{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Import"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import matplotlib.pyplot as plt"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [],
"source": [
"import warnings\n",
"warnings.filterwarnings('ignore')\n",
"pd.set_option('display.float_format', lambda x: '%.3f' % x)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Preparation"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [],
"source": [
"tools = pd.read_csv('./data/tools.csv')\n",
"fpmms = pd.read_csv('./data/fpmms.csv')\n",
"summary_traders = pd.read_csv('./data/summary_profitability.csv')\n",
"all_trades = pd.read_csv('./data/all_trades_profitability.csv')"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"(235483, 22)\n"
]
},
{
"data": {
"text/plain": [
"(28911882, 33447994)"
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"print(tools.shape)\n",
"tools.request_block.min(), tools.request_block.max()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 1. Error analysis"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Error analysis only starts from block 321. We weren't capturing the error message prior"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array(['prediction-online', 'prediction-offline', 'normal-sme-generator',\n",
" 'strong-sme-generator', 'prediction-online-sme',\n",
" 'prediction-offline-sme', 'claude-prediction-offline', 'openai',\n",
" 'claude-prediction-online',\n",
" 'prediction-sentence-embedding-conservative',\n",
" 'prediction-online-summarized-info',\n",
" 'prediction-sentence-embedding-bold',\n",
" 'prediction-online-sum-url-content',\n",
" 'openai-gpt-3.5-turbo-instruct',\n",
" 'resolve-market-reasoning-gpt-3.5-turbo',\n",
" 'resolve-market-reasoning-gpt-4', 'prediction-request-rag',\n",
" 'prediction-request-reasoning',\n",
" 'prediction-request-reasoning-claude', 'prediction-url-cot-claude',\n",
" 'prediction-request-rag-claude', 'native_transfer_request',\n",
" 'native_transfer'], dtype=object)"
]
},
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tools.tool.unique()"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [],
"source": [
"inc_tools = [\n",
" 'prediction-online', \n",
" 'prediction-offline', \n",
" 'claude-prediction-online', \n",
" 'claude-prediction-offline', \n",
" 'prediction-offline-sme',\n",
" 'prediction-online-sme',\n",
" 'prediction-request-rag',\n",
" 'prediction-request-reasoning',\n",
" 'prediction-url-cot-claude', \n",
" 'prediction-request-rag-claude',\n",
" 'prediction-request-reasoning-claude'\n",
"]"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [],
"source": [
"def set_error(row):\n",
" if row.error not in [True, False]:\n",
" if not row.prompt_response:\n",
" return True\n",
" return False\n",
" return row.error"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {},
"outputs": [],
"source": [
"# include only tools that are in inc_tools\n",
"tools_inc = tools[tools['tool'].isin(inc_tools)]\n",
"# set error column; for earlier tool calls there error is when there are no prompt_response\n",
"tools_inc['error'] = tools_inc.apply(set_error, axis=1)"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {},
"outputs": [],
"source": [
"error = tools_inc.groupby(['tool', 'request_month_year_week', 'error']).size().unstack().fillna(0).reset_index()\n",
"error['error_perc'] = (error[True] / (error[False] + error[True]))*100\n",
"error['total_requests'] = error[False] + error[True]"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" error | \n",
" request_month_year_week | \n",
" total_requests | \n",
" False | \n",
" True | \n",
" error_perc | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 2023-07-10/2023-07-16 | \n",
" 44.000 | \n",
" 13.000 | \n",
" 31.000 | \n",
" 70.455 | \n",
"
\n",
" \n",
" 1 | \n",
" 2023-07-17/2023-07-23 | \n",
" 56.000 | \n",
" 56.000 | \n",
" 0.000 | \n",
" 0.000 | \n",
"
\n",
" \n",
" 2 | \n",
" 2023-07-24/2023-07-30 | \n",
