rosacastillo commited on
Commit
ed33e36
·
1 Parent(s): 681e0a4

removing daily graphs

Browse files
app.py CHANGED
@@ -18,10 +18,8 @@ from tabs.staking import plot_staking_trades_per_market_by_week
18
 
19
  from tabs.metrics import (
20
  trade_metric_choices,
21
- trade_daily_metric_choices,
22
  tool_metric_choices,
23
  default_trade_metric,
24
- default_daily_metric,
25
  default_tool_metric,
26
  plot_trade_metrics,
27
  get_trade_metrics_text,
@@ -54,9 +52,7 @@ from tabs.error import (
54
  plot_tool_error_data_by_market,
55
  )
56
 
57
- from tabs.daily_graphs import get_current_week_data, plot_daily_metrics
58
  from tabs.about import about_olas_predict, about_this_dashboard
59
- import matplotlib.pyplot as plt
60
  from scripts.utils import INC_TOOLS
61
 
62
 
@@ -112,14 +108,8 @@ def get_all_data():
112
  Get all data from the tools.parquet, tools_accuracy and trades parquet files
113
  """
114
  logger.info("Getting all data")
115
- # Query to fetch daily live data
116
- con = duckdb.connect(":memory:")
117
- query5 = f"""
118
- SELECT *
119
- FROM read_parquet('./data/daily_info.parquet')
120
- """
121
- df5 = con.execute(query5).fetchdf()
122
 
 
123
  # Query to fetch invalid trades data
124
  query4 = f"""
125
  SELECT *
@@ -151,16 +141,14 @@ def get_all_data():
151
 
152
  con.close()
153
 
154
- return df1, df2, df3, df4, df5
155
 
156
 
157
  def prepare_data():
158
  """
159
  Prepare the data for the dashboard
160
  """
161
- tools_df, trades_df, tools_accuracy_info, invalid_trades, daily_info = (
162
- get_all_data()
163
- )
164
  print(trades_df.info())
165
 
166
  tools_df = prepare_tools(tools_df)
@@ -174,17 +162,17 @@ def prepare_data():
174
  invalid_trades["creation_timestamp"]
175
  )
176
  invalid_trades["creation_date"] = invalid_trades["creation_timestamp"].dt.date
177
- daily_info["creation_date"] = daily_info["creation_timestamp"].dt.date
178
  # discovering outliers for ROI
179
  outliers = trades_df.loc[trades_df["roi"] >= 1000]
180
  if len(outliers) > 0:
181
  outliers.to_parquet("./data/outliers.parquet")
182
  trades_df = trades_df.loc[trades_df["roi"] < 1000]
183
 
184
- return tools_df, trades_df, tools_accuracy_info, invalid_trades, daily_info
185
 
186
 
187
- tools_df, trades_df, tools_accuracy_info, invalid_trades, daily_info = prepare_data()
188
 
189
 
190
  demo = gr.Blocks()
@@ -334,67 +322,6 @@ with demo:
334
  inputs=[trade_na_details_selector, na_trade_details_plot],
335
  outputs=[na_trade_details_plot],
336
  )
337
- with gr.TabItem("📅 Daily trades dashboard (WIP)"):
338
- current_week_trades = get_current_week_data(trades_df=trades_df)
339
- live_trades_current_week = get_current_week_data(trades_df=daily_info)
340
- with gr.Row():
341
- gr.Markdown("# Daily live metrics for all trades")
342
- with gr.Row():
343
- trade_live_details_selector = gr.Dropdown(
344
- label="Select a daily live metric",
345
- choices=trade_daily_metric_choices,
346
- value=default_daily_metric,
347
- )
348
-
349
- with gr.Row():
350
- with gr.Column(scale=3):
351
- trade_live_details_plot = plot_daily_metrics(
352
- metric_name=default_daily_metric,
353
- trades_df=live_trades_current_week,
354
- )
355
- with gr.Column(scale=1):
356
- trade_details_text = get_trade_metrics_text()
357
-
358
- def update_trade_live_details(trade_detail, trade_live_details_plot):
359
- new_a_plot = plot_daily_metrics(
360
- metric_name=trade_detail, trades_df=live_trades_current_week
361
- )
362
- return new_a_plot
363
-
364
- trade_live_details_selector.change(
365
- update_trade_live_details,
366
- inputs=[trade_live_details_selector, trade_live_details_plot],
367
- outputs=[trade_live_details_plot],
368
- )
369
-
370
- with gr.Row():
371
- gr.Markdown("# Daily profitability metrics available for all trades")
372
- with gr.Row():
373
- trade_daily_details_selector = gr.Dropdown(
374
- label="Select a daily trade metric",
375
- choices=trade_metric_choices,
376
- value=default_trade_metric,
377
- )
378
-
379
- with gr.Row():
380
- with gr.Column(scale=3):
381
- trade_daily_details_plot = plot_daily_metrics(
382
- metric_name=default_trade_metric, trades_df=current_week_trades
383
- )
384
- with gr.Column(scale=1):
385
- trade_details_text = get_trade_metrics_text()
386
-
387
- def update_trade_daily_details(trade_detail, trade_daily_details_plot):
388
- new_a_plot = plot_daily_metrics(
389
- metric_name=trade_detail, trades_df=current_week_trades
390
- )
391
- return new_a_plot
392
-
393
- trade_daily_details_selector.change(
394
- update_trade_daily_details,
395
- inputs=[trade_daily_details_selector, trade_daily_details_plot],
396
- outputs=[trade_daily_details_plot],
397
- )
398
 
399
  with gr.TabItem("🔒 Staking traders"):
400
  with gr.Row():
 
18
 
19
  from tabs.metrics import (
20
  trade_metric_choices,
 
21
  tool_metric_choices,
22
  default_trade_metric,
 
23
  default_tool_metric,
24
  plot_trade_metrics,
25
  get_trade_metrics_text,
 
52
  plot_tool_error_data_by_market,
53
  )
54
 
 
55
  from tabs.about import about_olas_predict, about_this_dashboard
 
56
  from scripts.utils import INC_TOOLS
57
 
58
 
 
108
  Get all data from the tools.parquet, tools_accuracy and trades parquet files
109
  """
110
  logger.info("Getting all data")
 
 
 
 
 
 
 
111
 
112
+ con = duckdb.connect(":memory:")
113
  # Query to fetch invalid trades data
114
  query4 = f"""
115
  SELECT *
 
141
 
142
  con.close()
143
 
144
+ return df1, df2, df3, df4
145
 
146
 
147
  def prepare_data():
148
  """
149
  Prepare the data for the dashboard
150
  """
151
+ tools_df, trades_df, tools_accuracy_info, invalid_trades = get_all_data()
 
 
152
  print(trades_df.info())
153
 
154
  tools_df = prepare_tools(tools_df)
 
