rosacastillo
commited on
Commit
·
eceeded
1
Parent(s):
e8f0e08
new weekly data and fixes on the pipeline due to new year format
Browse files- data/all_trades_profitability.parquet +2 -2
- data/daily_info.parquet +2 -2
- data/error_by_markets.parquet +2 -2
- data/invalid_trades.parquet +2 -2
- data/tools_accuracy.csv +2 -2
- data/unknown_traders.parquet +2 -2
- data/winning_df.parquet +2 -2
- notebooks/analysis.ipynb +0 -0
- notebooks/invalid_markets.ipynb +80 -3
- scripts/cleaning_old_info.py +18 -0
- scripts/get_mech_info.py +5 -0
- scripts/markets.py +3 -0
- scripts/mech_request_utils.py +1 -0
- scripts/profitability.py +12 -6
- scripts/pull_data.py +6 -1
- scripts/tools_metrics.py +1 -1
- tabs/metrics.py +2 -2
- tabs/staking.py +2 -2
- tabs/tool_win.py +5 -4
- tabs/trades.py +5 -5
data/all_trades_profitability.parquet
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:08d3f27f13f20022a8aa176e3f84559a38c001d03753fd13101eae15ab4a1123
|
3 |
+
size 6500230
|
data/daily_info.parquet
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:689d0f6abf1886fb0b089db0294e07c551485005fabbaf73ea36083d6388ce5f
|
3 |
+
size 78026
|
data/error_by_markets.parquet
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7832acf3c67797c32225d4c253d651ffcbd4aba4bb19354ea00ad0c1d7200cc1
|
3 |
+
size 13489
|
data/invalid_trades.parquet
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6156d839803a0c09606450ead26fb3b31ef6ef30bf3507ccbd0dc0399ad366f7
|
3 |
+
size 152273
|
data/tools_accuracy.csv
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ab13e55237b5f9bee0012eab8976b0ea3ef1518f0071a081d9052f97061315a7
|
3 |
+
size 1100
|
data/unknown_traders.parquet
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3620eaba76778060f41059fb2b6ff6e92a6000eedfd9a9119b703f84cdda11ff
|
3 |
+
size 194084
|
data/winning_df.parquet
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1ad71600af38478d3dc275bf7ad0f3cd3cd46d44d1bf54f06bb6f9d9540cc041
|
3 |
+
size 13714
|
notebooks/analysis.ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
notebooks/invalid_markets.ipynb
CHANGED
@@ -115,11 +115,88 @@
|
|
115 |
},
|
116 |
{
|
117 |
"cell_type": "code",
|
118 |
-
"execution_count":
|
119 |
"metadata": {},
|
120 |
"outputs": [],
|
121 |
"source": [
|
122 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
]
|
124 |
},
|
125 |
{
|
@@ -139,7 +216,7 @@
|
|
139 |
}
|
140 |
],
|
141 |
"source": [
|
142 |
-
"len(
|
143 |
]
|
144 |
},
|
145 |
{
|
|
|
115 |
},
|
116 |
{
|
117 |
"cell_type": "code",
|
118 |
+
"execution_count": 3,
|
119 |
"metadata": {},
|
120 |
"outputs": [],
|
121 |
"source": [
|
122 |
+
"invalid_trades = pd.read_parquet(\"../data/invalid_trades.parquet\")"
|
123 |
+
]
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"cell_type": "code",
|
127 |
+
"execution_count": 4,
|
128 |
+
"metadata": {},
|
129 |
+
"outputs": [
|
130 |
+
{
|
131 |
+
"name": "stdout",
|
132 |
+
"output_type": "stream",
|
133 |
+
"text": [
|
134 |
+
"<class 'pandas.core.frame.DataFrame'>\n",
|
135 |
+
"RangeIndex: 2589 entries, 0 to 2588\n",
|
136 |
+
"Data columns (total 22 columns):\n",
|
137 |
+
" # Column Non-Null Count Dtype \n",
|
138 |
+
"--- ------ -------------- ----- \n",
|
139 |
+
" 0 trader_address 2589 non-null object \n",
|
140 |
+
" 1 market_creator 2589 non-null object \n",
|
141 |
+
" 2 trade_id 2589 non-null object \n",