" 48.000 | \n",
" 43.000 | \n",
" 5.000 | \n",
" 10.417 | \n",
"
\n",
" \n",
" 3 | \n",
" 2023-07-31/2023-08-06 | \n",
" 922.000 | \n",
" 719.000 | \n",
" 203.000 | \n",
" 22.017 | \n",
"
\n",
" \n",
" 4 | \n",
" 2023-08-07/2023-08-13 | \n",
" 313.000 | \n",
" 304.000 | \n",
" 9.000 | \n",
" 2.875 | \n",
"
\n",
" \n",
" 5 | \n",
" 2023-08-14/2023-08-20 | \n",
" 1518.000 | \n",
" 1416.000 | \n",
" 102.000 | \n",
" 6.719 | \n",
"
\n",
" \n",
" 6 | \n",
" 2023-08-21/2023-08-27 | \n",
" 1340.000 | \n",
" 1187.000 | \n",
" 153.000 | \n",
" 11.418 | \n",
"
\n",
" \n",
" 7 | \n",
" 2023-08-28/2023-09-03 | \n",
" 1588.000 | \n",
" 1581.000 | \n",
" 7.000 | \n",
" 0.441 | \n",
"
\n",
" \n",
" 8 | \n",
" 2023-09-04/2023-09-10 | \n",
" 4776.000 | \n",
" 4449.000 | \n",
" 327.000 | \n",
" 6.847 | \n",
"
\n",
" \n",
" 9 | \n",
" 2023-09-11/2023-09-17 | \n",
" 6008.000 | \n",
" 5956.000 | \n",
" 52.000 | \n",
" 0.866 | \n",
"
\n",
" \n",
" 10 | \n",
" 2023-09-18/2023-09-24 | \n",
" 8278.000 | \n",
" 7973.000 | \n",
" 305.000 | \n",
" 3.684 | \n",
"
\n",
" \n",
" 11 | \n",
" 2023-09-25/2023-10-01 | \n",
" 4516.000 | \n",
" 3827.000 | \n",
" 689.000 | \n",
" 15.257 | \n",
"
\n",
" \n",
" 12 | \n",
" 2023-10-02/2023-10-08 | \n",
" 6257.000 | \n",
" 4985.000 | \n",
" 1272.000 | \n",
" 20.329 | \n",
"
\n",
" \n",
" 13 | \n",
" 2023-10-09/2023-10-15 | \n",
" 6992.000 | \n",
" 4889.000 | \n",
" 2103.000 | \n",
" 30.077 | \n",
"
\n",
" \n",
" 14 | \n",
" 2023-10-16/2023-10-22 | \n",
" 4966.000 | \n",
" 4001.000 | \n",
" 965.000 | \n",
" 19.432 | \n",
"
\n",
" \n",
" 15 | \n",
" 2023-10-23/2023-10-29 | \n",
" 3235.000 | \n",
" 2855.000 | \n",
" 380.000 | \n",
" 11.747 | \n",
"
\n",
" \n",
" 16 | \n",
" 2023-10-30/2023-11-05 | \n",
" 1767.000 | \n",
" 1659.000 | \n",
" 108.000 | \n",
" 6.112 | \n",
"
\n",
" \n",
" 17 | \n",
" 2023-11-06/2023-11-12 | \n",
" 3868.000 | \n",
" 3517.000 | \n",
" 351.000 | \n",
" 9.074 | \n",
"
\n",
" \n",
" 18 | \n",
" 2023-11-13/2023-11-19 | \n",
" 4596.000 | \n",
" 4557.000 | \n",
" 39.000 | \n",
" 0.849 | \n",
"
\n",
" \n",
" 19 | \n",
" 2023-11-20/2023-11-26 | \n",
" 4135.000 | \n",
" 4058.000 | \n",
" 77.000 | \n",
" 1.862 | \n",
"
\n",
" \n",
" 20 | \n",
" 2023-11-27/2023-12-03 | \n",
" 4080.000 | \n",
" 3926.000 | \n",
" 154.000 | \n",
" 3.775 | \n",
"
\n",
" \n",
" 21 | \n",
" 2023-12-04/2023-12-10 | \n",
" 4566.000 | \n",
" 4242.000 | \n",
" 324.000 | \n",
" 7.096 | \n",
"
\n",
" \n",
" 22 | \n",
" 2023-12-11/2023-12-17 | \n",
" 4985.000 | \n",
" 4224.000 | \n",
" 761.000 | \n",
" 15.266 | \n",
"
\n",
" \n",
" 23 | \n",
" 2023-12-18/2023-12-24 | \n",
" 4175.000 | \n",
" 3086.000 | \n",
" 1089.000 | \n",
" 26.084 | \n",
"
\n",
" \n",
" 24 | \n",
" 2023-12-25/2023-12-31 | \n",
" 2944.000 | \n",
" 2749.000 | \n",
" 195.000 | \n",
" 6.624 | \n",
"
\n",
" \n",
" 25 | \n",
" 2024-01-01/2024-01-07 | \n",
" 4240.000 | \n",
" 4160.000 | \n",
" 80.000 | \n",
" 1.887 | \n",
"
\n",
" \n",
" 26 | \n",
" 2024-01-08/2024-01-14 | \n",
" 2101.000 | \n",
" 2040.000 | \n",
" 61.000 | \n",
" 2.903 | \n",
"
\n",
" \n",
" 27 | \n",
" 2024-01-15/2024-01-21 | \n",
" 4283.000 | \n",
" 4200.000 | \n",
" 83.000 | \n",
" 1.938 | \n",
"
\n",
" \n",
" 28 | \n",
" 2024-01-22/2024-01-28 | \n",
" 4305.000 | \n",
" 4215.000 | \n",
" 90.000 | \n",
" 2.091 | \n",
"
\n",
" \n",
" 29 | \n",
" 2024-01-29/2024-02-04 | \n",
" 4500.000 | \n",
" 4389.000 | \n",
" 111.000 | \n",
" 2.467 | \n",
"
\n",
" \n",
" 30 | \n",
" 2024-02-05/2024-02-11 | \n",
" 4729.000 | \n",
" 4641.000 | \n",
" 88.000 | \n",
" 1.861 | \n",
"
\n",
" \n",
" 31 | \n",
" 2024-02-12/2024-02-18 | \n",
" 6581.000 | \n",
" 5106.000 | \n",
" 1475.000 | \n",
" 22.413 | \n",
"
\n",
" \n",
" 32 | \n",
" 2024-02-19/2024-02-25 | \n",
" 7504.000 | \n",
" 3920.000 | \n",
" 3584.000 | \n",
" 47.761 | \n",
"
\n",
" \n",
" 33 | \n",
" 2024-02-26/2024-03-03 | \n",
" 5907.000 | \n",
" 4660.000 | \n",
" 1247.000 | \n",
" 21.111 | \n",
"
\n",
" \n",