162
  invalid_trades["creation_timestamp"]
163
  )
164
  invalid_trades["creation_date"] = invalid_trades["creation_timestamp"].dt.date
165
+
166
  # discovering outliers for ROI
167
  outliers = trades_df.loc[trades_df["roi"] >= 1000]
168
  if len(outliers) > 0:
169
  outliers.to_parquet("./data/outliers.parquet")
170
  trades_df = trades_df.loc[trades_df["roi"] < 1000]
171
 
172
+ return tools_df, trades_df, tools_accuracy_info, invalid_trades
173
 
174
 
175
+ tools_df, trades_df, tools_accuracy_info, invalid_trades = prepare_data()
176
 
177
 
178
  demo = gr.Blocks()
 
322
  inputs=[trade_na_details_selector, na_trade_details_plot],
323
  outputs=[na_trade_details_plot],
324
  )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
325
 
326
  with gr.TabItem("🔒 Staking traders"):
327
  with gr.Row():
notebooks/daily_data.ipynb DELETED
@@ -1,430 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": 2,
6
- "metadata": {},
7
- "outputs": [],
8
- "source": [
9
- "import pandas as pd"
10
- ]
11
- },
12
- {
13
- "cell_type": "code",
14
- "execution_count": 2,
15
- "metadata": {},
16
- "outputs": [],
17
- "source": [
18
- "all_trades = pd.read_parquet('../data/all_trades_profitability.parquet')"
19
- ]
20
- },
21
- {
22
- "cell_type": "code",
23
- "execution_count": 3,
24
- "metadata": {},
25
- "outputs": [
26
- {
27
- "data": {
28
- "text/plain": [
29
- "Timestamp('2024-11-23 01:38:25+0000', tz='UTC')"
30
- ]
31
- },
32
- "execution_count": 3,
33
- "metadata": {},
34
- "output_type": "execute_result"
35
- }
36
- ],
37
- "source": [
38
- "max(all_trades.creation_timestamp)"
39
- ]
40
- },
41
- {
42
- "cell_type": "code",
43
- "execution_count": 4,
44
- "metadata": {},
45
- "outputs": [
46
- {
47
- "data": {
48
- "text/plain": [
49
- "Timestamp('2024-09-22 00:02:05+0000', tz='UTC')"
50
- ]
51
- },
52
- "execution_count": 4,
53
- "metadata": {},
54
- "output_type": "execute_result"
55
- }
56
- ],
57
- "source": [
58
- "min(all_trades.creation_timestamp)"
59
- ]
60
- },
61
- {
62
- "cell_type": "code",
63
- "execution_count": 3,
64
- "metadata": {},
65
- "outputs": [],
66
- "source": [
67
- "new_trades = pd.read_parquet('../data/new_fpmmTrades.parquet')"
68
- ]
69
- },
70
- {
71
- "cell_type": "code",
72
- "execution_count": 11,
73
- "metadata": {},
74
- "outputs": [
75
- {
76
- "name": "stdout",
77
- "output_type": "stream",
78
- "text": [
79
- "<class 'pandas.core.frame.DataFrame'>\n",
80
- "RangeIndex: 3798 entries, 0 to 3797\n",
81
- "Data columns (total 24 columns):\n",
82
- " # Column Non-Null Count Dtype \n",
83
- "--- ------ -------------- ----- \n",
84
- " 0 collateralAmount 3798 non-null object\n",
85
- " 1 collateralAmountUSD 3798 non-null object\n",
86
- " 2 collateralToken 3798 non-null object\n",
87
- " 3 creationTimestamp 3798 non-null object\n",
88
- " 4 trader_address 3798 non-null object\n",
89
- " 5 feeAmount 3798 non-null object\n",
90
- " 6 id 3798 non-null object\n",
91
- " 7 oldOutcomeTokenMarginalPrice 3798 non-null object\n",
92
- " 8 outcomeIndex 3798 non-null object\n",
93
- " 9 outcomeTokenMarginalPrice 3798 non-null object\n",
94
- " 10 outcomeTokensTraded 3798 non-null object\n",
95
- " 11 title 3798 non-null object\n",
96
- " 12 transactionHash 3798 non-null object\n",
97
- " 13 type 3798 non-null object\n",
98
- " 14 market_creator 3798 non-null object\n",
99
- " 15 fpmm.answerFinalizedTimestamp 0 non-null object\n",
100
- " 16 fpmm.arbitrationOccurred 3798 non-null bool \n",
101
- " 17 fpmm.currentAnswer 0 non-null object\n",
102
- " 18 fpmm.id 3798 non-null object\n",
103
- " 19 fpmm.isPendingArbitration 3798 non-null bool \n",
104
- " 20 fpmm.openingTimestamp 3798 non-null object\n",
105
- " 21 fpmm.outcomes 3798 non-null object\n",
106
- " 22 fpmm.title 3798 non-null object\n",
107
- " 23 fpmm.condition.id 3798 non-null object\n",
108
- "dtypes: bool(2), object(22)\n",
109
- "memory usage: 660.3+ KB\n"
110
- ]
111
- }
112
- ],
113
- "source": [
114
- "new_trades.info()"
115
- ]
116
- },
117
- {
118
- "cell_type": "code",
119
- "execution_count": 12,
120
- "metadata": {},
121
- "outputs": [
122
- {
123
- "data": {
124
- "text/plain": [
125
- "3798"
126
- ]
127
- },
128
- "execution_count": 12,
129
- "metadata": {},
130
- "output_type": "execute_result"
131
- }
132
- ],
133
- "source": [
134
- "len(new_trades.id.unique())"
135
- ]
136
- },
137
- {
138
- "cell_type": "code",
139
- "execution_count": 4,
140
- "metadata": {},
141
- "outputs": [
142
- {
143
- "data": {
144
- "text/plain": [
145
- "Index(['collateralAmount', 'collateralAmountUSD', 'collateralToken',\n",
146
- " 'creationTimestamp', 'trader_address', 'feeAmount', 'id',\n",
147
- " 'oldOutcomeTokenMarginalPrice', 'outcomeIndex',\n",
148
- " 'outcomeTokenMarginalPrice', 'outcomeTokensTraded', 'title',\n",
149
- " 'transactionHash', 'type', 'market_creator',\n",
150
- " 'fpmm.answerFinalizedTimestamp', 'fpmm.arbitrationOccurred',\n",
151
- " 'fpmm.currentAnswer', 'fpmm.id', 'fpmm.isPendingArbitration',\n",
152
- " 'fpmm.openingTimestamp', 'fpmm.outcomes', 'fpmm.title',\n",
153
- " 'fpmm.condition.id'],\n",
154
- " dtype='object')"
155
- ]
156
- },
157
- "execution_count": 4,
158
- "metadata": {},
159
- "output_type": "execute_result"
160
- }
161
- ],
162
- "source": [
163
- "new_trades.columns"
164
- ]
165
- },
166
- {
167
- "cell_type": "code",
168
- "execution_count": 6,
169
- "metadata": {},
170
- "outputs": [
171
- {
172
- "data": {
173
- "text/plain": [
174
- "'1732609530'"
175
- ]
176
- },
177
- "execution_count": 6,
178
- "metadata": {},
179
- "output_type": "execute_result"
180
- }
181
- ],
182
- "source": [
183
- "max(new_trades.creationTimestamp)"
184
- ]
185
- },
186
- {
187
- "cell_type": "code",
188
- "execution_count": 13,
189
- "metadata": {},
190
- "outputs": [],
191
- "source": [
192
- "old_trades = pd.read_parquet('../data/fpmmTrades.parquet')"
193
- ]
194
- },
195
- {
196
- "cell_type": "code",
197
- "execution_count": 14,
198
- "metadata": {},
199
- "outputs": [
200
- {
201
- "data": {
202
- "text/plain": [
203
- "'1732609530'"
204
- ]
205
- },
206
- "execution_count": 14,
207
- "metadata": {},
