 |
+
|
5 |
+
|
6 |
+
HEIGHT=600
|
7 |
+
WIDTH=1000
|
8 |
+
|
9 |
+
def set_error(row: pd.Series) -> bool:
|
10 |
+
"""Sets the error for the given row."""
|
11 |
+
if row.error not in [True, False]:
|
12 |
+
if not row.prompt_response:
|
13 |
+
return True
|
14 |
+
return False
|
15 |
+
return row.error
|
16 |
+
|
17 |
+
def get_error_data(tools_df: pd.DataFrame, inc_tools: List[str]) -> pd.DataFrame:
|
18 |
+
"""Gets the error data for the given tools and calculates the error percentage."""
|
19 |
+
tools_inc = tools_df[tools_df['tool'].isin(inc_tools)].copy()
|
20 |
+
tools_inc['error'] = tools_inc.apply(set_error, axis=1)
|
21 |
+
error = tools_inc.groupby(['tool', 'request_month_year_week', 'error']).size().unstack().fillna(0).reset_index()
|
22 |
+
error['error_perc'] = (error[True] / (error[False] + error[True])) * 100
|
23 |
+
error['total_requests'] = error[False] + error[True]
|
24 |
+
return error
|
25 |
+
|
26 |
+
def get_error_data_overall(error_df: pd.DataFrame) -> pd.DataFrame:
|
27 |
+
"""Gets the error data for the given tools and calculates the error percentage."""
|
28 |
+
error_total = error_df.groupby('request_month_year_week').agg({'total_requests': 'sum', False: 'sum', True: 'sum'}).reset_index()
|
29 |
+
error_total['error_perc'] = (error_total[True] / error_total['total_requests']) * 100
|
30 |
+
error_total.columns = error_total.columns.astype(str)
|
31 |
+
error_total['error_perc'] = error_total['error_perc'].apply(lambda x: round(x, 4))
|
32 |
+
return error_total
|
33 |
+
|
34 |
+
def plot_error_data(error_all_df: pd.DataFrame) -> gr.BarPlot:
|
35 |
+
"""Plots the error data for the given tools and calculates the error percentage."""
|
36 |
+
return gr.BarPlot(
|
37 |
+
value=error_all_df,
|
38 |
+
x="request_month_year_week",
|
39 |
+
y="error_perc",
|
40 |
+
title="Error Percentage",
|
41 |
+
x_title="Week",
|
42 |
+
y_title="Error Percentage",
|
43 |
+
show_label=True,
|
44 |
+
interactive=True,
|
45 |
+
show_actions_button=True,
|
46 |
+
tooltip=["request_month_year_week", "error_perc"],
|
47 |
+
height=HEIGHT,
|
48 |
+
width=WIDTH
|
49 |
+
)
|
50 |
+
|
51 |
+
def plot_tool_error_data(error_df: pd.DataFrame, tool: str) -> gr.BarPlot:
|
52 |
+
"""Plots the error data for the given tool."""
|
53 |
+
error_tool = error_df[error_df['tool'] == tool].copy()
|
54 |
+
error_tool.columns = error_tool.columns.astype(str)
|
55 |
+
error_tool['error_perc'] = error_tool['error_perc'].apply(lambda x: round(x, 4))
|
56 |
+
|
57 |
+
return gr.BarPlot(
|
58 |
+
title="Error Percentage",
|
59 |
+
x_title="Week",
|
60 |
+
y_title="Error Percentage",
|
61 |
+
show_label=True,
|
62 |
+
interactive=True,
|
63 |
+
show_actions_button=True,
|
64 |
+
tooltip=["request_month_year_week", "error_perc"],
|
65 |
+
value=error_tool,
|
66 |
+
x="request_month_year_week",
|
67 |
+
y="error_perc",
|
68 |
+
height=HEIGHT,
|
69 |
+
width=WIDTH
|
70 |
+
)
|
71 |
+
|
72 |
+
def plot_week_error_data(error_df: pd.DataFrame, week: str) -> gr.BarPlot:
|
73 |
+
"""Plots the error data for the given week."""