" 34 | \n",
" 2024-03-04/2024-03-10 | \n",
" 8457.000 | \n",
" 8073.000 | \n",
" 384.000 | \n",
" 4.541 | \n",
"
\n",
" \n",
" 35 | \n",
" 2024-03-11/2024-03-17 | \n",
" 10036.000 | \n",
" 9620.000 | \n",
" 416.000 | \n",
" 4.145 | \n",
"
\n",
" \n",
" 36 | \n",
" 2024-03-18/2024-03-24 | \n",
" 12808.000 | \n",
" 12313.000 | \n",
" 495.000 | \n",
" 3.865 | \n",
"
\n",
" \n",
" 37 | \n",
" 2024-03-25/2024-03-31 | \n",
" 23114.000 | \n",
" 16445.000 | \n",
" 6669.000 | \n",
" 28.853 | \n",
"
\n",
" \n",
" 38 | \n",
" 2024-04-01/2024-04-07 | \n",
" 20486.000 | \n",
" 15069.000 | \n",
" 5417.000 | \n",
" 26.442 | \n",
"
\n",
" \n",
" 39 | \n",
" 2024-04-08/2024-04-14 | \n",
" 23021.000 | \n",
" 15914.000 | \n",
" 7107.000 | \n",
" 30.872 | \n",
"
\n",
" \n",
" 40 | \n",
" 2024-04-15/2024-04-21 | \n",
" 49.000 | \n",
" 46.000 | \n",
" 3.000 | \n",
" 6.122 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
"error request_month_year_week total_requests False True error_perc\n",
"0 2023-07-10/2023-07-16 44.000 13.000 31.000 70.455\n",
"1 2023-07-17/2023-07-23 56.000 56.000 0.000 0.000\n",
"2 2023-07-24/2023-07-30 48.000 43.000 5.000 10.417\n",
"3 2023-07-31/2023-08-06 922.000 719.000 203.000 22.017\n",
"4 2023-08-07/2023-08-13 313.000 304.000 9.000 2.875\n",
"5 2023-08-14/2023-08-20 1518.000 1416.000 102.000 6.719\n",
"6 2023-08-21/2023-08-27 1340.000 1187.000 153.000 11.418\n",
"7 2023-08-28/2023-09-03 1588.000 1581.000 7.000 0.441\n",
"8 2023-09-04/2023-09-10 4776.000 4449.000 327.000 6.847\n",
"9 2023-09-11/2023-09-17 6008.000 5956.000 52.000 0.866\n",
"10 2023-09-18/2023-09-24 8278.000 7973.000 305.000 3.684\n",
"11 2023-09-25/2023-10-01 4516.000 3827.000 689.000 15.257\n",
"12 2023-10-02/2023-10-08 6257.000 4985.000 1272.000 20.329\n",
"13 2023-10-09/2023-10-15 6992.000 4889.000 2103.000 30.077\n",
"14 2023-10-16/2023-10-22 4966.000 4001.000 965.000 19.432\n",
"15 2023-10-23/2023-10-29 3235.000 2855.000 380.000 11.747\n",
"16 2023-10-30/2023-11-05 1767.000 1659.000 108.000 6.112\n",
"17 2023-11-06/2023-11-12 3868.000 3517.000 351.000 9.074\n",
"18 2023-11-13/2023-11-19 4596.000 4557.000 39.000 0.849\n",
"19 2023-11-20/2023-11-26 4135.000 4058.000 77.000 1.862\n",
"20 2023-11-27/2023-12-03 4080.000 3926.000 154.000 3.775\n",
"21 2023-12-04/2023-12-10 4566.000 4242.000 324.000 7.096\n",
"22 2023-12-11/2023-12-17 4985.000 4224.000 761.000 15.266\n",
"23 2023-12-18/2023-12-24 4175.000 3086.000 1089.000 26.084\n",
"24 2023-12-25/2023-12-31 2944.000 2749.000 195.000 6.624\n",
"25 2024-01-01/2024-01-07 4240.000 4160.000 80.000 1.887\n",
"26 2024-01-08/2024-01-14 2101.000 2040.000 61.000 2.903\n",
"27 2024-01-15/2024-01-21 4283.000 4200.000 83.000 1.938\n",
"28 2024-01-22/2024-01-28 4305.000 4215.000 90.000 2.091\n",
"29 2024-01-29/2024-02-04 4500.000 4389.000 111.000 2.467\n",
"30 2024-02-05/2024-02-11 4729.000 4641.000 88.000 1.861\n",
"31 2024-02-12/2024-02-18 6581.000 5106.000 1475.000 22.413\n",
"32 2024-02-19/2024-02-25 7504.000 3920.000 3584.000 47.761\n",
"33 2024-02-26/2024-03-03 5907.000 4660.000 1247.000 21.111\n",
"34 2024-03-04/2024-03-10 8457.000 8073.000 384.000 4.541\n",
"35 2024-03-11/2024-03-17 10036.000 9620.000 416.000 4.145\n",
"36 2024-03-18/2024-03-24 12808.000 12313.000 495.000 3.865\n",
"37 2024-03-25/2024-03-31 23114.000 16445.000 6669.000 28.853\n",
"38 2024-04-01/2024-04-07 20486.000 15069.000 5417.000 26.442\n",
"39 2024-04-08/2024-04-14 23021.000 15914.000 7107.000 30.872\n",
"40 2024-04-15/2024-04-21 49.000 46.000 3.000 6.122"
]
},
"execution_count": 32,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"error_total = error.groupby('request_month_year_week').agg({'total_requests': 'sum', False: 'sum', True:'sum'}).reset_index()\n",
"error_total['error_perc'] = (error_total[True] / error_total['total_requests'])*100\n",