208
- "output_type": "execute_result"
209
- }
210
- ],
211
- "source": [
212
- "max(old_trades.creationTimestamp)"
213
- ]
214
- },
215
- {
216
- "cell_type": "code",
217
- "execution_count": 25,
218
- "metadata": {},
219
- "outputs": [],
220
- "source": [
221
- "all_trades_before = pd.read_parquet('../data/daily_info.parquet')"
222
- ]
223
- },
224
- {
225
- "cell_type": "code",
226
- "execution_count": 26,
227
- "metadata": {},
228
- "outputs": [
229
- {
230
- "name": "stdout",
231
- "output_type": "stream",
232
- "text": [
233
- "<class 'pandas.core.frame.DataFrame'>\n",
234
- "RangeIndex: 3882 entries, 0 to 3881\n",
235
- "Data columns (total 21 columns):\n",
236
- " # Column Non-Null Count Dtype \n",
237
- "--- ------ -------------- ----- \n",
238
- " 0 trader_address 3882 non-null object \n",
239
- " 1 market_creator 3882 non-null object \n",
240
- " 2 trade_id 3882 non-null object \n",
241
- " 3 creation_timestamp 3882 non-null datetime64[ns, UTC]\n",
242
- " 4 title 3882 non-null object \n",
243
- " 5 market_status 3882 non-null object \n",
244
- " 6 collateral_amount 3882 non-null float64 \n",
245
- " 7 outcome_index 3882 non-null object \n",
246
- " 8 trade_fee_amount 3882 non-null float64 \n",
247
- " 9 outcomes_tokens_traded 3882 non-null float64 \n",
248
- " 10 current_answer 0 non-null object \n",
249
- " 11 is_invalid 3882 non-null bool \n",
250
- " 12 winning_trade 0 non-null object \n",
251
- " 13 earnings 3882 non-null float64 \n",
252
- " 14 redeemed 3882 non-null bool \n",
253
- " 15 redeemed_amount 3882 non-null int64 \n",
254
- " 16 num_mech_calls 3882 non-null int64 \n",
255
- " 17 mech_fee_amount 3882 non-null float64 \n",
256
- " 18 net_earnings 3882 non-null float64 \n",
257
- " 19 roi 3882 non-null float64 \n",
258
- " 20 staking 3882 non-null object \n",
259
- "dtypes: bool(2), datetime64[ns, UTC](1), float64(7), int64(2), object(9)\n",
260
- "memory usage: 583.9+ KB\n"
261
- ]
262
- }
263
- ],
264
- "source": [
265
- "all_trades_before.info()"
266
- ]
267
- },
268
- {
269
- "cell_type": "code",
270
- "execution_count": 27,
271
- "metadata": {},
272
- "outputs": [
273
- {
274
- "data": {
275
- "text/plain": [
276
- "Index(['trader_address', 'market_creator', 'trade_id', 'creation_timestamp',\n",
277
- " 'title', 'market_status', 'collateral_amount', 'outcome_index',\n",
278
- " 'trade_fee_amount', 'outcomes_tokens_traded', 'current_answer',\n",
279
- " 'is_invalid', 'winning_trade', 'earnings', 'redeemed',\n",
280
- " 'redeemed_amount', 'num_mech_calls', 'mech_fee_amount', 'net_earnings',\n",
281
- " 'roi', 'staking'],\n",
282
- " dtype='object')"
283
- ]
284
- },
285
- "execution_count": 27,
286
- "metadata": {},
287
- "output_type": "execute_result"
288
- }
289
- ],
290
- "source": [
291
- "all_trades_before.columns"
292
- ]
293
- },
294
- {
295
- "cell_type": "code",
296
- "execution_count": 23,
297
- "metadata": {},
298
- "outputs": [
299
- {
300
- "data": {
301
- "text/plain": [
302
- "Timestamp('2024-11-26 10:19:30+0000', tz='UTC')"
303
- ]
304
- },
305
- "execution_count": 23,
306
- "metadata": {},
307
- "output_type": "execute_result"
308
- }
309
- ],
310
- "source": [
311
- "max(all_trades_before.creation_timestamp)"
312
- ]
313
- },
314
- {
315
- "cell_type": "code",
316
- "execution_count": 28,
317
- "metadata": {},
318
- "outputs": [
319
- {
320
- "data": {
321
- "text/plain": [
322
- "staking\n",
323
- "non_agent 2376\n",
324
- "quickstart 672\n",
325
- "pearl 502\n",
326
- "non_staking 332\n",
327
- "Name: count, dtype: int64"
328
- ]
329
- },
330
- "execution_count": 28,
331
- "metadata": {},
332
- "output_type": "execute_result"
333
- }
334
- ],
335
- "source": [
336
- "all_trades_before.staking.value_counts()"
337
- ]
338
- },
339
- {
340
- "cell_type": "code",
341
- "execution_count": 7,
342
- "metadata": {},
343
- "outputs": [],
344
- "source": [
345
- "all_trades_df = pd.read_parquet('../json_data/all_trades_df.parquet')"
346
- ]
347
- },
348
- {
349
- "cell_type": "code",
350
- "execution_count": 8,
351
- "metadata": {},
352
- "outputs": [
353
- {
354
- "data": {
355
- "text/plain": [
356
- "Index(['trader_address', 'market_creator', 'trade_id', 'creation_timestamp',\n",
357
- " 'title', 'market_status', 'collateral_amount', 'outcome_index',\n",
358
- " 'trade_fee_amount', 'outcomes_tokens_traded', 'current_answer',\n",
359
- " 'is_invalid', 'winning_trade', 'earnings', 'redeemed',\n",
360
- " 'redeemed_amount', 'num_mech_calls', 'mech_fee_amount', 'net_earnings',\n",
361
- " 'roi', 'staking', 'nr_mech_calls'],\n",
362
- " dtype='object')"
363
- ]
364
- },
365
- "execution_count": 8,
366
- "metadata": {},
367
- "output_type": "execute_result"
368
- }
369
- ],
370
- "source": [
371
- "all_trades_df.columns"
372
- ]
373
- },
374
- {
375
- "cell_type": "code",
376
- "execution_count": 9,
377
- "metadata": {},
378
- "outputs": [
379
- {
380
- "data": {
381
- "text/plain": [
382
- "Timestamp('2024-11-23 01:38:25+0000', tz='UTC')"
383
- ]
384
- },
385
- "execution_count": 9,
386
- "metadata": {},
387
- "output_type": "execute_result"
388
- }
389
- ],
390
- "source": [
391
- "max(all_trades_df.creation_timestamp)"
392
- ]
393
- },
394
- {
395
- "cell_type": "code",
396
- "execution_count": null,
397
- "metadata": {},
398
- "outputs": [],
399
- "source": []
400
- },
401
- {
402
- "cell_type": "code",
403
- "execution_count": null,
404
- "metadata": {},
405
- "outputs": [],
406
- "source": []
407
- }
408
- ],
409
- "metadata": {
410
- "kernelspec": {
411
- "display_name": "hf_dashboards",
412
- "language": "python",
413
- "name": "python3"
414
- },
415
- "language_info": {
416
- "codemirror_mode": {
417
- "name": "ipython",
418
- "version": 3
419
- },
420
- "file_extension": ".py",
421
- "mimetype": "text/x-python",
422
- "name": "python",
423
- "nbconvert_exporter": "python",
424
- "pygments_lexer": "ipython3",
425
- "version": "3.12.2"
426
- }
427
- },
428
- "nbformat": 4,
429
- "nbformat_minor": 2
430
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
notebooks/invalid_markets.ipynb CHANGED
The diff for this file is too large to render. See raw diff
 