|
74 |
+
error_week = error_df[error_df['request_month_year_week'] == week].copy()
|
75 |
+
error_week.columns = error_week.columns.astype(str)
|
76 |
+
error_week['error_perc'] = error_week['error_perc'].apply(lambda x: round(x, 4))
|
77 |
+
return gr.BarPlot(
|
78 |
+
value=error_week,
|
79 |
+
x="tool",
|
80 |
+
y="error_perc",
|
81 |
+
title="Error Percentage",
|
82 |
+
x_title="Tool",
|
83 |
+
y_title="Error Percentage",
|
84 |
+
show_label=True,
|
85 |
+
interactive=True,
|
86 |
+
show_actions_button=True,
|
87 |
+
tooltip=["tool", "error_perc"],
|
88 |
+
height=HEIGHT,
|
89 |
+
width=WIDTH
|
90 |
+
)
|
tabs/tool_win.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import gradio as gr
|
3 |
+
from typing import List
|
4 |
+
|
5 |
+
|
6 |
+
HEIGHT=600
|
7 |
+
WIDTH=1000
|
8 |
+
|
9 |
+
|
10 |
+
def set_error(row: pd.Series) -> bool:
|
11 |
+
"""Sets the error for the given row."""
|
12 |
+
if row.error not in [True, False]:
|
13 |
+
if not row.prompt_response:
|
14 |
+
return True
|
15 |
+
return False
|
16 |
+
return row.error
|
17 |
+
|
18 |
+
|
19 |
+
def get_tool_winning_rate(tools_df: pd.DataFrame, inc_tools: List[str]) -> pd.DataFrame:
|
20 |
+
"""Gets the tool winning rate data for the given tools and calculates the winning percentage."""
|
21 |
+
tools_inc = tools_df[tools_df['tool'].isin(inc_tools)].copy()
|
22 |
+
tools_inc['error'] = tools_inc.apply(set_error, axis=1)
|
23 |
+
tools_non_error = tools_inc[tools_inc['error'] != True]
|
24 |
+
tools_non_error.loc[:, 'currentAnswer'] = tools_non_error['currentAnswer'].replace({'no': 'No', 'yes': 'Yes'})
|
25 |
+
tools_non_error = tools_non_error[tools_non_error['currentAnswer'].isin(['Yes', 'No'])]
|
26 |
+
tools_non_error = tools_non_error[tools_non_error['vote'].isin(['Yes', 'No'])]
|
27 |
+
tools_non_error['win'] = (tools_non_error['currentAnswer'] == tools_non_error['vote']).astype(int)
|
28 |
+
tools_non_error.columns = tools_non_error.columns.astype(str)
|
29 |
+
wins = tools_non_error.groupby(['tool', 'request_month_year_week', 'win']).size().unstack().fillna(0)
|
30 |
+
wins['win_perc'] = (wins[1] / (wins[0] + wins[1])) * 100
|
31 |
+
wins.reset_index(inplace=True)
|
32 |
+
wins['total_request'] = wins[0] + wins[1]
|
33 |
+
wins.columns = wins.columns.astype(str)
|
34 |
+
# Convert request_month_year_week to string and explicitly set type for Altair
|
35 |
+
wins['request_month_year_week'] = wins['request_month_year_week'].astype(str)
|
36 |
+
return wins
|
37 |
+
|
38 |
+
|
39 |
+
def get_overall_winning_rate(wins_df: pd.DataFrame) -> pd.DataFrame:
|
40 |
+
"""Gets the overall winning rate data for the given tools and calculates the winning percentage."""
|
41 |
+
overall_wins = wins_df.groupby('request_month_year_week').agg({
|
42 |
+
"0": 'sum',
|
43 |
+
"1": 'sum',
|
44 |
+
"win_perc": 'mean',
|
45 |
+
"total_request": 'sum'
|
46 |
+
}).rename(columns={"0": 'losses', "1": 'wins'}).reset_index()
|
47 |
+
return overall_wins
|
48 |
+
|
49 |
+
|
50 |
+
def plot_tool_winnings_overall(wins_df: pd.DataFrame, winning_selector: str = "win_perc") -> gr.BarPlot:
|
51 |
+
"""Plots the overall winning rate data for the given tools and calculates the winning percentage."""
