import subprocess import logging from datetime import datetime import gradio as gr import pandas as pd from apscheduler.schedulers.background import BackgroundScheduler from apscheduler.triggers.cron import CronTrigger from pytz import utc from tabs.trades import ( prepare_trades, get_overall_trades, get_overall_winning_trades, plot_trades_by_week, plot_winning_trades_by_week, plot_trade_details ) from tabs.tool_win import ( get_tool_winning_rate, get_overall_winning_rate, plot_tool_winnings_overall, plot_tool_winnings_by_tool ) from tabs.error import ( get_error_data, get_error_data_overall, plot_error_data, plot_tool_error_data, plot_week_error_data ) from tabs.about import about_olas_predict def update_trades_plots(): global tools_df, trades_df, error_df, error_overall_df, winning_rate_df, winning_rate_overall_df, trades_count_df, trades_winning_rate_df refresh_data() updated_trades_by_week_plot = plot_trades_by_week( trades_df=trades_count_df ) updated_winning_trades_by_week_plot = plot_winning_trades_by_week( trades_df=trades_winning_rate_df ) updated_trade_details_plot = plot_trade_details( trade_detail="mech calls", trades_df=trades_df ) return ( updated_trades_by_week_plot, updated_winning_trades_by_week_plot, updated_trade_details_plot ) def update_tool_winnings_plots(): global tools_df, trades_df, error_df, error_overall_df, winning_rate_df, winning_rate_overall_df, trades_count_df, trades_winning_rate_df refresh_data() updated_winning_plot = plot_tool_winnings_overall( wins_df=winning_rate_overall_df, winning_selector="win_perc" ) updated_tool_winnings_by_tool_plot = plot_tool_winnings_by_tool( wins_df=winning_rate_df, tool=INC_TOOLS[0] ) return ( updated_winning_plot, updated_tool_winnings_by_tool_plot ) def update_error_plots(): global tools_df, trades_df, error_df, error_overall_df, winning_rate_df, winning_rate_overall_df, trades_count_df, trades_winning_rate_df refresh_data() updated_error_overall_plot = plot_error_data( error_all_df=error_overall_df ) updated_tool_error_plot = plot_tool_error_data( error_df=error_df, tool=INC_TOOLS[0] ) updated_week_error_plot = plot_week_error_data( error_df=error_df, week=choices[-1] ) return ( updated_error_overall_plot, updated_tool_error_plot, updated_week_error_plot ) def refresh_data(): try: global tools_df, trades_df, error_df, error_overall_df, winning_rate_df, winning_rate_overall_df, trades_count_df, trades_winning_rate_df logging.info("Refreshing data...") tools_df = pd.read_csv("./data/tools.csv", low_memory=False) trades_df = pd.read_csv("./data/all_trades_profitability.csv") trades_df = prepare_trades(trades_df) error_df = get_error_data(tools_df=tools_df, inc_tools=INC_TOOLS) error_overall_df = get_error_data_overall(error_df=error_df) winning_rate_df = get_tool_winning_rate(tools_df=tools_df, inc_tools=INC_TOOLS) winning_rate_overall_df = get_overall_winning_rate(wins_df=winning_rate_df) trades_count_df = get_overall_trades(trades_df=trades_df) trades_winning_rate_df = get_overall_winning_trades(trades_df=trades_df) logging.info("Data refreshed.") except Exception as e: logging.error("Failed to refresh data: %s", e) def pull_refresh_data(): # Run the pull_data.py script and wait for it to finish try: result = subprocess.run(["python", "./scripts/pull_data.py"], check=True) logging.info("Script executed successfully: %s", result) refresh_data() except subprocess.CalledProcessError as e: logging.error("Failed to run script: %s", e) return # Stop execution if the script fails refresh_data() tools_df = pd.read_csv("./data/tools.csv", low_memory=False) trades_df = pd.read_csv("./data/all_trades_profitability.csv") trades_df = prepare_trades(trades_df) demo = gr.Blocks() INC_TOOLS = [ 'prediction-online', 'prediction-offline', 'claude-prediction-online', 'claude-prediction-offline', 'prediction-offline-sme', 'prediction-online-sme', 'prediction-request-rag', 'prediction-request-reasoning', 'prediction-url-cot-claude', 'prediction-request-rag-claude', 'prediction-request-reasoning-claude' ] error_df = get_error_data( tools_df=tools_df, inc_tools=INC_TOOLS ) error_overall_df = get_error_data_overall( error_df=error_df ) winning_rate_df = get_tool_winning_rate( tools_df=tools_df, inc_tools=INC_TOOLS ) winning_rate_overall_df = get_overall_winning_rate( wins_df=winning_rate_df ) trades_count_df = get_overall_trades( trades_df=trades_df ) trades_winning_rate_df = get_overall_winning_trades( trades_df=trades_df ) with demo: gr.HTML("

Olas Predict Actual Performance

