import gradio as gr import pandas as pd import plotly.express as px HEIGHT = 400 WIDTH = 1100 def prepare_trades(trades_df: pd.DataFrame) -> pd.DataFrame: """Prepares the trades data for analysis.""" trades_df["creation_timestamp"] = pd.to_datetime(trades_df["creation_timestamp"]) trades_df["creation_timestamp"] = trades_df["creation_timestamp"].dt.tz_convert( "UTC" ) trades_df = trades_df.sort_values(by="creation_timestamp", ascending=True) trades_df["month_year"] = ( trades_df["creation_timestamp"].dt.to_period("M").astype(str) ) trades_df["month_year_week"] = ( trades_df["creation_timestamp"].dt.to_period("W").dt.strftime("%b-%d") ) trades_df["winning_trade"] = trades_df["winning_trade"].astype(int) return trades_df def get_overall_trades(trades_df: pd.DataFrame) -> pd.DataFrame: """Gets the overall trades data""" trades_count = trades_df.groupby("month_year_week").size().reset_index() trades_count.columns = trades_count.columns.astype(str) trades_count.rename(columns={"0": "trades"}, inplace=True) return trades_count def get_overall_by_market_trades(trades_df: pd.DataFrame) -> pd.DataFrame: """Gets the overall trades data""" trades_count = ( trades_df.groupby(["month_year_week", "market_creator"], sort=False) .size() .reset_index() ) trades_count.columns = trades_count.columns.astype(str) trades_count.rename(columns={"0": "trades"}, inplace=True) return trades_count def get_overall_winning_trades(trades_df: pd.DataFrame) -> pd.DataFrame: """Gets the overall winning trades data for the given tools and calculates the winning percentage.""" winning_trades = ( trades_df.groupby(["month_year_week"])["winning_trade"].sum() / trades_df.groupby(["month_year_week"])["winning_trade"].count() * 100 ) # winning_trades is a series, give it a dataframe winning_trades = winning_trades.reset_index() winning_trades.columns = winning_trades.columns.astype(str) winning_trades.columns = ["month_year_week", "winning_trade"] return winning_trades def get_overall_winning_by_market_trades(trades_df: pd.DataFrame) -> pd.DataFrame: """Gets the overall winning trades data for the given tools and calculates the winning percentage.""" winning_trades = ( trades_df.groupby(["month_year_week", "market_creator"], sort=False)[ "winning_trade" ].sum() / trades_df.groupby(["month_year_week", "market_creator"], sort=False)[ "winning_trade" ].count() * 100 ) # winning_trades is a series, give it a dataframe winning_trades = winning_trades.reset_index() winning_trades.columns = winning_trades.columns.astype(str) winning_trades.columns = ["month_year_week", "market_creator", "winning_trade"] return winning_trades def plot_trades_by_week(trades_df: pd.DataFrame) -> gr.BarPlot: """Plots the trades data for the given tools and calculates the winning percentage.""" return gr.BarPlot( value=trades_df, x="month_year_week", y="trades", show_label=True, interactive=True, show_actions_button=True, tooltip=["month_year_week", "trades"], height=HEIGHT, width=WIDTH, ) def integrated_plot_trades_per_market_by_week(trades_df: pd.DataFrame) -> gr.Plot: # adding the total trades_all = trades_df.copy(deep=True) trades_all["market_creator"] = "all" # merging both dataframes all_filtered_trades = pd.concat([trades_df, trades_all], ignore_index=True) all_filtered_trades = all_filtered_trades.sort_values( by="creation_timestamp", ascending=True ) trades = get_overall_by_market_trades(all_filtered_trades) fig = px.bar( trades, x="month_year_week", y="trades", color="market_creator", barmode="group", color_discrete_sequence=["purple", "goldenrod", "darkgreen"], category_orders={"market_creator": ["pearl", "quickstart", "all"]}, ) fig.update_layout( xaxis_title="Week", yaxis_title="Weekly nr of trades", legend=dict(yanchor="top", y=0.5), ) fig.update_layout(width=WIDTH, height=HEIGHT) fig.update_xaxes(tickformat="%b %d\n%Y") return gr.Plot(value=fig) def integrated_plot_winning_trades_per_market_by_week( trades_df: pd.DataFrame, ) -> gr.Plot: # adding the total trades_all = trades_df.copy(deep=True) trades_all["market_creator"] = "all" # merging both dataframes all_filtered_trades = pd.concat([trades_df, trades_all], ignore_index=True) all_filtered_trades = all_filtered_trades.sort_values( by="creation_timestamp", ascending=True ) final_df = get_overall_winning_by_market_trades(all_filtered_trades) fig = px.bar( final_df, x="month_year_week", y="winning_trade", color="market_creator", barmode="group", color_discrete_sequence=["purple", "goldenrod", "darkgreen"], category_orders={"market_creator": ["pearl", "quickstart", "all"]}, ) fig.update_layout( xaxis_title="Week", yaxis_title="Weekly % of winning trades", legend=dict(yanchor="top", y=0.5), ) fig.update_layout(width=WIDTH, height=HEIGHT) fig.update_xaxes(tickformat="%b %d\n%Y") return gr.Plot( value=fig, ) def plot_winning_trades_by_week(trades_df: pd.DataFrame) -> gr.BarPlot: """Plots the winning trades data for the given tools and calculates the winning percentage.""" return gr.BarPlot( value=trades_df, x="month_year_week", y="winning_trade", show_label=True, interactive=True, show_actions_button=True, tooltip=["month_year_week", "winning_trade"], height=HEIGHT, width=WIDTH, ) def plot_winning_trades_per_market_by_week( trades_df: pd.DataFrame, market_type: str ) -> gr.Plot: """Plots the winning trades data for the given tools and calculates the winning percentage.""" # if market_type is "all then no filter is applied" if market_type == "quickstart": trades = trades_df.loc[trades_df["market_creator"] == "quickstart"] color_sequence = ["goldenrod"] elif market_type == "pearl": trades = trades_df.loc[trades_df["market_creator"] == "pearl"] color_sequence = ["purple"] else: trades = trades_df color_sequence = ["darkgreen"] fig = px.bar( trades, x="month_year_week", y="winning_trade", color_discrete_sequence=color_sequence, title=market_type + " winning trades", ) fig.update_layout( xaxis_title="Week", yaxis_title="Weekly % of winning trades", ) fig.update_xaxes(tickformat="%b %d\n%Y") return gr.Plot( value=fig, )