notebooks/mech_calls_analysis.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
notebooks/outliers_analysis.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
notebooks/roi_analysis.ipynb CHANGED
@@ -2,7 +2,7 @@
2
  "cells": [
3
  {
4
  "cell_type": "code",
5
- "execution_count": 1,
6
  "metadata": {},
7
  "outputs": [],
8
  "source": [
@@ -15,7 +15,7 @@
15
  },
16
  {
17
  "cell_type": "code",
18
- "execution_count": 2,
19
  "metadata": {},
20
  "outputs": [],
21
  "source": [
@@ -25,6 +25,45 @@
25
  "all_trades = pd.read_parquet('../data/all_trades_profitability.parquet')"
26
  ]
27
  },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28
  {
29
  "cell_type": "code",
30
  "execution_count": 3,
@@ -34,9 +73,8 @@
34
  "data": {
35
  "text/plain": [
36
  "current_answer\n",
37
- " 1 12373\n",
38
- " 0 10879\n",
39
- "-1 801\n",
40
  "Name: count, dtype: int64"
41
  ]
42
  },
@@ -51,7 +89,49 @@
51
  },
52
  {
53
  "cell_type": "code",
54
- "execution_count": 3,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55
  "metadata": {},
56
  "outputs": [
57
  {
@@ -59,32 +139,33 @@
59
  "output_type": "stream",
60
  "text": [
61
  "<class 'pandas.core.frame.DataFrame'>\n",
62
- "RangeIndex: 4872 entries, 0 to 4871\n",
63
- "Data columns (total 20 columns):\n",
64
  " # Column Non-Null Count Dtype \n",
65
  "--- ------ -------------- ----- \n",
66
- " 0 trader_address 4872 non-null object \n",
67
- " 1 market_creator 4872 non-null object \n",
68
- " 2 trade_id 4872 non-null object \n",
69
- " 3 creation_timestamp 4872 non-null datetime64[ns, UTC]\n",
70
- " 4 title 4872 non-null object \n",
71
- " 5 market_status 4872 non-null object \n",
72
- " 6 collateral_amount 4872 non-null float64 \n",
73
- " 7 outcome_index 4872 non-null object \n",
74
- " 8 trade_fee_amount 4872 non-null float64 \n",
75
- " 9 outcomes_tokens_traded 4872 non-null float64 \n",
76
- " 10 current_answer 4872 non-null int64 \n",
77
- " 11 is_invalid 4872 non-null bool \n",
78
- " 12 winning_trade 4872 non-null bool \n",
79
- " 13 earnings 4872 non-null float64 \n",
80
- " 14 redeemed 4872 non-null bool \n",
81
- " 15 redeemed_amount 4872 non-null float64 \n",
82
- " 16 num_mech_calls 4872 non-null int64 \n",
83
- " 17 mech_fee_amount 4872 non-null float64 \n",
84
- " 18 net_earnings 4872 non-null float64 \n",
85
- " 19 roi 4872 non-null float64 \n",
86
- "dtypes: bool(3), datetime64[ns, UTC](1), float64(8), int64(2), object(6)\n",
87
- "memory usage: 661.5+ KB\n"
 
88
  ]
89
  }
90
  ],
@@ -709,7 +790,7 @@
709
  ],
710
  "metadata": {
711
  "kernelspec": {
712
- "display_name": "Python 3",
713
  "language": "python",
714
  "name": "python3"
715
  },
 
2
  "cells": [
3
  {
4
  "cell_type": "code",
5
+ "execution_count": 3,
6
  "metadata": {},
7
  "outputs": [],
8
  "source": [
 
15
  },
16
  {
17
  "cell_type": "code",
18
+ "execution_count": 4,
19
  "metadata": {},
20
  "outputs": [],
21
  "source": [
 
25
  "all_trades = pd.read_parquet('../data/all_trades_profitability.parquet')"
26
  ]
27
  },
28
+ {
29
+ "cell_type": "code",
30
+ "execution_count": 7,
31
+ "metadata": {},
32
+ "outputs": [
33
+ {
34
+ "name": "stdout",
35
+ "output_type": "stream",
36
+ "text": [
37
+ "<class 'pandas.core.frame.DataFrame'>\n",
38
+ "RangeIndex: 615 entries, 0 to 614\n",
39
+ "Data columns (total 16 columns):\n",
40
+ " # Column Non-Null Count Dtype \n",
41
+ "--- ------ -------------- ----- \n",
42
+ " 0 trader_address 615 non-null object \n",
43
+ " 1 num_trades 615 non-null int64 \n",
44
+ " 2 num_winning_trades 615 non-null float64\n",
45
+ " 3 num_redeemed 615 non-null float64\n",
46
+ " 4 total_investment 615 non-null float64\n",
47
+ " 5 total_trade_fees 615 non-null float64\n",
48
+ " 6 num_mech_calls 615 non-null int64 \n",
49
+ " 7 total_mech_fees 615 non-null float64\n",
50
+ " 8 total_earnings 615 non-null float64\n",
51
+ " 9 total_redeemed_amount 615 non-null float64\n",
52
+ " 10 total_net_earnings 615 non-null float64\n",
53
+ " 11 total_roi 615 non-null float64\n",
54
+ " 12 mean_mech_calls_per_trade 615 non-null float64\n",
55
+ " 13 mean_mech_fee_amount_per_trade 615 non-null float64\n",
56
+ " 14 total_net_earnings_wo_mech_fees 615 non-null float64\n",
57
+ " 15 total_roi_wo_mech_fees 615 non-null float64\n",
58
+ "dtypes: float64(13), int64(2), object(1)\n",
59
+ "memory usage: 77.0+ KB\n"
60
+ ]
61
+ }
62
+ ],
63
+ "source": [
64
+ "summary_traders.info()"
65
+ ]
66
+ },
67
  {
68
  "cell_type": "code",
69
  "execution_count": 3,
 