|
52 |
+
return gr.BarPlot(
|
53 |
+
title="Winning Rate",
|
54 |
+
x_title="Date",
|
55 |
+
y_title=winning_selector,
|
56 |
+
show_label=True,
|
57 |
+
interactive=True,
|
58 |
+
show_actions_button=True,
|
59 |
+
tooltip=["request_month_year_week", winning_selector],
|
60 |
+
value=wins_df,
|
61 |
+
x="request_month_year_week",
|
62 |
+
y=winning_selector,
|
63 |
+
height=HEIGHT,
|
64 |
+
width=WIDTH
|
65 |
+
)
|
66 |
+
|
67 |
+
|
68 |
+
def plot_tool_winnings_by_tool(wins_df: pd.DataFrame, tool: str) -> gr.BarPlot:
|
69 |
+
"""Plots the winning rate data for the given tool."""
|
70 |
+
return gr.BarPlot(
|
71 |
+
title="Winning Rate",
|
72 |
+
x_title="Week",
|
73 |
+
y_title="Winning Rate",
|
74 |
+
x="request_month_year_week",
|
75 |
+
y="win_perc",
|
76 |
+
value=wins_df[wins_df['tool'] == tool],
|
77 |
+
show_label=True,
|
78 |
+
interactive=True,
|
79 |
+
show_actions_button=True,
|
80 |
+
tooltip=["request_month_year_week", "win_perc"],
|
81 |
+
height=HEIGHT,
|
82 |
+
width=WIDTH
|
83 |
+
)
|
tabs/trades.py
ADDED
@@ -0,0 +1,198 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
|
4 |
+
|
5 |
+
HEIGHT=600
|
6 |
+
WIDTH=1000
|
7 |
+
|
8 |
+
def prepare_trades(trades_df: pd.DataFrame) -> pd.DataFrame:
|
9 |
+
"""Prepares the trades data for analysis."""
|
10 |
+
trades_df['creation_timestamp'] = pd.to_datetime(trades_df['creation_timestamp'])
|
11 |
+
trades_df['creation_timestamp'] = trades_df['creation_timestamp'].dt.tz_convert('UTC')
|
12 |
+
trades_df['month_year'] = trades_df['creation_timestamp'].dt.to_period('M').astype(str)
|
13 |
+
trades_df['month_year_week'] = trades_df['creation_timestamp'].dt.to_period('W').astype(str)
|
14 |
+
trades_df['winning_trade'] = trades_df['winning_trade'].astype(int)
|
15 |
+
return trades_df
|
16 |
+
|
17 |
+
|
18 |
+
def get_overall_trades(trades_df: pd.DataFrame) -> pd.DataFrame:
|
19 |
+
"""Gets the overall trades data for the given tools and calculates the winning percentage."""
|
20 |
+
trades_count = trades_df.groupby('month_year_week').size().reset_index()
|
21 |
+
trades_count.columns = trades_count.columns.astype(str)
|
22 |
+
trades_count.rename(columns={'0': 'trades'}, inplace=True)
|
23 |
+
return trades_count
|
24 |
+
|
25 |
+
def get_overall_winning_trades(trades_df: pd.DataFrame) -> pd.DataFrame:
|
26 |
+
"""Gets the overall winning trades data for the given tools and calculates the winning percentage."""
|
27 |
+
winning_trades = trades_df.groupby(['month_year_week'])['winning_trade'].sum() / trades_df.groupby(['month_year_week'])['winning_trade'].count() * 100
|
28 |
+
# winning_trades is a series, give it a dataframe
|
29 |
+
winning_trades = winning_trades.reset_index()
|
30 |
+
winning_trades.columns = winning_trades.columns.astype(str)
|
31 |
+
winning_trades.columns = ['month_year_week', 'winning_trade']
|
32 |
+
return winning_trades
|
33 |
+
|
34 |
+
def plot_trade_details(trade_detail: str, trades_df: pd.DataFrame) -> gr.LinePlot:
|
35 |
+
"""Plots the trade details for the given trade detail."""