|
142 |
+
" 3 creation_timestamp 2589 non-null datetime64[ns, UTC]\n",
|
143 |
+
" 4 title 2589 non-null object \n",
|
144 |
+
" 5 market_status 2589 non-null object \n",
|
145 |
+
" 6 collateral_amount 2589 non-null float64 \n",
|
146 |
+
" 7 outcome_index 2589 non-null object \n",
|
147 |
+
" 8 trade_fee_amount 2589 non-null float64 \n",
|
148 |
+
" 9 outcomes_tokens_traded 2589 non-null float64 \n",
|
149 |
+
" 10 current_answer 2589 non-null int64 \n",
|
150 |
+
" 11 is_invalid 2589 non-null bool \n",
|
151 |
+
" 12 winning_trade 2589 non-null bool \n",
|
152 |
+
" 13 earnings 2589 non-null float64 \n",
|
153 |
+
" 14 redeemed 2589 non-null bool \n",
|
154 |
+
" 15 redeemed_amount 2589 non-null float64 \n",
|
155 |
+
" 16 num_mech_calls 2589 non-null int64 \n",
|
156 |
+
" 17 mech_fee_amount 2589 non-null float64 \n",
|
157 |
+
" 18 net_earnings 2589 non-null float64 \n",
|
158 |
+
" 19 roi 2573 non-null float64 \n",
|
159 |
+
" 20 staking 0 non-null object \n",
|
160 |
+
" 21 nr_mech_calls 0 non-null float64 \n",
|
161 |
+
"dtypes: bool(3), datetime64[ns, UTC](1), float64(9), int64(2), object(7)\n",
|
162 |
+
"memory usage: 392.0+ KB\n"
|
163 |
+
]
|
164 |
+
}
|
165 |
+
],
|
166 |
+
"source": [
|
167 |
+
"invalid_trades.info()"
|
168 |
+
]
|
169 |
+
},
|
170 |
+
{
|
171 |
+
"cell_type": "code",
|
172 |
+
"execution_count": 5,
|
173 |
+
"metadata": {},
|
174 |
+
"outputs": [
|
175 |
+
{
|
176 |
+
"data": {
|
177 |
+
"text/plain": [
|
178 |
+
"Timestamp('2024-09-09 02:55:15+0000', tz='UTC')"
|
179 |
+
]
|
180 |
+
},
|
181 |
+
"execution_count": 5,
|
182 |
+
"metadata": {},
|
183 |
+
"output_type": "execute_result"
|
184 |
+
}
|
185 |
+
],
|
186 |
+
"source": [
|
187 |
+
"min(invalid_trades.creation_timestamp)"
|
188 |
+
]
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"cell_type": "code",
|
192 |
+
"execution_count": 6,
|
193 |
+
"metadata": {},
|
194 |
+
"outputs": [],
|
195 |
+
"source": [
|
196 |
+
"cutoff_date = \"2024-10-30\"\n",
|
197 |
+
"min_date_utc = pd.to_datetime(cutoff_date, format=\"%Y-%m-%d\", utc=True)\n",
|
198 |
+
"invalid_trades = invalid_trades.loc[invalid_trades[\"creation_timestamp\"]> min_date_utc]\n",
|
199 |
+
"invalid_trades.to_parquet(\"../data/invalid_trades.parquet\", index=False)"
|
200 |
]
|
201 |
},
|
202 |
{
|
|
|
216 |
}
|
217 |
],
|
218 |
"source": [
|
219 |
+
"len(invalid_trades)"
|
220 |
]
|
221 |
},
|
222 |
{
|
scripts/cleaning_old_info.py
CHANGED
@@ -79,6 +79,24 @@ def clean_old_data_from_parquet_files(cutoff_date: str):
|
|
79 |
except Exception as e:
|
80 |
print(f"Error cleaning fpmmTrades file {e}")
|
81 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
if __name__ == "__main__":
|
84 |
clean_old_data_from_parquet_files("2024-10-25")
|
|
|
79 |
except Exception as e:
|
80 |
print(f"Error cleaning fpmmTrades file {e}")
|
81 |
|
82 |
+
# clean invalid trades parquet
|
83 |
+
try:
|
84 |
+
invalid_trades = pd.read_parquet(DATA_DIR / "invalid_trades.parquet")
|
85 |
+
|
86 |
+
invalid_trades["creation_timestamp"] = pd.to_datetime(
|
87 |
+
invalid_trades["creation_timestamp"], utc=True
|
88 |
+
)
|
89 |
+
|
90 |
+
print(f"length before filtering {len(invalid_trades)}")
|
91 |
+
invalid_trades = invalid_trades.loc[
|
92 |
+
invalid_trades["creation_timestamp"] > min_date_utc
|
93 |
+
]
|
94 |
+