73
  "data": {
74
  "text/plain": [
75
  "current_answer\n",
76
+ "1 25382\n",
77
+ "0 15794\n",
 
78
  "Name: count, dtype: int64"
79
  ]
80
  },
 
89
  },
90
  {
91
  "cell_type": "code",
92
+ "execution_count": 5,
93
+ "metadata": {},
94
+ "outputs": [
95
+ {
96
+ "data": {
97
+ "text/plain": [
98
+ "pandas._libs.tslibs.timestamps.Timestamp"
99
+ ]
100
+ },
101
+ "execution_count": 5,
102
+ "metadata": {},
103
+ "output_type": "execute_result"
104
+ }
105
+ ],
106
+ "source": [
107
+ "type(all_trades.iloc[0].creation_timestamp)"
108
+ ]
109
+ },
110
+ {
111
+ "cell_type": "code",
112
+ "execution_count": 7,
113
+ "metadata": {},
114
+ "outputs": [
115
+ {
116
+ "data": {
117
+ "text/plain": [
118
+ "is_invalid\n",
119
+ "False 41176\n",
120
+ "Name: count, dtype: int64"
121
+ ]
122
+ },
123
+ "execution_count": 7,
124
+ "metadata": {},
125
+ "output_type": "execute_result"
126
+ }
127
+ ],
128
+ "source": [
129
+ "all_trades.is_invalid.value_counts()"
130
+ ]
131
+ },
132
+ {
133
+ "cell_type": "code",
134
+ "execution_count": 6,
135
  "metadata": {},
136
  "outputs": [
137
  {
 
139
  "output_type": "stream",
140
  "text": [
141
  "<class 'pandas.core.frame.DataFrame'>\n",
142
+ "RangeIndex: 41176 entries, 0 to 41175\n",
143
+ "Data columns (total 21 columns):\n",
144
  " # Column Non-Null Count Dtype \n",
145
  "--- ------ -------------- ----- \n",
146
+ " 0 trader_address 41176 non-null object \n",
147
+ " 1 market_creator 41176 non-null object \n",
148
+ " 2 trade_id 41176 non-null object \n",
149
+ " 3 creation_timestamp 41176 non-null datetime64[ns, UTC]\n",
150
+ " 4 title 41176 non-null object \n",
151
+ " 5 market_status 41176 non-null object \n",
152
+ " 6 collateral_amount 41176 non-null float64 \n",
153
+ " 7 outcome_index 41176 non-null object \n",
154
+ " 8 trade_fee_amount 41176 non-null float64 \n",
155
+ " 9 outcomes_tokens_traded 41176 non-null float64 \n",
156
+ " 10 current_answer 41176 non-null int64 \n",
157
+ " 11 is_invalid 41176 non-null bool \n",
158
+ " 12 winning_trade 41176 non-null bool \n",
159
+ " 13 earnings 41176 non-null float64 \n",
160
+ " 14 redeemed 41176 non-null bool \n",
161
+ " 15 redeemed_amount 41176 non-null float64 \n",
162
+ " 16 num_mech_calls 41176 non-null int64 \n",
163
+ " 17 mech_fee_amount 41176 non-null float64 \n",
164
+ " 18 net_earnings 41176 non-null float64 \n",
165
+ " 19 roi 41176 non-null float64 \n",
166
+ " 20 staking 41176 non-null object \n",
167
+ "dtypes: bool(3), datetime64[ns, UTC](1), float64(8), int64(2), object(7)\n",
168
+ "memory usage: 5.8+ MB\n"
169
  ]
170
  }
171
  ],
 
790
  ],
791
  "metadata": {
792
  "kernelspec": {
793
+ "display_name": "hf_dashboards",
794
  "language": "python",
795
  "name": "python3"
796
  },
notebooks/tool_errors_analysis.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
notebooks/tools_accuracy.ipynb CHANGED
@@ -2,7 +2,7 @@
2
  "cells": [
3
  {
4
  "cell_type": "code",
5
- "execution_count": 29,
6
  "metadata": {},
7
  "outputs": [],
8
  "source": [
@@ -15,7 +15,7 @@
15
  },
16
  {
17
  "cell_type": "code",
18
- "execution_count": 41,
19
  "metadata": {},
20
  "outputs": [],
21
  "source": [
@@ -24,7 +24,7 @@
24
  },
25
  {
26
  "cell_type": "code",
27
- "execution_count": 42,
28
  "metadata": {},
29
  "outputs": [
30
  {
@@ -32,35 +32,35 @@
32
  "output_type": "stream",
33
  "text": [
34
  "<class 'pandas.core.frame.DataFrame'>\n",
35
- "RangeIndex: 133835 entries, 0 to 133834\n",
36
  "Data columns (total 23 columns):\n",
37
  " # Column Non-Null Count Dtype \n",
38
  "--- ------ -------------- ----- \n",
39
- " 0 request_id 133835 non-null object \n",
40
- " 1 request_block 133835 non-null object \n",
41
- " 2 prompt_request 133835 non-null object \n",
42
- " 3 tool 133835 non-null object \n",
43
- " 4 nonce 133835 non-null object \n",
44
- " 5 trader_address 133835 non-null object \n",
45
- " 6 deliver_block 133835 non-null object \n",
46
- " 7 error 133835 non-null int64 \n",
47
- " 8 error_message 1873 non-null object \n",
48
- " 9 prompt_response 133664 non-null object \n",
49
- " 10 mech_address 133664 non-null object \n",
50
- " 11 p_yes 131962 non-null float64\n",
51
- " 12 p_no 131962 non-null float64\n",
52
- " 13 confidence 131962 non-null float64\n",
53
- " 14 info_utility 131962 non-null float64\n",
54
- " 15 vote 104902 non-null object \n",
55
- " 16 win_probability 131962 non-null float64\n",
56
- " 17 title 133835 non-null object \n",
57
- " 18 currentAnswer 107007 non-null object \n",
58
- " 19 request_time 133835 non-null object \n",
59
- " 20 request_month_year 133835 non-null object \n",
60
- " 21 request_month_year_week 133835 non-null object \n",
61
- " 22 market_creator 133835 non-null object \n",
62
  "dtypes: float64(5), int64(1), object(17)\n",
63
- "memory usage: 23.5+ MB\n"
64
  ]
65
  }
66
  ],
@@ -68,6 +68,52 @@
68
  "tools.info()"
69
  ]
70
  },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71
  {
72
  "cell_type": "code",
73
  "execution_count": 23,
 