"error_total"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0kAAAK6CAYAAADsCBdDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hUZdoG8PtMn0nvjQAhdCnSOyiiiIoF1r6rqKu7rmWVdXfVteva9lt1VewuritYUFGxwAoiRYoUQaRDgIT0Qnqmn++PmXOSkAQyycycMzP377pyaSaTmRcSknnO+7z3I4iiKIKIiIiIiIgAABqlF0BERERERKQmLJKIiIiIiIhaYJFERERERETUAoskIiIiIiKiFlgkERERERERtcAiiYiIiIiIqAUWSURERERERC2wSCIiIiIiImqBRRIREREREVELLJKIiIg6QRAE3H777UovQxV69+6Niy66SOllEBEFDIskIooI77zzDgRB6PBt06ZNSi+xXfPmzWu1ztjYWAwfPhz//Oc/YbPZlF5et3399dd45JFHlF6Ganz//ffy1/q9995r9z6TJk2CIAgYMmRIQNeyZ88ePPLIIzh69KhfHm/WrFlISEhAaWlpm4/V1NQgIyMD48aNg9vt9svzERF1h07pBRARBdNjjz2GnJycNrf37dtXgdV0jtFoxFtvvQUAqK6uxieffIJ77rkHW7ZswQcffKDw6rrn66+/xoIFC1goncRkMmHx4sX49a9/3er2o0ePYsOGDTCZTAFfw549e/Doo4/irLPOQu/evbv9eK+88gqGDBmCu+++G4sXL271sfvvvx8VFRVYvnw5NBpevyUi5bFIIqKIMmvWLIwePdqnz3E6nXC73TAYDG0+1tDQgKioqC6vRxRFWK1WmM3mDu+j0+lavVj+wx/+gHHjxuHDDz/Ec889h8zMzC4/v9vtht1uD8qLbuq8Cy64AF988QUqKiqQnJws37548WKkpaWhX79+OHHihIIr9F1OTg4efvhh/PWvf8W8efNw3nnnAQC2bNmC1157Dffccw+GDx8e8HVYrVYYDAYWY0R0SvwJQUTUwtGjRyEIAv7v//4PL7zwAnJzc2E0GuXWI0EQsGfPHlxzzTVISEjA5MmTAXgKqccff1y+f+/evXH//fe3aYmTznKsWLECo0ePhtlsxuuvv+7TGjUaDc466yx5vQBgs9nw8MMPo2/fvjAajcjOzsZf/vKXNs8vnatZtGgRzjjjDBiNRixfvhwAUFhYiJtuugmZmZkwGo3IycnBrbfeCrvdLn9+dXU17rrrLmRnZ8NoNKJv37545plnWrVItfw7fOONN+S/kzFjxmDLli3y/ebNm4cFCxbI65LeJP/3f/+HiRMnIikpCWazGaNGjcLHH3/c5u+jqakJd955J5KTkxETE4OLL74YhYWFEAShzQ5VYWEhbrzxRqSlpcFoNOKMM87Av//9b5/+/hctWoQBAwbAZDJh1KhRWLt2rfyx1atXQxAELF26tM3nLV68GIIgYOPGjad9jksuuQRGoxFLlixp8xhXXHEFtFptm8/x9Xtw/fr1GDt2LEwmE/r06YN3331Xvs8777yDyy+/HABw9tlny1+b77//vtVjneox2jN//nwMGzYMf/jDH2C1WuFyufD73/8evXr1wsMPPwwA2LdvH371q18hMTERJpMJo0ePxhdffNHqcaqqqnDPPfdg6NChiI6ORmxsLGbNmoWdO3e2up/UvvjBBx/ggQceQFZWFiwWC2pra0+5TiIi7iQRUUSpqalBRUVFq9sEQUBSUlKr2xYuXAir1YpbbrkFRqMRiYmJ8scuv/xy9OvXD08++SREUQQA/Pa3v8V//vMf/OpXv8Kf/vQnbN68GU899RT27t3b5gXz/v37cfXVV+N3v/sdbr75ZgwYMMDnP8fhw4cBAElJSXC73bj44ouxfv163HLLLRg0aBB27dqF559/HgcOHMBnn33W6nO/++47fPTRR7j99tuRnJyM3r17o6ioCGPHjkV1dTVuueUWDBw4EIWFhfj444/R2NgIg8GAxsZGTJs2DYWFhfjd736Hnj17YsOGDbjvvvtQXFyMF154odXzLF68GHV1dfjd734HQRDw7LPPYs6cOcjLy4Ner8fvfvc7FBUV4dtvv8V///vfNn/Gf/3rX7j44otx7bXXwm6344MPPsDll1+OL7/8EhdeeKF8v3nz5uGjjz7Cb37zG4wfPx5r1qxp9XFJaWkpxo8fLxeKKSkp+Oabb3DTTTehtrYWd91112n/3tesWYMPP/wQd955J4xGI1555RWcf/75+PHHHzFkyBCcddZZyM7OxqJFi3DZZZe1+txFixYhNzcXEyZMOO3zWCwWXHLJJXj//fdx6623AgB27tyJ3bt346233sLPP//c5nN8+R48dOgQfvWrX+Gmm27C9ddfj3//+9+YN28eRo0ahTPOOANTp07FnXfeiRdffBH3338/Bg0aBADyfzvzGO3R6XR44403MHHiRDz++ONITU3F9u3bsXz5clgsFuzevRuTJk1CVlYW7r33XkRFReGjjz7CpZdeik8++UT+O83Ly8Nnn32Gyy+/HDk5OSgtLcXrr7+OadOmYc+ePW12Vx9//HEYDAbcc889sNls7e4KExG1IhIRRYCFCxeKANp9MxqN8v2OHDkiAhBjY2PFsrKyVo/x8MMPiwDEq6++utXtO3bsEAGIv/3tb1vdfs8994gAxO+++06+rVevXiIAcfny5Z1a9/XXXy9GRUWJ5eXlYnl5uXjo0CHxySefFAVBEIcNGyaKoij+97//FTUajbhu3bpWn/vaa6+JAMQffvhBvg2AqNFoxN27d7e673XXXSdqNBpxy5YtbdbgdrtFURTFxx9/XIyKihIPHDjQ6uP33nuvqNVqxfz8fFEUm/8Ok5KSxKqqKvl+n3/+uQhAXLZsmXzbbbfdJnb0q6ixsbHV+3a7XRwyZIg4ffp0+bZt27aJAMS77rqr1X3nzZsnAhAffvhh+babbrpJzMjIECsqKlrd96qrrhLj4uLaPN/JpO+XrVu3yrcdO3ZMNJlM4mWXXSbfdt9994lGo1Gsrq6WbysrKxN1Ol2r9bRn9erVIgBxyZIl4pdffikKgiD/vf75z38W+/TpI4qiKE6bNk0844wz5M/ryvfg2rVrW63PaDSKf/rTn+TblixZIgIQV69e3WadnX2Mjtx+++2iXq8Xo6OjW/17Ouecc8ShQ4eKVqtVvs3tdosTJ04U+/XrJ99mtVpFl8vV6jGPHDkiGo1G8bHHHpNvk/4++/Tpc9qvLxFRS2y3I6KIsmDBAnz77bet3r755ps295s7dy5SUlLafYzf//73rd7/+uuvAXhaiVr605/+BAD46quvWt2ek5ODmTNndnrNDQ0NSElJQUpKCvr27Yv7778fEyZMkHcHlixZgkGDBmHgwIGoqKiQ36ZPnw7A0wLW0rRp0zB48GD5fbfbjc8++wyzZ89u97yW1AK3ZMkSTJkyBQkJCa2eZ8aMGXC5XK3azgDgyiuvREJCgvz+lClTAHh2ATqj5TmtEydOoKamBlOmTMH27dvl26VWwT/84Q+tPveOO+5o9b4oivjkk08we/ZsiKLYav0zZ85ETU1Nq8ftyIQJEzBq1Cj5/Z49e+KSSy7BihUr4HK5AADXXXcdbDZbq9bADz/8EE6ns00Qw6mcd955SExMxAcffABRFPHBBx/g6quvbve+vn4PDh48WP56AEBKSgoGDBjQ6a9Ndx/j73//O5KSkqDRaPD8888D8LTQfffdd7jiiitQV1cnf30qKysxc+ZMHDx4EIWFhQA8YSbSmSKXy4XKykpER0djwIAB7X4dr7/++lOe+yMiOhnb7YgooowdO7ZTwQ3tJeB19LFjx45Bo9G0SchLT09HfHw8jh071unHbo/JZMKyZcsAQD4r1KNHD/njBw8exN69ezss6srKyk75/OXl5aitrT1tpPTBgwfx888/d/p5evbs2ep9qWDqbODAl19+iSeeeAI7duxoda6m5bkl6e/+5D/TyV+L8vJyVFdX44033sAbb7zRqfW3p1+/fm1u69+/PxobG1FeXo709HQMHDgQY8aMwaJFi3DTTTcB8LTajR8/3qcURb1ej8svvxyLFy/G2LFjUVBQgGuuuabd+/r6PXjy1wbwfH18CYM43WO4XC6Ul5e3+nhiYiIMBgNiY2MxYMAAVFRUIC0tDYCnfU8URTz44IN48MEH233OsrIyZGVlwe1241//+hdeeeUVHDlyRC5QAbRpnQV8/zdHRMQiiYioHae66tzRx1q+eO/qY7dHq9VixowZHX7c7XZj6NCheO6559r9eHZ2dreev+XznHvuufjLX/7S7sf79+/f6v32wgUAyOe4TmXdunW4+OKLMXXqVLzyyivIyMiAXq/HwoUL28RHd3btAPDrX/8a119/fbv3GTZsmM+P25HrrrsOf/zjH3H8+HHYbDZs2rQJL7/8ss+Pc8011+C1117DI488guHDh7faAWxPZ78Hu/O16exjFBQUtClOVq9eLYeOnEz6Gt1zzz0d7rRKReCTTz6JBx98EDfeeCMef/xxJCYmQqPR4K677mp3zhJ3kYjIVyySiIi6qVevXnC73Th48GCrg+2lpaWorq5Gr169Avr8ubm52LlzJ84555xOv0huKSUlBbGxsfjll19O+zz19fWnLNh81dF6P/nkE5hMJqxYsQJGo1G+feHCha3uJ/3dHzlypNUuz6FDh1rdLyUlBTExMXC5XN1a/8GDB9vcduDAAVgsllY7bFdddRXmz5+P999/H01NTdDr9bjyyit9fr7JkyejZ8+e+P777/HMM890eL9AfA925XuppfT0dHz77betbjtVxHefPn0AeHbQTvc1+vjjj3H22Wfj7bffbnV7dXV1q8h0IqKu4pkkIqJuuuCCCwCgTbqbtLPTXtKaP11xxRUoLCzEm2++2eZjTU1NaGhoOOXnazQaXHrppVi2bBm2bt3a5uPSzsAVV1yBjRs3YsWKFW3uU11dDafT6fPapRlT1dXVrW7XarUQBKFVG9XRo0fbJPVJOw6vvPJKq9tfeumlNo83d+5cfPLJJ+0Wgye3hXVk48aNrc68FBQU4PPPP8d5553XamclOTkZs2bNwnvvvYdFixbh/PPP79KLd0EQ8OKLL+Lhhx/Gb37zmw7vF4jvwY6+Np1lMpkwY8aMVm8tz6idLDU1FWeddRZef/11FBcXt/l4y6+RVqtts+u1ZMkS+cwSEVF3cSeJiCLKN998g3379rW5feLEifKVbF8NHz4c119/Pd544w1UV1dj2rRp+PHHH/Gf//wHl156Kc4+++zuLvuUfvOb3+Cjjz7C73//e6xevRqTJk2Cy+XCvn378NFHH8kzmU7lySefxP/+9z9MmzZNjhEvLi7GkiVLsH79esTHx+PPf/4zvvjiC1x00UVy1HNDQwN27dqFjz/+GEePHvW5EJBCEO68807MnDkTWq0WV111FS688EI899xzOP/883HNNdegrKwMCxYsQN++fVvFX48aNQpz587FCy+8gMrKSjkC/MCBAwBa74Y8/fTTWL16NcaNG4ebb74ZgwcPRlVVFbZv346VK1eiqqrqtOsdMmQIZs6c2SoCHAAeffTRNve97rrr8Ktf/QqAJ4K6qy655BJccsklp7xPIL4HzzzzTGi1WjzzzDOoqamB0WjE9OnTkZqa2tU/ymktWLAAkydPxtChQ3HzzTejT58+KC0txcaNG3H8+HF5DtJFF12Exx57DDfccAMmTpyIXbt2YdGiRV3+N0xEdDIWSUQUUR566KF2b1+4cGG3XmC99dZb6NOnD9555x0sXboU6enpuO++++QBmYGk0Wjw2Wef4fnnn8e7776LpUuXwmKxoE+fPvjjH//Y5qxQe7KysrB582Y8+OCDWLRoEWpra5GVlYVZs2bBYrEA8MzuWbNmDZ588kksWbIE7777LmJjY9G/f388+uijiIuL83ntc+bMwR133IEPPvgA7733HkRRxFVXXYXp06fj7bffxtNPP4277roLOTk5eOaZZ3D06NE2M4LeffddpKen4/3338fSpUsxY8YMfPjhh/LAV0laWhp+/PFHPPbYY/j000/xyiuvICkpCWecccYpW9lamjZtGiZMmIBHH30U+fn5GDx4MN555512zzPNnj0bCQkJ8hyrQPP392B6ejpee+01PPXUU7jpppvgcrmwevXqgBZJgwcPxtatW/Hoo4/inXfeQWVlJVJTUzFixIhW/3bvv/9+NDQ0YPHixfjwww8xcuRIfPXVV7j33nsDtjYiiiyC6MspTSIiohCwY8cOjBgxAu+99x6uvfZaRdbgdDqRmZmJ2bNntzk7Q0RE6sYzSUREFNKampra3PbCCy9Ao9Fg6tSpCqzI47PPPkN5eTmuu+46xdZARERdw3Y7IiIKac8++yy2bduGs88+GzqdDt988w2++eYb3HLLLW3iz4Nh8+bN+Pnnn/H4449jxIgRmDZtWtDXQERE3cN2OyIiCmnffvstHn30UezZswf19fXo2bMnfvOb3+Bvf/sbdLrgXwucN28e3nvvPZx55pl45513Tjukl4iI1IdFEhERERERUQs8k0RERERERNQCiyQiIiIiIqIWwj64we12o6ioCDExMa2GChIRERERUWQRRRF1dXXIzMyERtPxflHYF0lFRUWKpBsREREREZE6FRQUoEePHh1+POyLpJiYGACev4jY2FiFV0NEREREREqpra1Fdna2XCN0JOyLJKnFLjY2lkUSERERERGd9hgOgxuIiIiIiIhaYJFERERERETUAoskIiIiIiKiFlgkERERERERtcAiiYiIiIiIqAUWSURERERERC2wSCIiIiIiImqBRRIREREREVELLJKIiIiIiIhaYJFERERERETUAoskIiIiIiKiFlgkERERERERtcAiiYiIiIiIqAUWSURERERERC2wSCIiIiIiImqBRRIREREREVELLJKC6Pv9ZVi2swj1NqfSSyEiIiIiog4oWiT17t0bgiC0ebvtttsAAFarFbfddhuSkpIQHR2NuXPnorS0VMkld8tdH+7AHe//hOLqJqWXQkREREREHVC0SNqyZQuKi4vlt2+//RYAcPnllwMA7r77bixbtgxLlizBmjVrUFRUhDlz5ii55G6x6LUAgEa7S+GVEBERERFRR3RKPnlKSkqr959++mnk5uZi2rRpqKmpwdtvv43Fixdj+vTpAICFCxdi0KBB2LRpE8aPH9/uY9psNthsNvn92trawP0BfGQ2sEgiIiIiIlI71ZxJstvteO+993DjjTdCEARs27YNDocDM2bMkO8zcOBA9OzZExs3buzwcZ566inExcXJb9nZ2cFYfqdYDJ6a1OpgkUREREREpFaqKZI+++wzVFdXY968eQCAkpISGAwGxMfHt7pfWloaSkpKOnyc++67DzU1NfJbQUFBAFftGzPb7YiIiIiIVE/RdruW3n77bcyaNQuZmZndehyj0Qij0einVflXc7sd0+2IiIiIiNRKFUXSsWPHsHLlSnz66afybenp6bDb7aiurm61m1RaWor09HQFVtl9Fm+R1MR2OyIiIiIi1VJFu93ChQuRmpqKCy+8UL5t1KhR0Ov1WLVqlXzb/v37kZ+fjwkTJiixzG6TdpKa2G5HRERERKRaiu8kud1uLFy4ENdffz10uublxMXF4aabbsL8+fORmJiI2NhY3HHHHZgwYUKHyXZqxzNJRERERETqp3iRtHLlSuTn5+PGG29s87Hnn38eGo0Gc+fOhc1mw8yZM/HKK68osEr/YLsdEREREZH6KV4knXfeeRBFsd2PmUwmLFiwAAsWLAjyqgLD7I0AZ7sdEREREZF6qeJMUqSwcJgsEREREZHqsUgKIulMUpODEeBERERERGrFIimIzNxJIiIiIiJSPRZJQWRhBDgRERERkeqxSAqi5nY7FklERERERGrFIimI2G5HRERERKR+LJKCyMIIcCIiIiIi1WORFEQcJktEREREpH4skoJIOpPUaGcEOBERERGRWrFICiLpTJLV4YbbLSq8GiIiIiIiag+LpCCS2u0AttwREREREakVi6QgMulYJBERERERqR2LpCDSaASY9J6/cibcERERERGpE4ukIJNiwDkriYiIiIhInVgkBZmUcMd2OyIiIiIidWKRFGRSeANjwImIiIiI1IlFUpBJMeA8k0REREREpE4skoKseaAsiyQiIiIiIjVikRRkUrsdzyQREREREakTi6QgY7sdEREREZG6sUgKMrOeEeBERERERGrGIinI5HY7ptsREREREakSi6Qg45kkIiIiIiJ1Y5EUZCam2xERERERqRqLpCCzMLiBiIiIiEjVWCQFmVQkcSeJiIiIiEidWCQFmdngSbfjmSQiIiIiInVikRRkZj3b7YiIiIiI1IxFUpDJ7XYORoATEREREakRi6QgM/NMEhERERGRqrFICjJpJ8nKIomIiIiISJVYJAWZdCapkcENRERERESqxCIpyNhuR0RERESkbiySgszijQC3O91wuUWFV0NERERERCdjkRRk0pkkgLOSiIiIiIjUiEVSkBl1GgiC5/8b7YwBJyIiIiJSGxZJQSYIAgfKEhERERGpGIskBUgtd2y3IyIiIiJSHxZJCjDpmXBHRERERKRWLJIUIO8ksUgiIiIiIlIdFkkKMHtjwLmTRERERESkPiySFGDR80wSEREREZFasUhSgFlut2MEOBERERGR2rBIUoBUJLHdjoiIiIhIfVgkKcDCdDsiIiIiItVikaQAKd3OyjNJRERERESqwyJJASa22xERERERqRaLJAVY9IwAJyIiIiJSK8WLpMLCQvz6179GUlISzGYzhg4diq1bt8ofF0URDz30EDIyMmA2mzFjxgwcPHhQwRV3H9vtiIiIiIjUS9Ei6cSJE5g0aRL0ej2++eYb7NmzB//85z+RkJAg3+fZZ5/Fiy++iNdeew2bN29GVFQUZs6cCavVquDKu6c53Y4R4EREREREaqNT8smfeeYZZGdnY+HChfJtOTk58v+LoogXXngBDzzwAC655BIAwLvvvou0tDR89tlnuOqqq4K+Zn8wM92OiIiIiEi1FN1J+uKLLzB69GhcfvnlSE1NxYgRI/Dmm2/KHz9y5AhKSkowY8YM+ba4uDiMGzcOGzdubPcxbTYbamtrW72pjUUeJssiiYiIiIhIbRQtkvLy8vDqq6+iX79+WLFiBW699Vbceeed+M9//gMAKCkpAQCkpaW1+ry0tDT5Yyd76qmnEBcXJ79lZ2cH9g/RBVK7XRPPJBERERERqY6iRZLb7cbIkSPx5JNPYsSIEbjllltw880347XXXuvyY953332oqamR3woKCvy4Yv+Q2u24k0REREREpD6KFkkZGRkYPHhwq9sGDRqE/Px8AEB6ejoAoLS0tNV9SktL5Y+dzGg0IjY2ttWb2lgMjAAnIiIiIlIrRYukSZMmYf/+/a1uO3DgAHr16gXAE+KQnp6OVatWyR+vra3F5s2bMWHChKCu1Z+YbkdEREREpF6KptvdfffdmDhxIp588klcccUV+PHHH/HGG2/gjTfeAAAIgoC77roLTzzxBPr164ecnBw8+OCDyMzMxKWXXqrk0ruleU6SW+GVEBERERHRyRQtksaMGYOlS5fivvvuw2OPPYacnBy88MILuPbaa+X7/OUvf0FDQwNuueUWVFdXY/LkyVi+fDlMJpOCK+8e6UyS3eWG0+WGTqv4TF8iIiIiIvISRFEUlV5EINXW1iIuLg41NTWqOZ9kdbgw8MHlAICfHzkPsSa9wisiIiIiIgp/na0NuIWhAKNOA43g+X8m3BERERERqQuLJAUIgiAn3LFIIiIiIiJSFxZJCjHppYQ7FklERERERGrCIkkhUsJdk4Mx4EREREREasIiSSFykWRnDDgRERERkZqwSFIIB8oSEREREakTiySFSLOSmhw8k0REREREpCYskhRiMTC4gYiIiIhIjVgkKcTMCHAiIiIiIlVikaQQC9vtiIiIiIhUiUWSQhjcQERERESkTiySFGLmmSQiIiIiIlVikaQQqd3OynY7IiIiIiJVYZGkEO4kERERERGpE4skhbBIIiIiIiJSJxZJCpHmJDECnIiIiIhIXVgkKcSs985J4pkkIiIiIiJVYZGkELbbERERERGpE4skhTS323FOEhERERGRmrBIUojZGwHOdjsiIiIiInVhkaQQC9vtiIiIiIhUiUWSQsxMtyMiIiIiUiUWSQqxeNPtnG4Rdqdb4dUQEREREZGERZJCpJ0kgOeSiIiIiIjUhEWSQgw6DXQaAQBb7oiIiIiI1IRFkoKkhLtGxoATEREREakGiyQFcaAsEREREZH6sEhSkBQDbuWZJCIiIiIi1WCRpCCTnjtJRERERERqwyJJQRwoS0RERESkPiySFGQxeGYlNTkY3EBEREREpBYskhQkBTc02TlMloiIiIhILVgkKYgR4ERERERE6sMiSUEWeSeJZ5KIiIiIiNSCRZKC5DlJjAAnIiIiIlINFkkK4k4SEREREZH6sEhSkHQmiUUSEREREZF6sEhSkNkbAc52OyIiIiIi9WCRpCC22xERERERqQ+LJAXJRRKHyRIRERERqQaLJAWZ5DlJ3EkiIiIiIlILFkkKYrsdEREREZH6sEhSUHO7HYskIiIiIiK1YJGkILPem27HnSQiIiIiItVgkaQgM9vtiIiIiIhUh0WSgqR2u0a7E6IoKrwaIiIiIiICWCQpStpJcouA3eVWeDVERERERASwSFKU2RsBDrDljoiIiIhILVgkKUiv1UCvFQAwvIGIiIiISC0ULZIeeeQRCILQ6m3gwIHyx61WK2677TYkJSUhOjoac+fORWlpqYIr9j8zB8oSEREREamK4jtJZ5xxBoqLi+W39evXyx+7++67sWzZMixZsgRr1qxBUVER5syZo+Bq/c9i8MSAWzkriYiIiIhIFXSKL0CnQ3p6epvba2pq8Pbbb2Px4sWYPn06AGDhwoUYNGgQNm3ahPHjxwd7qQFhNnAniYiIiIhITRTfSTp48CAyMzPRp08fXHvttcjPzwcAbNu2DQ6HAzNmzJDvO3DgQPTs2RMbN27s8PFsNhtqa2tbvalZc7udU+GVEBERERERoHCRNG7cOLzzzjtYvnw5Xn31VRw5cgRTpkxBXV0dSkpKYDAYEB8f3+pz0tLSUFJS0uFjPvXUU4iLi5PfsrOzA/yn6B5pVhLb7YiIiIiI1EHRdrtZs2bJ/z9s2DCMGzcOvXr1wkcffQSz2dylx7zvvvswf/58+f3a2lpVF0pstyMiIiIiUhfF2+1aio+PR//+/XHo0CGkp6fDbrejurq61X1KS0vbPcMkMRqNiI2NbfWmZky3IyIiIiJSF1UVSfX19Th8+DAyMjIwatQo6PV6rFq1Sv74/v37kZ+fjwkTJii4Sv+S2u04TJaIiIiISB0Ubbe75557MHv2bPTq1QtFRUV4+OGHodVqcfXVVyMuLg433XQT5s+fj8TERMTGxuKOO+7AhAkTwibZDgDM3gjwJp5JIiIiIiJSBUWLpOPHj+Pqq69GZWUlUlJSMHnyZGzatAkpKSkAgOeffx4ajQZz586FzWbDzJkz8corryi5ZL+z8EwSEREREZGqKFokffDBB6f8uMlkwoIFC7BgwYIgrSj4pDNJTYwAJyIiIiJSBVWdSYpETLcjIiIiIlIXFkkKk4MbeCaJiIiIiEgVWCQpjOl2RERERETqwiJJYSbOSSIiIiIiUhUWSQqzeCPAG9luR0RERCHA7RaVXgJRwLFIUpjUbmflThIRERGpXEmNFWOfXIm/f7VH6aUQBRSLJIXJ7XYORoATERGRuv14tAoV9XYs312i9FKIAopFksIY3EBEREShoqi6CQBQWmNj2x2FNRZJCmORRERERKFCKpLsLjcqG+wKr4YocFgkKUweJutwQRR