print(f"length after filtering {len(invalid_trades)}")
|
95 |
+
invalid_trades.to_parquet(DATA_DIR / "invalid_trades.parquet", index=False)
|
96 |
+
|
97 |
+
except Exception as e:
|
98 |
+
print(f"Error cleaning fpmmTrades file {e}")
|
99 |
+
|
100 |
|
101 |
if __name__ == "__main__":
|
102 |
clean_old_data_from_parquet_files("2024-10-25")
|
scripts/get_mech_info.py
CHANGED
@@ -133,11 +133,16 @@ def update_fpmmTrades_parquet(trades_filename: str) -> pd.DataFrame:
|
|
133 |
print(f"Error reading new trades parquet file {e}")
|
134 |
return None
|
135 |
|
|
|
|
|
|
|
|
|
136 |
# ensure creationTimestamp compatibility
|
137 |
try:
|
138 |
new_trades_df["creationTimestamp"] = new_trades_df["creationTimestamp"].apply(
|
139 |
lambda x: transform_to_datetime(x)
|
140 |
)
|
|
|
141 |
except Exception as e:
|
142 |
print(f"Transformation not needed")
|
143 |
try:
|
|
|
133 |
print(f"Error reading new trades parquet file {e}")
|
134 |
return None
|
135 |
|
136 |
+
# lowercase and strip creator_address
|
137 |
+
new_trades_df["trader_address"] = (
|
138 |
+
new_trades_df["trader_address"].str.lower().str.strip()
|
139 |
+
)
|
140 |
# ensure creationTimestamp compatibility
|
141 |
try:
|
142 |
new_trades_df["creationTimestamp"] = new_trades_df["creationTimestamp"].apply(
|
143 |
lambda x: transform_to_datetime(x)
|
144 |
)
|
145 |
+
|
146 |
except Exception as e:
|
147 |
print(f"Transformation not needed")
|
148 |
try:
|
scripts/markets.py
CHANGED
@@ -309,6 +309,7 @@ def add_market_creator(tools: pd.DataFrame) -> None:
|
|
309 |
return
|
310 |
tools["market_creator"] = ""
|
311 |
# traverse the list of traders
|
|
|
312 |
traders_list = list(tools.trader_address.unique())
|
313 |
for trader_address in traders_list:
|
314 |
market_creator = ""
|
@@ -317,6 +318,7 @@ def add_market_creator(tools: pd.DataFrame) -> None:
|
|
317 |
market_creator = trades.iloc[0]["market_creator"] # first value is enough
|
318 |
except Exception:
|
319 |
print(f"ERROR getting the market creator of {trader_address}")
|
|
|
320 |
continue
|
321 |
# update
|
322 |
tools.loc[tools["trader_address"] == trader_address, "market_creator"] = (
|
@@ -324,6 +326,7 @@ def add_market_creator(tools: pd.DataFrame) -> None:
|
|
324 |
)
|
325 |
# filter those tools where we don't have market creator info
|
326 |
tools = tools.loc[tools["market_creator"] != ""]
|
|
|
327 |
return tools
|
328 |
|
329 |
|
|
|
309 |
return
|
310 |
tools["market_creator"] = ""
|
311 |
# traverse the list of traders
|
312 |
+
tools_no_market_creator = 0
|
313 |
traders_list = list(tools.trader_address.unique())
|
314 |
for trader_address in traders_list:
|
315 |
market_creator = ""
|
|
|
318 |
market_creator = trades.iloc[0]["market_creator"] # first value is enough
|
319 |
except Exception:
|
320 |
print(f"ERROR getting the market creator of {trader_address}")
|
321 |
+
tools_no_market_creator += 1
|
322 |
continue
|
323 |
# update
|
324 |
tools.loc[tools["trader_address"] == trader_address, "market_creator"] = (
|
|
|
326 |
)
|
327 |
# filter those tools where we don't have market creator info
|
328 |
tools = tools.loc[tools["market_creator"] != ""]
|
329 |
+
print(f"Number of tools with no market creator info = {tools_no_market_creator}")
|
330 |
return tools
|
331 |
|
332 |
|
scripts/mech_request_utils.py
CHANGED
@@ -244,6 +244,7 @@ def collect_missing_delivers(request_id: int, block_number: int) -> Dict[str, An