2
  "cells": [
3
  {
4
  "cell_type": "code",
5
+ "execution_count": 2,
6
  "metadata": {},
7
  "outputs": [],
8
  "source": [
 
15
  },
16
  {
17
  "cell_type": "code",
18
+ "execution_count": 3,
19
  "metadata": {},
20
  "outputs": [],
21
  "source": [
 
24
  },
25
  {
26
  "cell_type": "code",
27
+ "execution_count": 4,
28
  "metadata": {},
29
  "outputs": [
30
  {
 
32
  "output_type": "stream",
33
  "text": [
34
  "<class 'pandas.core.frame.DataFrame'>\n",
35
+ "RangeIndex: 358454 entries, 0 to 358453\n",
36
  "Data columns (total 23 columns):\n",
37
  " # Column Non-Null Count Dtype \n",
38
  "--- ------ -------------- ----- \n",
39
+ " 0 request_id 358454 non-null object \n",
40
+ " 1 request_block 358454 non-null object \n",
41
+ " 2 prompt_request 358454 non-null object \n",
42
+ " 3 tool 358454 non-null object \n",
43
+ " 4 nonce 358454 non-null object \n",
44
+ " 5 trader_address 358454 non-null object \n",
45
+ " 6 deliver_block 358454 non-null object \n",
46
+ " 7 error 358454 non-null int64 \n",
47
+ " 8 error_message 3772 non-null object \n",
48
+ " 9 prompt_response 357509 non-null object \n",
49
+ " 10 mech_address 357601 non-null object \n",
50
+ " 11 p_yes 354682 non-null float64\n",
51
+ " 12 p_no 354682 non-null float64\n",
52
+ " 13 confidence 354682 non-null float64\n",
53
+ " 14 info_utility 354682 non-null float64\n",
54
+ " 15 vote 261707 non-null object \n",
55
+ " 16 win_probability 354682 non-null float64\n",
56
+ " 17 market_creator 358454 non-null object \n",
57
+ " 18 title 358454 non-null object \n",
58
+ " 19 currentAnswer 287126 non-null object \n",
59
+ " 20 request_time 358454 non-null object \n",
60
+ " 21 request_month_year 358454 non-null object \n",
61
+ " 22 request_month_year_week 358454 non-null object \n",
62
  "dtypes: float64(5), int64(1), object(17)\n",
63
+ "memory usage: 62.9+ MB\n"
64
  ]
65
  }
66
  ],
 
68
  "tools.info()"
69
  ]
70
  },
71
+ {
72
+ "cell_type": "code",
73
+ "execution_count": 5,
74
+ "metadata": {},
75
+ "outputs": [
76
+ {
77
+ "data": {
78
+ "text/plain": [
79
+ "Index(['request_id', 'request_block', 'prompt_request', 'tool', 'nonce',\n",
80
+ " 'trader_address', 'deliver_block', 'error', 'error_message',\n",
81
+ " 'prompt_response', 'mech_address', 'p_yes', 'p_no', 'confidence',\n",
82
+ " 'info_utility', 'vote', 'win_probability', 'market_creator', 'title',\n",
83
+ " 'currentAnswer', 'request_time', 'request_month_year',\n",
84
+ " 'request_month_year_week'],\n",
85
+ " dtype='object')"
86
+ ]
87
+ },
88
+ "execution_count": 5,
89
+ "metadata": {},
90
+ "output_type": "execute_result"
91
+ }
92
+ ],
93
+ "source": [
94
+ "tools.columns"
95
+ ]
96
+ },
97
+ {
98
+ "cell_type": "code",
99
+ "execution_count": 8,
100
+ "metadata": {},
101
+ "outputs": [
102
+ {
103
+ "data": {
104
+ "text/plain": [
105
+ "str"
106
+ ]
107
+ },
108
+ "execution_count": 8,
109
+ "metadata": {},
110
+ "output_type": "execute_result"
111
+ }
112
+ ],
113
+ "source": [
114
+ "type(tools.iloc[0].request_time)"
115
+ ]
116
+ },
117
  {
118
  "cell_type": "code",
119
  "execution_count": 23,
notebooks/weekly_analysis.ipynb CHANGED
@@ -74,13 +74,57 @@
74
  },
75
  {
76
  "cell_type": "code",
77
- "execution_count": 15,
78
  "metadata": {},
79
  "outputs": [],
80
  "source": [
81
  "all_trades = pd.read_parquet('../data/all_trades_profitability.parquet')"
82
  ]
83
  },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84
  {
85
  "cell_type": "code",
86
  "execution_count": null,
@@ -4646,7 +4690,7 @@
4646
  "name": "python",
4647
  "nbconvert_exporter": "python",
4648
  "pygments_lexer": "ipython3",
4649
- "version": "3.12.3"
4650
  },
4651
  "orig_nbformat": 4
4652
  },
 
74
  },
75
  {
76
  "cell_type": "code",
77
+ "execution_count": 2,
78
  "metadata": {},
79
  "outputs": [],
80
  "source": [
81
  "all_trades = pd.read_parquet('../data/all_trades_profitability.parquet')"
82
  ]
83
  },
84
+ {
85
+ "cell_type": "code",
86
+ "execution_count": 3,
87
+ "metadata": {},
88
+ "outputs": [
89
+ {
90
+ "name": "stdout",
91
+ "output_type": "stream",
92
+ "text": [
93
+ "<class 'pandas.core.frame.DataFrame'>\n",
94
+ "RangeIndex: 26861 entries, 0 to 26860\n",
95
+ "Data columns (total 21 columns):\n",
96
+ " # Column Non-Null Count Dtype \n",
97
+ "--- ------ -------------- ----- \n",
98
+ " 0 trader_address 26861 non-null object \n",
99
+ " 1 market_creator 26861 non-null object \n",
100
+ " 2 trade_id 26861 non-null object \n",
101
+ " 3 creation_timestamp 26861 non-null datetime64[ns, UTC]\n",
102
+ " 4 title 26861 non-null object \n",
103
+ " 5 market_status 26861 non-null object \n",
104
+ " 6 collateral_amount 26861 non-null float64 \n",
105
+ " 7 outcome_index 26861 non-null object \n",
106
+ " 8 trade_fee_amount 26861 non-null float64 \n",
107
+ " 9 outcomes_tokens_traded 26861 non-null float64 \n",
108
+ " 10 current_answer 26861 non-null int64 \n",
109
+ " 11 is_invalid 26861 non-null bool \n",
110
+ " 12 winning_trade 26861 non-null bool \n",
111
+ " 13 earnings 26861 non-null float64 \n",
112
+ " 14 redeemed 26861 non-null bool \n",
113
+ " 15 redeemed_amount 26861 non-null float64 \n",
114
+ " 16 num_mech_calls 26861 non-null int64 \n",
115
+ " 17 mech_fee_amount 26861 non-null float64 \n",
116
+ " 18 net_earnings 26861 non-null float64 \n",
117
+ " 19 roi 26861 non-null float64 \n",
118
+ " 20 staking 26861 non-null object \n",
119
+ "dtypes: bool(3), datetime64[ns, UTC](1), float64(8), int64(2), object(7)\n",
120
+ "memory usage: 3.8+ MB\n"
121
+ ]
122
+ }
123
+ ],
124
+ "source": [
125
+ "all_trades.info()"
126
+ ]
127
+ },
128
  {
129
  "cell_type": "code",
130
  "execution_count": null,
 