|
36 |
+
if trade_detail == "mech calls":
|
37 |
+
# this is to filter out the data before 2023-09-01
|
38 |
+
trades_filtered = trades_df[trades_df["creation_timestamp"] >"2023-09-01"]
|
39 |
+
trades_filtered = trades_filtered.groupby("month_year_week")["num_mech_calls"].quantile([0.25, 0.5, 0.75]).unstack()
|
40 |
+
trades_filtered.columns = trades_filtered.columns.astype(str)
|
41 |
+
trades_filtered.reset_index(inplace=True)
|
42 |
+
trades_filtered.columns = [
|
43 |
+
"month_year_week",
|
44 |
+
"25th_percentile",
|
45 |
+
"50th_percentile",
|
46 |
+
"75th_percentile"
|
47 |
+
]
|
48 |
+
# reformat the data as percentile, date, value
|
49 |
+
trades_filtered = trades_filtered.melt(id_vars=["month_year_week"], var_name="percentile", value_name="mech_calls")
|
50 |
+
|
51 |
+
return gr.LinePlot(
|
52 |
+
value=trades_filtered,
|
53 |
+
x="month_year_week",
|
54 |
+
y="mech_calls",
|
55 |
+
color="percentile",
|
56 |
+
show_label=True,
|
57 |
+
interactive=True,
|
58 |
+
show_actions_button=True,
|
59 |
+
tooltip=["month_year_week", "percentile", "mech_calls"],
|
60 |
+
height=HEIGHT,
|
61 |
+
width=WIDTH
|
62 |
+
)
|
63 |
+
|
64 |
+
if trade_detail == "collateral amount":
|
65 |
+
trades_filtered = trades_df[trades_df["creation_timestamp"] >"2023-09-01"]
|
66 |
+
trades_filtered = trades_filtered.groupby("month_year_week")["collateral_amount"].quantile([0.25, 0.5, 0.75]).unstack()
|
67 |
+
trades_filtered.columns = trades_filtered.columns.astype(str)
|
68 |
+
trades_filtered.reset_index(inplace=True)
|
69 |
+
trades_filtered.columns = [
|
70 |
+
"month_year_week",
|
71 |
+
"25th_percentile",
|
72 |
+
"50th_percentile",
|
73 |
+
"75th_percentile"
|
74 |
+
]
|
75 |
+
# reformat the data as percentile, date, value
|
76 |
+
trades_filtered = trades_filtered.melt(id_vars=["month_year_week"], var_name="percentile", value_name="collateral_amount")
|
77 |
+
|
78 |
+
return gr.LinePlot(
|
79 |
+
value=trades_filtered,
|
80 |
+
x="month_year_week",
|
81 |
+
y="collateral_amount",
|
82 |
+
color="percentile",
|
83 |
+
show_label=True,
|
84 |
+
interactive=True,
|
85 |
+
show_actions_button=True,
|
86 |
+
tooltip=["month_year_week", "percentile", "collateral_amount"],
|
87 |
+
height=HEIGHT,
|
88 |
+
width=WIDTH
|
89 |
+
)
|
90 |
+
|
91 |
+
if trade_detail == "earnings":
|
92 |
+
trades_filtered = trades_df[trades_df["creation_timestamp"] >"2023-09-01"]
|
93 |
+
trades_filtered = trades_filtered.groupby("month_year_week")["earnings"].quantile([0.25, 0.5, 0.75]).unstack()
|
94 |
+
trades_filtered.columns = trades_filtered.columns.astype(str)
|
95 |
+
trades_filtered.reset_index(inplace=True)
|
96 |
+
trades_filtered.columns = [
|
97 |
+
"month_year_week",
|
98 |
+
"25th_percentile",
|
99 |
+
"50th_percentile",
|
100 |
+
"75th_percentile"
|
101 |
+
]
|
102 |
+
# reformat the data as percentile, date, value
|
103 |
+
trades_filtered = trades_filtered.melt(id_vars=["month_year_week"], var_name="percentile", value_name="earnings")
|
104 |
+
|
105 |
+
return gr.LinePlot(
|
106 |
+
value=trades_filtered,
|
107 |
+
x="month_year_week",
|
108 |
+
y="earnings",
|
109 |
+
color="percentile",
|
110 |
+
show_label=True,
|
111 |
+
interactive=True,
|
112 |
+
show_actions_button=True,
|
113 |
+
tooltip=["month_year_week", "percentile", "earnings"],