|
|
244 |
return items[0]
|
245 |
except Exception as e:
|
246 |
print(f"Error while getting the response: {e}")
|
|
|
247 |
|
248 |
return mech_delivers
|
249 |
|
|
|
244 |
return items[0]
|
245 |
except Exception as e:
|
246 |
print(f"Error while getting the response: {e}")
|
247 |
+
# TODO count how many mech requests without a deliver do we have
|
248 |
|
249 |
return mech_delivers
|
250 |
|
scripts/profitability.py
CHANGED
@@ -27,7 +27,6 @@ import os
|
|
27 |
from web3_utils import query_conditional_tokens_gc_subgraph
|
28 |
from get_mech_info import (
|
29 |
DATETIME_60_DAYS_AGO,
|
30 |
-
update_fpmmTrades_parquet,
|
31 |
update_tools_parquet,
|
32 |
update_all_trades_parquet,
|
33 |
)
|
@@ -221,13 +220,16 @@ def analyse_trader(
|
|
221 |
return trades_df
|
222 |
|
223 |
# Iterate over the trades
|
|
|
|
|
224 |
for i, trade in tqdm(trades.iterrows(), total=len(trades), desc="Analysing trades"):
|
225 |
try:
|
226 |
market_answer = trade["fpmm.currentAnswer"]
|
227 |
trading_day = trade["creation_date"]
|
228 |
trade_id = trade["id"]
|
229 |
if not daily_info and not market_answer:
|
230 |
-
print(f"Skipping trade {i} because currentAnswer is NaN")
|
|
|
231 |
continue
|
232 |
# Parsing and computing shared values
|
233 |
collateral_amount = wei_to_unit(float(trade["collateralAmount"]))
|
@@ -243,9 +245,10 @@ def analyse_trader(
|
|
243 |
|
244 |
# Skip non-closed markets
|
245 |
if not daily_info and market_status != MarketState.CLOSED:
|
246 |
-
print(
|
247 |
-
|
248 |
-
)
|
|
|
249 |
continue
|
250 |
if current_answer is not None:
|
251 |
current_answer = convert_hex_to_int(current_answer)
|
@@ -316,6 +319,10 @@ def analyse_trader(
|
|
316 |
print(trade)
|
317 |
continue
|
318 |
|
|
|
|
|
|
|
|
|
319 |
return trades_df
|
320 |
|
321 |
|
@@ -380,7 +387,6 @@ def run_profitability_analysis(
|
|
380 |
|
381 |
# # merge previous files if requested
|
382 |
if merge:
|
383 |
-
update_fpmmTrades_parquet(trades_filename)
|
384 |
all_trades_df = update_all_trades_parquet(all_trades_df)
|
385 |
|
386 |
# debugging purposes
|
|
|
27 |
from web3_utils import query_conditional_tokens_gc_subgraph
|
28 |
from get_mech_info import (
|
29 |
DATETIME_60_DAYS_AGO,
|
|
|
30 |
update_tools_parquet,
|
31 |
update_all_trades_parquet,
|
32 |
)
|
|
|
220 |
return trades_df
|
221 |
|
222 |
# Iterate over the trades
|
223 |
+
trades_answer_nan = 0
|
224 |
+
trades_no_closed_market = 0
|
225 |
for i, trade in tqdm(trades.iterrows(), total=len(trades), desc="Analysing trades"):
|
226 |
try:
|
227 |
market_answer = trade["fpmm.currentAnswer"]
|
228 |
trading_day = trade["creation_date"]
|
229 |
trade_id = trade["id"]
|
230 |
if not daily_info and not market_answer:
|
231 |
+
# print(f"Skipping trade {i} because currentAnswer is NaN")
|
232 |
+
trades_answer_nan += 1
|
233 |
continue
|
234 |
# Parsing and computing shared values
|
235 |
collateral_amount = wei_to_unit(float(trade["collateralAmount"]))
|
|
|
245 |
|
246 |
# Skip non-closed markets
|
247 |
if not daily_info and market_status != MarketState.CLOSED:
|
248 |
+
# print(
|
249 |
+
# f"Skipping trade {i} because market is not closed. Market Status: {market_status}"
|
250 |
+
# )
|
251 |
+
trades_no_closed_market += 1
|
252 |
continue
|
253 |
if current_answer is not None:
|
254 |
current_answer = convert_hex_to_int(current_answer)
|
|
|
319 |
print(trade)
|
320 |
continue
|
321 |
|
322 |
+
print(f"Number of trades where currentAnswer is NaN = {trades_answer_nan}")
|
323 |
+
print(
|
324 |
+
f"Number of trades where the market is not closed = {trades_no_closed_market}"
|
325 |
+
)
|
326 |
return trades_df
|
327 |
|
328 |
|
|
|
387 |
|
388 |
# # merge previous files if requested
|
389 |
if merge:
|
|
|
390 |
all_trades_df = update_all_trades_parquet(all_trades_df)
|
391 |
|
392 |
# debugging purposes
|
scripts/pull_data.py
CHANGED
@@ -15,6 +15,7 @@ from utils import (
|
|
15 |
)
|
16 |
from get_mech_info import (
|
17 |
get_mech_events_since_last_run,
|
|
|
18 |
update_json_files,
|
19 |
)
|
20 |
from update_tools_accuracy import compute_tools_accuracy
|
@@ -99,6 +100,10 @@ def only_new_weekly_analysis():
|
|
99 |
trades_filename="new_fpmmTrades.parquet",
|
100 |
from_timestamp=int(latest_timestamp.timestamp()),
|
101 |
)
|
|
|
|
|
|
|
|
|
102 |
# Run tools ETL
|
103 |
logging.info("Generate and parse the tools content")
|
104 |
# generate only new file
|
@@ -122,7 +127,7 @@ def only_new_weekly_analysis():
|
|
122 |
|
123 |
save_historical_data()
|
124 |
try:
|
125 |
-
clean_old_data_from_parquet_files("2024-
|
126 |
except Exception as e:
|
127 |
print("Error cleaning the oldest information from parquet files")
|
128 |
print(f"reason = {e}")
|
|
|
15 |
)
|
16 |
from get_mech_info import (
|
17 |
get_mech_events_since_last_run,
|
18 |
+
update_fpmmTrades_parquet,
|
19 |
update_json_files,
|
20 |
)
|
21 |
from update_tools_accuracy import compute_tools_accuracy
|
|
|
100 |
trades_filename="new_fpmmTrades.parquet",
|
101 |
from_timestamp=int(latest_timestamp.timestamp()),
|
102 |
)
|
103 |
+
# merge with previous file
|
104 |
+
print("Merging with previous fpmmTrades file")
|
105 |
+
update_fpmmTrades_parquet(trades_filename="new_fpmmTrades.parquet")
|
106 |
+
|
107 |
# Run tools ETL
|
108 |
logging.info("Generate and parse the tools content")
|
109 |
# generate only new file
|
|
|
127 |
|
128 |
save_historical_data()
|
129 |
try:
|
130 |
+
clean_old_data_from_parquet_files("2024-11-06")
|
131 |
except Exception as e:
|
132 |
print("Error cleaning the oldest information from parquet files")
|
133 |
print(f"reason = {e}")
|
scripts/tools_metrics.py
CHANGED
@@ -61,7 +61,7 @@ def prepare_tools(tools: pd.DataFrame) -> pd.DataFrame:
|
|
61 |
tools = tools.sort_values(by="request_time", ascending=True)
|
62 |
|
63 |
tools["request_month_year_week"] = (
|
64 |
-
pd.to_datetime(tools["request_time"]).dt.to_period("W").dt.strftime("%b-%d")
|
65 |
)
|
66 |
# preparing the tools graph
|
67 |
# adding the total
|
|
|
61 |
tools = tools.sort_values(by="request_time", ascending=True)
|
62 |
|
63 |
tools["request_month_year_week"] = (
|
64 |
+
pd.to_datetime(tools["request_time"]).dt.to_period("W").dt.strftime("%b-%d-%Y")
|
65 |
)
|
66 |
# preparing the tools graph
|
67 |
# adding the total
|
tabs/metrics.py
CHANGED
@@ -86,12 +86,12 @@ def plot_trade_metrics(
|
|
86 |
# Convert string dates to datetime and sort them
|
87 |
all_dates_dt = sorted(
|
88 |
[
|
89 |
-
datetime.strptime(date, "%b-%d")
|
90 |
for date in trades_filtered["month_year_week"].unique()
|
91 |
]
|
92 |
)
|
93 |
# Convert back to string format
|
94 |
-
all_dates = [date.strftime("%b-%d") for date in all_dates_dt]