4690
  "name": "python",
4691
  "nbconvert_exporter": "python",
4692
  "pygments_lexer": "ipython3",
4693
+ "version": "3.12.2"
4694
  },
4695
  "orig_nbformat": 4
4696
  },
scripts/daily_data.py DELETED
@@ -1,89 +0,0 @@
1
- import logging
2
- from utils import get_question, current_answer, RPC, measure_execution_time
3
- from markets import (
4
- etl as mkt_etl,
5
- DEFAULT_FILENAME as MARKETS_FILENAME,
6
- )
7
- from get_mech_info import (
8
- get_mech_events_since_last_run,
9
- update_json_files,
10
- )
11
- from pull_data import DATA_DIR, update_json_files, updating_timestamps
12
- from tools import DEFAULT_FILENAME as TOOLS_FILENAME, generate_tools_file
13
- from profitability import (
14
- run_profitability_analysis,
15
- analyse_all_traders,
16
- label_trades_by_staking,
17
- )
18
- from update_tools_accuracy import compute_tools_accuracy
19
- import pandas as pd
20
-
21
- logging.basicConfig(level=logging.INFO)
22
-
23
-
24
- def prepare_live_metrics(
25
- tools_filename="new_tools.parquet", trades_filename="new_fpmmTrades.parquet"
26
- ):
27
- fpmmTrades = pd.read_parquet(DATA_DIR / trades_filename)
28
- tools = pd.read_parquet(DATA_DIR / tools_filename)
29
- print("Analysing trades...")
30
- all_trades_df = analyse_all_traders(fpmmTrades, tools, daily_info=True)
31
-
32
- # staking label
33
- label_trades_by_staking(all_trades_df)
34
-
35
- # save into a separate file
36
- all_trades_df.to_parquet(DATA_DIR / "daily_info.parquet", index=False)
37
-
38
-
39
- @measure_execution_time
40
- def daily_analysis():
41
- """Run daily analysis for the FPMMS project."""
42
- rpc = RPC
43
- # Run markets ETL
44
- logging.info("Running markets ETL")
45
- mkt_etl(MARKETS_FILENAME)
46
- logging.info("Markets ETL completed")
47
-
48
- # get only new data
49
- latest_timestamp = get_mech_events_since_last_run()
50
- if latest_timestamp == None:
51
- print("Error while getting the mech events")
52
- return
53
- logging.info(f"Finished generating the mech json files from {latest_timestamp}")
54
-
55
- # Run tools ETL
56
- logging.info("Generate and parse the tools content")
57
- # generate only new file
58
- generate_tools_file("new_tools_info.json", "new_tools.parquet")
59
- logging.info("Tools ETL completed")
60
-
61
- # add_current_answer("new_tools.parquet")
62
-
63
- # # Run profitability analysis
64
- logging.info("Computing trading metrics")
65
- run_profitability_analysis(
66
- rpc=rpc,
67
- tools_filename="new_tools.parquet",
68
- trades_filename="new_fpmmTrades.parquet",
69
- # from_timestamp=int(latest_timestamp.timestamp()),
70
- from_timestamp=latest_timestamp,
71
- merge=True,
72
- )
73
- logging.info("Profitability analysis completed")
74
-
75
- # merge new json files with old json files
76
- update_json_files()
77
-
78
- try:
79
- updating_timestamps(rpc, TOOLS_FILENAME)
80
- except Exception as e:
81
- logging.error("Error while updating timestamps of tools")
82
- print(e)
83
-
84
- compute_tools_accuracy()
85
-
86
-
87
- if __name__ == "__main__":
88
- daily_analysis()
89
- prepare_live_metrics()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
tabs/daily_graphs.py DELETED
@@ -1,215 +0,0 @@
1
- import pandas as pd
2
- import gradio as gr
3
- import gc
4
- import plotly.express as px
5
- from plotly.subplots import make_subplots
6
- import plotly.graph_objects as go
7
- from datetime import datetime, timedelta
8
-
9
-
10
- def plot_daily_trades(trades_df: pd.DataFrame) -> gr.Plot:
11
- # get daily trades
12
- daily_trades_count = (
13
- trades_df.groupby("month_year_week").size().reset_index(name="trades")
14
- )
15
- daily_trades_count.columns = daily_trades_count.columns.astype(str)
16
- print("WIP")
17
-
18
-
19
- def get_current_week_data(trades_df: pd.DataFrame) -> pd.DataFrame:
20
- # Get current date
21
- now = datetime.now()
22
-
23
- # Get start of the current week (Monday)
24
- start_of_week = now - timedelta(days=now.weekday())
25
- start_of_week = start_of_week.replace(hour=0, minute=0, second=0, microsecond=0)
26
- print(f"start of the week = {start_of_week}")
27
-
28
- # Get end of the current week (Sunday)
29
- end_of_week = start_of_week + timedelta(days=6)
30
- end_of_week = end_of_week.replace(hour=23, minute=59, second=59, microsecond=999999)
31
- print(f"end of the week = {end_of_week}")
32
- trades_df["creation_date"] = pd.to_datetime(trades_df["creation_date"])
33
- # Filter the dataframe
34
- return trades_df[
35
- (trades_df["creation_date"] >= start_of_week)
36
- & (trades_df["creation_date"] <= end_of_week)
37
- ]
38
-
39
-
40
- def get_boxplot_daily_metrics(
41
- column_name: str, trades_df: pd.DataFrame
42
- ) -> pd.DataFrame:
43
- trades_filtered = trades_df[
44
- ["creation_timestamp", "creation_date", "market_creator", column_name]
45
- ]
46
- # adding the total
47
- trades_filtered_all = trades_df.copy(deep=True)
48
- trades_filtered_all["market_creator"] = "all"
49
-
50
- # merging both dataframes
51
- all_filtered_trades = pd.concat(
52
- [trades_filtered, trades_filtered_all], ignore_index=True
53
- )
54
- all_filtered_trades = all_filtered_trades.sort_values(
55
- by="creation_timestamp", ascending=True
56
- )
57
- gc.collect()
58
- return all_filtered_trades
59
-
60
-
61
- def plot_daily_metrics(
62
- metric_name: str, trades_df: pd.DataFrame, trader_filter: str = None
63
- ) -> gr.Plot:
64
- """Plots the trade metrics."""
65
-
66
- if metric_name == "mech calls":
67
- metric_name = "mech_calls"
68
- column_name = "num_mech_calls"
69
- yaxis_title = "Nr of mech calls per trade"
70