|
114 |
+
height=HEIGHT,
|
115 |
+
width=WIDTH
|
116 |
+
)
|
117 |
+
|
118 |
+
if trade_detail == "net earnings":
|
119 |
+
trades_filtered = trades_df[trades_df["creation_timestamp"] >"2023-09-01"]
|
120 |
+
trades_filtered = trades_filtered.groupby("month_year_week")["net_earnings"].quantile([0.25, 0.5, 0.75]).unstack()
|
121 |
+
trades_filtered.columns = trades_filtered.columns.astype(str)
|
122 |
+
trades_filtered.reset_index(inplace=True)
|
123 |
+
trades_filtered.columns = [
|
124 |
+
"month_year_week",
|
125 |
+
"25th_percentile",
|
126 |
+
"50th_percentile",
|
127 |
+
"75th_percentile"
|
128 |
+
]
|
129 |
+
# reformat the data as percentile, date, value
|
130 |
+
trades_filtered = trades_filtered.melt(id_vars=["month_year_week"], var_name="percentile", value_name="net_earnings")
|
131 |
+
|
132 |
+
return gr.LinePlot(
|
133 |
+
value=trades_filtered,
|
134 |
+
x="month_year_week",
|
135 |
+
y="net_earnings",
|
136 |
+
color="percentile",
|
137 |
+
show_label=True,
|
138 |
+
interactive=True,
|
139 |
+
show_actions_button=True,
|
140 |
+
tooltip=["month_year_week", "percentile", "net_earnings"],
|
141 |
+
height=HEIGHT,
|
142 |
+
width=WIDTH
|
143 |
+
)
|
144 |
+
|
145 |
+
if trade_detail == "ROI":
|
146 |
+
trades_filtered = trades_df[trades_df["creation_timestamp"] >"2023-09-01"]
|
147 |
+
trades_filtered = trades_filtered.groupby("month_year_week")["roi"].quantile([0.25, 0.5, 0.75]).unstack()
|
148 |
+
trades_filtered.columns = trades_filtered.columns.astype(str)
|
149 |
+
trades_filtered.reset_index(inplace=True)
|
150 |
+
trades_filtered.columns = [
|
151 |
+
"month_year_week",
|
152 |
+
"25th_percentile",
|
153 |
+
"50th_percentile",
|
154 |
+
"75th_percentile"
|
155 |
+
]
|
156 |
+
# reformat the data as percentile, date, value
|
157 |
+
trades_filtered = trades_filtered.melt(id_vars=["month_year_week"], var_name="percentile", value_name="ROI")
|
158 |
+
|
159 |
+
return gr.LinePlot(
|
160 |
+
value=trades_filtered,
|
161 |
+
x="month_year_week",
|
162 |
+
y="ROI",
|
163 |
+
color="percentile",
|
164 |
+
show_label=True,
|
165 |
+
interactive=True,
|
166 |
+
show_actions_button=True,
|
167 |
+
tooltip=["month_year_week", "percentile", "ROI"],
|
168 |
+
height=HEIGHT,
|
169 |
+
width=WIDTH
|
170 |
+
)
|
171 |
+
|
172 |
+
def plot_trades_by_week(trades_df: pd.DataFrame) -> gr.BarPlot:
|
173 |
+
"""Plots the trades data for the given tools and calculates the winning percentage."""
|
174 |
+
return gr.BarPlot(
|
175 |
+
value=trades_df,
|
176 |
+
x="month_year_week",
|
177 |
+
y="trades",
|
178 |
+
show_label=True,
|
179 |
+
interactive=True,
|
180 |
+
show_actions_button=True,
|
181 |
+
tooltip=["month_year_week", "trades"],
|
182 |
+
height=HEIGHT,
|
183 |
+
width=WIDTH
|
184 |
+
)
|
185 |
+
|
186 |
+
def plot_winning_trades_by_week(trades_df: pd.DataFrame) -> gr.BarPlot:
|
187 |
+
"""Plots the winning trades data for the given tools and calculates the winning percentage."""
|
188 |
+
return gr.BarPlot(
|
189 |
+
value=trades_df,
|
190 |
+
x="month_year_week",
|
191 |
+
y="winning_trade",
|
192 |
+
show_label=True,
|
193 |
+
interactive=True,
|
194 |
+
show_actions_button=True,
|
195 |
+
tooltip=["month_year_week", "winning_trade"],
|
196 |
+
height=HEIGHT,
|
197 |
+
width=WIDTH
|
198 |
+
)
|