|
95 |
fig = px.box(
|
96 |
trades_filtered,
|
97 |
x="month_year_week",
|
|
|
86 |
# Convert string dates to datetime and sort them
|
87 |
all_dates_dt = sorted(
|
88 |
[
|
89 |
+
datetime.strptime(date, "%b-%d-%Y")
|
90 |
for date in trades_filtered["month_year_week"].unique()
|
91 |
]
|
92 |
)
|
93 |
# Convert back to string format
|
94 |
+
all_dates = [date.strftime("%b-%d-%Y") for date in all_dates_dt]
|
95 |
fig = px.box(
|
96 |
trades_filtered,
|
97 |
x="month_year_week",
|
tabs/staking.py
CHANGED
@@ -78,12 +78,12 @@ def plot_staking_trades_per_market_by_week(
|
|
78 |
# Convert string dates to datetime and sort them
|
79 |
all_dates_dt = sorted(
|
80 |
[
|
81 |
-
datetime.strptime(date, "%b-%d")
|
82 |
for date in trades["month_year_week"].unique()
|
83 |
]
|
84 |
)
|
85 |
# Convert back to string format
|
86 |
-
all_dates = [date.strftime("%b-%d") for date in all_dates_dt]
|
87 |
|
88 |
fig = px.bar(
|
89 |
trades,
|
|
|
78 |
# Convert string dates to datetime and sort them
|
79 |
all_dates_dt = sorted(
|
80 |
[
|
81 |
+
datetime.strptime(date, "%b-%d-%Y")
|
82 |
for date in trades["month_year_week"].unique()
|
83 |
]
|
84 |
)
|
85 |
# Convert back to string format
|
86 |
+
all_dates = [date.strftime("%b-%d-%Y") for date in all_dates_dt]
|
87 |
|
88 |
fig = px.bar(
|
89 |
trades,
|
tabs/tool_win.py
CHANGED
@@ -14,7 +14,7 @@ def prepare_tools(tools: pd.DataFrame) -> pd.DataFrame:
|
|
14 |
tools = tools.sort_values(by="request_time", ascending=True)
|
15 |
|
16 |
tools["request_month_year_week"] = (
|
17 |
-
pd.to_datetime(tools["request_time"]).dt.to_period("W").dt.strftime("%b-%d")
|
18 |
)
|
19 |
# preparing the tools graph
|
20 |
# adding the total
|
@@ -38,7 +38,7 @@ def get_overall_winning_rate_by_market(wins_df: pd.DataFrame) -> pd.DataFrame:
|
|
38 |
|
39 |
|
40 |
def sort_key(date_str):
|
41 |
-
month,
|
42 |
month_order = [
|
43 |
"Jan",
|
44 |
"Feb",
|
@@ -54,8 +54,9 @@ def sort_key(date_str):
|
|
54 |
"Dec",
|
55 |
]
|
56 |
month_num = month_order.index(month) + 1
|
57 |
-
|
58 |
-
|
|
|
59 |
|
60 |
|
61 |
def integrated_plot_tool_winnings_overall_per_market_by_week(
|
|
|
14 |
tools = tools.sort_values(by="request_time", ascending=True)
|
15 |
|
16 |
tools["request_month_year_week"] = (
|
17 |
+
pd.to_datetime(tools["request_time"]).dt.to_period("W").dt.strftime("%b-%d-%Y")
|
18 |
)
|
19 |
# preparing the tools graph
|
20 |
# adding the total
|
|
|
38 |
|
39 |
|
40 |
def sort_key(date_str):
|
41 |
+
month, day, year = date_str.split("-")
|
42 |
month_order = [
|
43 |
"Jan",
|
44 |
"Feb",
|
|
|
54 |
"Dec",
|
55 |
]
|
56 |
month_num = month_order.index(month) + 1
|
57 |
+
day = int(day)
|
58 |
+
year = int(year)
|
59 |
+
return (year, month_num, day) # year, month, day
|
60 |
|
61 |
|
62 |
def integrated_plot_tool_winnings_overall_per_market_by_week(
|
tabs/trades.py
CHANGED
@@ -21,7 +21,7 @@ def prepare_trades(trades_df: pd.DataFrame) -> pd.DataFrame:
|
|
21 |
trades_df["creation_timestamp"].dt.to_period("M").astype(str)
|
22 |
)
|
23 |
trades_df["month_year_week"] = (
|
24 |
-
trades_df["creation_timestamp"].dt.to_period("W").dt.strftime("%b-%d")
|
25 |
)
|
26 |
trades_df["winning_trade"] = trades_df["winning_trade"].astype(int)
|
27 |
return trades_df
|
@@ -179,12 +179,12 @@ def integrated_plot_trades_per_market_by_week_v2(trades_df: pd.DataFrame) -> gr.