") gr.Markdown("This app shows the actual performance of Olas Predict tools on the live market.") with gr.Tabs(): with gr.TabItem("🔥Trades Dashboard"): with gr.Row(): gr.Markdown("# Plot of number of trades by week") with gr.Row(): trades_by_week_plot = plot_trades_by_week( trades_df=trades_count_df ) with gr.Row(): gr.Markdown("# Plot of winning trades by week") with gr.Row(): winning_trades_by_week_plot = plot_winning_trades_by_week( trades_df=trades_winning_rate_df ) with gr.Row(): gr.Markdown("# Plot of trade details") with gr.Row(): trade_details_selector = gr.Dropdown( label="Select a trade", choices=[ "mech calls", "collateral amount", "earnings", "net earnings", "ROI" ], value="mech calls" ) with gr.Row(): trade_details_plot = plot_trade_details( trade_detail="mech calls", trades_df=trades_df ) def update_trade_details(trade_detail): return plot_trade_details( trade_detail=trade_detail, trades_df=trades_df ) trade_details_selector.change( update_trade_details, inputs=trade_details_selector, outputs=trade_details_plot ) with gr.Row(): trade_details_selector with gr.Row(): trade_details_plot with gr.Row(): with gr.Column(): refresh_button = gr.Button("Refresh Data") refresh_button.click( update_trades_plots, outputs=[ trades_by_week_plot, winning_trades_by_week_plot, trade_details_plot, ] ) with gr.TabItem("🚀 Tool Winning Dashboard"): with gr.Row(): gr.Markdown("# Plot showing overall winning rate") with gr.Row(): winning_selector = gr.Dropdown( label="Select Metric", choices=['losses', 'wins', 'total_request', 'win_perc'], value='win_perc', ) with gr.Row(): winning_plot = plot_tool_winnings_overall( wins_df=winning_rate_overall_df, winning_selector="win_perc" ) def update_tool_winnings_overall_plot(winning_selector): return plot_tool_winnings_overall( wins_df=winning_rate_overall_df, winning_selector=winning_selector ) winning_selector.change( update_tool_winnings_overall_plot, inputs=winning_selector, outputs=winning_plot ) with gr.Row(): winning_selector with gr.Row(): winning_plot with gr.Row(): gr.Markdown("# Plot showing winning rate by tool") with gr.Row(): sel_tool = gr.Dropdown( label="Select a tool", choices=INC_TOOLS, value=INC_TOOLS[0] ) with gr.Row(): tool_winnings_by_tool_plot = plot_tool_winnings_by_tool( wins_df=winning_rate_df, tool=INC_TOOLS[0] ) def update_tool_winnings_by_tool_plot(tool): return plot_tool_winnings_by_tool( wins_df=winning_rate_df, tool=tool ) sel_tool.change( update_tool_winnings_by_tool_plot, inputs=sel_tool, outputs=tool_winnings_by_tool_plot ) with gr.Row(): sel_tool with gr.Row(): tool_winnings_by_tool_plot with gr.Row(): refresh_button = gr.Button("Refresh Data") refresh_button.click( update_tool_winnings_plots, outputs=[ winning_plot, tool_winnings_by_tool_plot ] ) with gr.TabItem("🏥 Tool Error Dashboard"): with gr.Row(): gr.Markdown("# Plot showing overall error") with gr.Row(): error_overall_plot = plot_error_data( error_all_df=error_overall_df ) with gr.Row(): gr.Markdown("# Plot showing error by tool") with gr.Row(): sel_tool = gr.Dropdown( label="Select a tool", choices=INC_TOOLS, value=INC_TOOLS[0] ) with gr.Row(): tool_error_plot = plot_tool_error_data( error_df=error_df, tool=INC_TOOLS[0] ) def update_tool_error_plot(tool): return plot_tool_error_data( error_df=error_df, tool=tool ) sel_tool.change( update_tool_error_plot, inputs=sel_tool, outputs=tool_error_plot ) with gr.Row(): sel_tool with gr.Row(): tool_error_plot with gr.Row(): gr.Markdown("# Plot showing error by week") with gr.Row(): choices = error_overall_df['request_month_year_week'].unique().tolist() # sort the choices by the latest week to be on the top choices = sorted(choices) sel_week = gr.Dropdown( label="Select a week", choices=choices, value=choices[-1] ) with gr.Row(): week_error_plot = plot_week_error_data( error_df=error_df, week=choices[-1] ) def update_week_error_plot(selected_week): return plot_week_error_data( error_df=error_df, week=selected_week ) sel_tool.change(update_tool_error_plot, inputs=sel_tool, outputs=tool_error_plot) sel_week.change(update_week_error_plot, inputs=sel_week, outputs=week_error_plot) with gr.Row(): sel_tool with gr.Row(): tool_error_plot with gr.Row(): sel_week with gr.Row(): week_error_plot with gr.Row(): refresh_button = gr.Button("Refresh Data") refresh_button.click( update_error_plots, outputs=[ error_overall_plot, tool_error_plot, week_error_plot ] ) with gr.TabItem("ℹ️ About"): with gr.Accordion("About Olas Predict"): gr.Markdown(about_olas_predict) # Create the scheduler scheduler = BackgroundScheduler(timezone=utc) scheduler.add_job(pull_refresh_data, CronTrigger(hour=0, minute=0)) # Runs daily at 12 AM UTC scheduler.start() demo.queue(default_concurrency_limit=40).launch()