- elif metric_name == "ROI":
71
- column_name = "roi"
72
- yaxis_title = "ROI (net profit/cost)"
73
- elif metric_name == "collateral amount":
74
- metric_name = "collateral_amount"
75
- column_name = metric_name
76
- yaxis_title = "Collateral amount per trade (xDAI)"
77
- elif metric_name == "net earnings":
78
- metric_name = "net_earnings"
79
- column_name = metric_name
80
- yaxis_title = "Net profit per trade (xDAI)"
81
- else: # earnings
82
- column_name = metric_name
83
- yaxis_title = "Gross profit per trade (xDAI)"
84
-
85
- color_discrete = ["purple", "darkgoldenrod", "darkgreen"]
86
-
87
- if trader_filter == "agent":
88
- trades_filtered = get_boxplot_daily_metrics(
89
- column_name, trades_df.loc[trades_df["staking"] != "non_agent"]
90
- )
91
- color_discrete = ["darkviolet", "goldenrod", "green"]
92
- elif trader_filter == "non_agent":
93
- trades_filtered = get_boxplot_daily_metrics(
94
- column_name, trades_df.loc[trades_df["staking"] == "non_agent"]
95
- )
96
- else:
97
- trades_filtered = get_boxplot_daily_metrics(column_name, trades_df)
98
- color_mapping = [
99
- "darkviolet",
100
- "purple",
101
- "goldenrod",
102
- "darkgoldenrod",
103
- "green",
104
- "darkgreen",
105
- ]
106
-
107
- # Create binary staking category
108
- trades_filtered["trader_type"] = trades_filtered["staking"].apply(
109
- lambda x: "non_agent" if x == "non_agent" else "agent"
110
- )
111
- trades_filtered["trader_market"] = trades_filtered.apply(
112
- lambda x: (x["trader_type"], x["market_creator"]), axis=1
113
- )
114
- fig = px.box(
115
- trades_filtered,
116
- x="creation_date",
117
- y=column_name,
118
- color="trader_market",
119
- color_discrete_sequence=color_mapping,
120
- category_orders={
121
- "market_creator": ["pearl", "quickstart", "all"],
122
- "trader_market": [
123
- ("agent", "pearl"),
124
- ("non_agent", "pearl"),
125
- ("agent", "quickstart"),
126
- ("non_agent", "quickstart"),
127
- ("agent", "all"),
128
- ("non_agent", "all"),
129
- ],
130
- },
131
- facet_col="market_creator",
132
- )
133
- fig.update_traces(boxmean=True)
134
- fig.update_layout(
135
- xaxis_title="Day",
136
- yaxis_title=yaxis_title,
137
- legend=dict(yanchor="top", y=0.5),
138
- )
139
- for axis in fig.layout:
140
- if axis.startswith("xaxis"):
141
- fig.layout[axis].update(title="Day")
142
- fig.update_xaxes(tickformat="%b %d")
143
- return gr.Plot(
144
- value=fig,
145
- )
146
-
147
-
148
- def plot_daily_metrics_v2(
149
- metric_name: str, trades_df: pd.DataFrame, trader_filter: str = None
150
- ) -> gr.Plot:
151
- """Plots the trade metrics."""
152
-
153
- if metric_name == "mech calls":
154
- metric_name = "mech_calls"
155
- column_name = "num_mech_calls"
156
- yaxis_title = "Nr of mech calls per trade"
157
- elif metric_name == "ROI":
158
- column_name = "roi"
159
- yaxis_title = "ROI (net profit/cost)"
160
- elif metric_name == "collateral amount":
161
- metric_name = "collateral_amount"
162
- column_name = metric_name
163
- yaxis_title = "Collateral amount per trade (xDAI)"
164
- elif metric_name == "net earnings":
165
- metric_name = "net_earnings"
166
- column_name = metric_name
167
- yaxis_title = "Net profit per trade (xDAI)"
168
- else: # earnings
169
- column_name = metric_name
170
- yaxis_title = "Gross profit per trade (xDAI)"
171
-
172
- color_discrete = ["purple", "darkgoldenrod", "darkgreen"]
173
- trades_filtered = get_boxplot_daily_metrics(column_name, trades_df)
174
- fig = make_subplots(rows=1, cols=2, subplot_titles=("Agent", "Non-Agents"))
175
-
176
- # Create first boxplot for staking=True
177
- fig.add_trace(
178
- go.Box(
179
- x=trades_filtered[trades_filtered["staking"] != "non_agent"][
180
- "creation_date"
181
- ],
182
- y=trades_filtered[trades_filtered["staking"] != "non_agent"][column_name],
183
- name="Trades from agents",
184
- marker_color=color_discrete[0],
185
- legendgroup="staking_true",
186
- showlegend=True,
187
- ),
188
- row=1,
189
- col=1,
190
- )
191
-
192
- # Create second boxplot for staking=False
193
- fig.add_trace(
194
- go.Box(
195
- x=trades_filtered[trades_filtered["staking"] == False]["creation_date"],
196
- y=trades_filtered[trades_filtered["staking"] == False][column_name],
197
- name="Staking False",
198
- marker_color=color_discrete[1],
199
- legendgroup="staking_false",
200
- showlegend=True,
201
- ),
202
- row=1,
203
- col=2,
204
- )
205
-
206
- # Update layout
207
- fig.update_layout(
208
- height=600,
209
- width=1200,
210
- title_text=f"Box Plot of {column_name} by Staking Status",
211
- showlegend=True,
212
- )
213
-
214
- # Update y-axes to have the same range
215
- fig.update_yaxes(matches="y")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
tabs/metrics.py CHANGED
@@ -11,10 +11,6 @@ trade_metric_choices = [
11
  "ROI",
12
  ]
13
 
14
- trade_daily_metric_choices = [
15
- "mech calls",
16
- "collateral amount",
17
- ]
18
 
19
  tool_metric_choices = {
20
  "Weekly Mean Mech Tool Accuracy as (Accurate Responses/All) %": "win_perc",
@@ -24,7 +20,7 @@ tool_metric_choices = {
24
  }
25
 
26
  default_trade_metric = "ROI"
27
- default_daily_metric = "collateral amount"
28
  default_tool_metric = "Weekly Mean Mech Tool Accuracy as (Accurate Responses/All) %"
29
 
30
  HEIGHT = 600
 
11
  "ROI",
12
  ]
13
 
 
 
 
 
14
 
15
  tool_metric_choices = {
16
  "Weekly Mean Mech Tool Accuracy as (Accurate Responses/All) %": "win_perc",
 
20
  }
21
 
22
  default_trade_metric = "ROI"
23
+
24
  default_tool_metric = "Weekly Mean Mech Tool Accuracy as (Accurate Responses/All) %"
25
 
26
  HEIGHT = 600