|
|
179 |
# Convert string dates to datetime and sort them
|
180 |
all_dates_dt = sorted(
|
181 |
[
|
182 |
-
datetime.strptime(date, "%b-%d")
|
183 |
for date in trades["month_year_week"].unique()
|
184 |
]
|
185 |
)
|
186 |
# Convert back to string format
|
187 |
-
all_dates = [date.strftime("%b-%d") for date in all_dates_dt]
|
188 |
# Combine the traces
|
189 |
final_traces = []
|
190 |
market_colors = {"pearl": "darkviolet", "quickstart": "goldenrod", "all": "green"}
|
@@ -308,12 +308,12 @@ def integrated_plot_winning_trades_per_market_by_week_v2(
|
|
308 |
# Convert string dates to datetime and sort them
|
309 |
all_dates_dt = sorted(
|
310 |
[
|
311 |
-
datetime.strptime(date, "%b-%d")
|
312 |
for date in final_df["month_year_week"].unique()
|
313 |
]
|
314 |
)
|
315 |
# Convert back to string format
|
316 |
-
all_dates = [date.strftime("%b-%d") for date in all_dates_dt]
|
317 |
color_discrete_sequence = ["darkviolet", "goldenrod", "green"]
|
318 |
if trader_filter == "Olas":
|
319 |
final_df = final_df[final_df["staking_type"] == "Olas"]
|
|
|
21 |
trades_df["creation_timestamp"].dt.to_period("M").astype(str)
|
22 |
)
|
23 |
trades_df["month_year_week"] = (
|
24 |
+
trades_df["creation_timestamp"].dt.to_period("W").dt.strftime("%b-%d-%Y")
|
25 |
)
|
26 |
trades_df["winning_trade"] = trades_df["winning_trade"].astype(int)
|
27 |
return trades_df
|
|
|
179 |
# Convert string dates to datetime and sort them
|
180 |
all_dates_dt = sorted(
|
181 |
[
|
182 |
+
datetime.strptime(date, "%b-%d-%Y")
|
183 |
for date in trades["month_year_week"].unique()
|
184 |
]
|
185 |
)
|
186 |
# Convert back to string format
|
187 |
+
all_dates = [date.strftime("%b-%d-%Y") for date in all_dates_dt]
|
188 |
# Combine the traces
|
189 |
final_traces = []
|
190 |
market_colors = {"pearl": "darkviolet", "quickstart": "goldenrod", "all": "green"}
|
|
|
308 |
# Convert string dates to datetime and sort them
|
309 |
all_dates_dt = sorted(
|
310 |
[
|
311 |
+
datetime.strptime(date, "%b-%d-%Y")
|
312 |
for date in final_df["month_year_week"].unique()
|
313 |
]
|
314 |
)
|
315 |
# Convert back to string format
|
316 |
+
all_dates = [date.strftime("%b-%d-%Y") for date in all_dates_dt]
|
317 |
color_discrete_sequence = ["darkviolet", "goldenrod", "green"]
|
318 |
if trader_filter == "Olas":
|
319 |
final_df = final_df[final_df["staking_type"] == "Olas"]
|