5RYaIiIjUSyqSAM/5JKJwxSJJYWbvmSRRBGxOt8KrISIiIupYUXVzYVRU03SKexKFNhZJCpMiwAHOSiIiIiJ1a1kYcSeJwhmLJIVpNQIMOs+XoYmzkoiIiEilGmxOVDc65PeLWSRRGGORpALN4Q2MASciIiJ1Kj6pve7k94nCCYskFZDOJbHdjoiIiNSqsLr1zhF3kiicsUhSATnhjkUSERERqZSUbBdr8pyn5pkkCmcsklRAbrfjmSQiIiJSqWJvkTSqVwIAT5HEgbIUrlgkqYBF77kiw4GyREREpFZSu93w7HgIgmegbFUjB8pSeGKRpAImttsRERGRykntdr2SLEiJNgIAiqvZckfhiUWSClj0TLcjIiIidZNmJGXGmZERbwbAhDsKXyySVIBnkoiIiEjN3G5R3jXKjDcjI9YEACip5U4ShScWSSrAdjsiIiJSs4oGG+wuNwQBSI8zIT3OUyQVsd2OwhSLJBVobrdjkURERETqI+0ipcWYoNdqkBnv3Uliux2FKRZJKsB2OyIiIlIzKbQhw1scpcdJZ5K4k0ThiUWSCpgNnghwttsRERGRGhV6i6RMb2BDprfdjkUShasuFUn//e9/MWnSJGRmZuLYsWMAgBdeeAGff/65XxcXKcx6z5eB7XZERESkRtLZoyxvkSSdSSqpsUIUOVCWwo/PRdKrr76K+fPn44ILLkB1dTVcLs8L+/j4eLzwwgv+Xl9EsMg7SYwAJyIiIvWR2u2kHaS0WJM8ULaygQNlKfz4XCS99NJLePPNN/G3v/0NWq1Wvn306NHYtWuXXxcXKcw8k0REREQqJs9I8u4k6bUaeaBsCVvuKAz5XCQdOXIEI0aMaHO70WhEQ0ODXxYVaeTgBrbbERERkQoVtZiRJMnguSQKYz4XSTk5OdixY0eb25cvX45Bgwb5Y00Rx6znnCQiIiJSJ6vDhYp6G4DWRVK6XCQxBpzCj87XT5g/fz5uu+02WK2eg3o//vgj3n//fTz11FN46623ArHGsGfmMFkiIiJSKamdzqTXIMGil2/PYAw4hTGfi6Tf/va3MJvNeOCBB9DY2IhrrrkGmZmZ+Ne//oWrrroqEGsMe1Jwg5VnkoiIiEhlilrEfwuCIN8ut9tVcyeJwo/PRRIAXHvttbj22mvR2NiI+vp6pKam+ntdEcXCnSQiIiJSKWlGUlaLVjsAyIjnThKFry4VSRKLxQKLxeKvtUQsk7453c7tFqHRCKf5DCIiIqLgkEMb4k4qkqRZSbUskij8+FwkjRgxotVWq0QQBJhMJvTt2xfz5s3D2Wef7ZcFRgJpJwkArE6X3H5HREREpLTik+K/Jemxzel2oii2+/qQKFT5nG53/vnnIy8vD1FRUTj77LNx9tlnIzo6GocPH8aYMWNQXFyMGTNm4PPPPw/EesOSlG4HMAaciIiI1EVqt8uIN7W6XR4o63SjigNlKcz4vGVRUVGBP/3pT3jwwQdb3f7EE0/g2LFj+N///oeHH34Yjz/+OC655BK/LTScaTQCTHoNrA43Gu0uJCm9ICIiIiKvog7OJBl0GiRHG1FeZ0NxjRVJ3uGyROHA552kjz76CFdffXWb26+66ip89NFHAICrr74a+/fv7/7qIoi5xbkkIiIiIjUQRbHdQbISDpSlcOVzkWQymbBhw4Y2t2/YsAEmk+cfitvtlv+fOkc6h8R2OyIiIlKL6kaHfAFXKohaksMbOFCWwozP7XZ33HEHfv/732Pbtm0YM2YMAGDLli146623cP/99wMAVqxYgTPPPNOvCw13HChLREREaiOdR0qONshpvC1JA2WLuJNEYcbnIumBBx5ATk4OXn75Zfz3v/8FAAwYMABvvvkmrrnmGgDA73//e9x6663+XWmYa263cyq8EiIiIiIPqY2uvVY7oOVOEoskCi/dGibbEbO5/X9I1DHuJBEREZHaSKENJ89IkqTLZ5LYbkfhxeczSRQY0qwknkkiIiIitSjqIP5bIrXbMbiBwo3PO0kulwvPP/88PvroI+Tn58Nub52LX1VV5bfFRRK5SGK6HREREalEYQfx35KW6XYcKEvhxOedpEcffRTPPfccrrzyStTU1GD+/PmYM2cONBoNHnnkkQAsMTJIhyHZbkdERERqIbfbdVAktRwoe6LREcylEQWUz0XSokWL8Oabb+JPf/oTdDodrr76arz11lt46KGHsGnTpkCsMSJYeCaJiIiIVOZUM5KA5oGynvvyXBKFD5+LpJKSEgwdOhQAEB0djZqaGgDARRddhK+++sq/q4sg0pwkK9vtiIiISAUcLjfK6qQiqeP5l0y4o3Dkc5HUo0cPFBcXAwByc3Pxv//9D4BnVpLRaPTv6iKIWW63YwQ4ERERKa+01gq3CBi0GiRHdfwaLz2WCXcUfnwuki677DKsWrUKgGew7IMPPoh+/frhuuuuw4033tjlhTz99NMQBAF33XWXfJvVasVtt92GpKQkREdHY+7cuSgtLe3yc6gZI8CJiIhITaRWu/Q4EzSajgMZpFY8JtxROPE53e7pp5+W///KK69Er169sGHDBvTr1w+zZ8/u0iK2bNmC119/HcOGDWt1+913342vvvoKS5YsQVxcHG6//XbMmTMHP/zwQ5eeR80YAU5ERERq0hza0HGrHdA8K4ntdhROfN5JWrt2LZzO5paw8ePHY/78+Zg1axbWrl3r8wLq6+tx7bXX4s0330RCQoJ8e01NDd5++20899xzmD59OkaNGoWFCxdiw4YNYRkQIbXbMQKciIiI1KDwNMl2EulMUhHb7SiM+FwknX322e3OQqqpqcHZZ5/t8wJuu+02XHjhhZgxY0ar27dt2waHw9Hq9oEDB6Jnz57YuHFjh49ns9lQW1vb6i0USMENbLcjIiIiNSg6zYwkiTRQljtJFE58brfraFBYZWUloqKifHqsDz74ANu3b8eWLVvafKykpAQGgwHx8fGtbk9LS0NJSUmHj/nUU0/h0Ucf9WkdamA2eOpVttsRERGRGkhnjDq7k8SBshROOl0kzZkzBwAgCALmzZvXKsnO5XLh559/xsSJEzv9xAUFBfjjH/+Ib7/9FibTqXtdfXHfffdh/vz58vu1tbXIzs722+MHilkv7SQx3Y6IiIiUd7pBspI0b7qdzTtQNjHKEPC1EQVap4ukuLg4AJ6dpJiYGJjNzf9gDAYDxo8fj5tvvrnTT7xt2zaUlZVh5MiR8m0ulwtr167Fyy+/jBUrVsBut6O6urrVblJpaSnS09M7fFyj0RiSUeRScIPV4VZ4JUREREQtziTFnfpitjRQtqLehuKaJhZJFBY6XSQtXLgQANC7d2/cc889PrfWneycc87Brl27Wt12ww03YODAgfjrX/+K7Oxs6PV6rFq1CnPnzgUA7N+/H/n5+ZgwYUK3nluNmiPAuZNEREREyqq1OlBn9bwmyTjNThLgabmrqLehuNqKMzLjAr08ooDz+UzSww8/7JcnjomJwZAhQ1rdFhUVhaSkJPn2m266CfPnz0diYiJiY2Nxxx13YMKECRg/frxf1qAmzcNkeSaJiIiIlFXsnZEUZ9Yj2nj6l4sZcSbsKqxBcS3DGyg8+JxuV1pait/85jfIzMyETqeDVqtt9eZPzz//PC666CLMnTsXU6dORXp6Oj799FO/PodaSO12Nqcbbreo8GqIiIgoknX2PJIkQ56VxBhwCg8+7yTNmzcP+fn5ePDBB5GRkeHXBJPvv/++1fsmkwkLFizAggUL/PYcaiVFgAOeWUlRnbhqQ0RERBQI0syjrNMMkpWke2PApR0oolDn8yvx9evXY926dTjzzDMDsJzIZdQ1b+o12lkkERERkXJ83UnKjG+OAScKBz6322VnZ0MU2Q7mbxqNIJ9L4qwkIiIiUlJRdedmJEnSY6Uiie12FB58LpJeeOEF3HvvvTh69GgAlhPZpHNJTQ4WSURERKQcKf474zTx3xKpmJIGyhKFOp97uq688ko0NjYiNzcXFosFer2+1cerqqr8trhIYzZogQbGgBMREZGypHa7rE7uJKXGemZU2pxuVDc6kMBZSRTifC6SXnjhhQAsgwCw3Y6IiIgU53KLKKnxrd3OqNMiOdqAino7imqaWCRRyPO5SLr++usDsQ5Cc7sdZyURERGRUirqbXC6RWg1AlJjjJ3+vIw4Myrq7Sip4UBZCn0+n0kCgMOHD+OBBx7A1VdfjbKyMgDAN998g927d/t1cZHGzDNJREREpDDpPFJ6rAk6bedfKqbHMeGOwofPRdKaNWswdOhQbN68GZ9++inq6+sBADt37sTDDz/s9wVGEmlWEtvtiIiISCnN8d+dC22QZMQx4Y7Ch89F0r333osnnngC3377LQyG5n7T6dOnY9OmTX5dXKSRziQxuIGIiIiUUiQn23XuPJJEuj93kigc+Fwk7dq1C5dddlmb21NTU1FRUeGXRUUqqd2uke12REREpBBfZyRJ5J2kahZJFPp8LpLi4+NRXFzc5vaffvoJWVlZfllUpJKCG6xstyMiIiKFFMrx311rtyupZZFEoc/nIumqq67CX//6V5SUlEAQBLjdbvzwww+45557cN111wVijRHDzHQ7IiIiUph0psj3nSSp3a6JA2Up5PlcJD355JMYOHAgsrOzUV9fj8GDB2Pq1KmYOHEiHnjggUCsMWLIZ5LYbkdEREQK6Wq7XVqcJy7c6vAMlCUKZT7PSTIYDHjzzTfx0EMPYdeuXaivr8eIESPQr1+/QKwvorDdjoiIiJTUZHehqsEOwPciqeVA2eIaKwfKUkjzuUiSZGdnIzs7259riXhmbwQ42+2IiIhICUXeVrsogxaxJt9fJqbHmbxFUhMGZ8b6e3lEQeNzu93cuXPxzDPPtLn92WefxeWXX+6XRUUqttsRERGRkppnJJkhCILPn58eyxhwCg8+F0lr167FBRdc0Ob2WbNmYe3atX5ZVKSS2u2aOCeJiIiIFNCySOoKaQBtCYskCnE+F0n19fWthshK9Ho9amtr/bKoSCWl2zVxJ4mIiIgUUNjF0AZJujcGXGrbIwpVPhdJQ4cOxYcfftjm9g8++ACDBw/2y6IilUXPCHAiIiJSTnEXZyRJMr0x4NxJolDn84m8Bx98EHPmzMHhw4cxffp0AMCqVavw/vvvY8mSJX5fYCSRd5JYJBEREZECiro4I0ki7SSxSKJQ53ORNHv2bHz22Wd48skn8fHHH8NsNmPYsGFYuXIlpk2bFog1RgwLh8kSERGRgqQZSdJgWF9ltGi3E0WxS+EPRGrgU5HkdDrx5JNP4sYbb8QPP/wQqDVFLCkCnGeSiIiIKNhEUUSh3G7XtSIpLdZTJFkdbtQ0ORBv4awkCk0+nUnS6XR49tln4XQyfS0QpDNJdqcbLreo8GqIiIgoklQ22GF3uiEIQFqcsUuPYdJrkeQdIivtShGFIp+DG8455xysWbMmEGuJeNKZJABoZAw4ERERBZEU/50SbYRRpz3NvTsmn0uqZcIdhS6fzyTNmjUL9957L3bt2oVRo0YhKiqq1ccvvvhivy0u0hh1GggCIIqe8IYYk17pJREREVGEKOpm/LckI86M3UW1HChLIc3nIukPf/gDAOC5555r8zFBEOBy8TxNVwmCAIteiwa7i+eSiIiIKKiKunkeSSKFNxSz3Y5CmM9FktvtDsQ6yMts0KHB7mLCHREREQWVVCRldnFGkiTD+/ncSaJQ5vOZpJasVn7z+5vZ4PmSsEgiIiKiYJJmJHU1/lsi7yTV8EwShS6fiySXy4XHH38cWVlZiI6ORl5eHgDPkNm3337b7wuMNBa9Z3PPynY7IiIiCqJCP51JSo/1fD4HylIo87lI+vvf/4533nkHzz77LAyG5uz7IUOG4K233vLr4iKRmQNliYiISAH+OpOU2aLdThQ50oRCk89F0rvvvos33ngD1157LbTa5njI4cOHY9++fX5dXCQy66UiiRHgREREFBw2pwvldTYA3T+TJA2UbXK4UNPk6PbaiJTgc5FUWFiIvn37trnd7XbD4eA/hO6yeHeSmriTREREREFSWuMpkIw6DRKjDKe596m1HCjL8AYKVT4XSYMHD8a6deva3P7xxx9jxIgRfllUJJPa7RgBTkRERMFS2KLVThCEbj+ePFCWRRKFKJ8jwB966CFcf/31KCwshNvtxqeffor9+/fj3XffxZdffhmINUYUC88kERERUZBJ55EyutlqJ8mIM2F3Ua2cmEcUanzeSbrkkkuwbNkyrFy5ElFRUXjooYewd+9eLFu2DOeee24g1hhRpDNJbLcjIiKiYJFnJHUz/lsixYhzJ4lClU87SaIo4tChQ0hMTMQ333wDnc7njSg6DbPB83fKnSQiIiIKFmnHp7vx3xKp3a6omkUShaZO7yQdOXIEw4YNw8CBAzFs2DDk5uZi69atgVxbRLLwTBIREREFmVTMdDf+WyINlC2pZbsdhaZOF0l//vOf4XQ68d577+Hjjz9Gjx49cMsttwRybRGpOd2OEeBEREQUHHK7nd+KJM/jMN2OQlWn++XWr1+Pjz/+GJMnTwYAjB8/Hj169EBDQwOioqICtsBIY9IzuIGIiIiCRxTFFkWS/4IbAKC42jNQ1h+JeUTB1OmdpLKyMvTr109+PyMjA2azGWVlZQFZWKRiux0REREFU22TEw3ei7MZfgpukM4kNTlcqG1idwyFnk7vJAmCgPr6epjNzf94NBoN6urqUFtbK98WGxvr3xVGGA6TJSIiomCSZiQlRhnkeY3dZdJrkRhlQFWDHcW1TYiz6P3yuETB0ukiSRRF9O/fv81t0gBZaSvV5eKL++5guh0REREFk79b7STpsSZPkVRtxcB0XkSn0NLpImn16tWBXAd5yXOS2G5HREREQVBc498ZSZLMeBP2FNcyvIFCUqeLpGnTpgVyHeTFdjsiIiIKpkJv/Le/ku0k0rkkqQgjCiWdDm6g4JB6gRsZAU5ERERBILXb+WtGkoQx4BTKWCSpDNPtiIiIKJikIinDz2eS5IGyLJIoBLFIUhnpTJLDJcLhciu8GiIiIgp3/h4kK5Ha7YrYbheyCqoacbC0TullKIJFksq0jN7kbhIREREFktPlRkmtZ6fH3+12UhBESY1noCyFluMnGjHrX+tw8cs/oKbJofRygs6nIsnhcECn0+GXX34J1HoinkGrgVbjmUrN8AYiIiIKpLI6G9wioNcKSIk2+vWxpZ2kRjsHyoYaURTx109+Rr3NiSaHC0crGpReUtD5VCTp9Xr07NnTb7OQXn31VQwbNgyxsbGIjY3FhAkT8M0338gft1qtuO2225CUlITo6GjMnTsXpaWlfnlutRIEQW6546wkIiIiCiSp1S49zgSN9yKtv5j0WiR4h8gW17LlLpQs/jEfPxyqlN+XBg5HEp/b7f72t7/h/vvvR1VVVbefvEePHnj66aexbds2bN26FdOnT8cll1yC3bt3AwDuvvtuLFu2DEuWLMGaNWtQVFSEOXPmdPt51Y4Jd0RERBQM0otff89IkjDhLvQUVDXiya/2AgBijJ5pQYUnIq9I6vScJMnLL7+MQ4cOITMzE7169UJUVFSrj2/fvr3TjzV79uxW7//973/Hq6++ik2bNqFHjx54++23sXjxYkyfPh0AsHDhQgwaNAibNm3C+PHjfV16yJAS7qw8k0QUUN/tK0VxjRXXjuul9FKIiBRRVB2Y80iSjDjvQNlqFkmhQBRF3Pvpz2iwuzCmdwJG9EzAG2vzInInyeci6dJLLw3AMgCXy4UlS5agoaEBEyZMwLZt2+BwODBjxgz5PgMHDkTPnj2xcePGDoskm80Gm80mv19bWxuQ9QYS2+2IAq/R7sQfFm2H1eHG0Kw4DOsRr/SSiIiCLlDx35J0OQY88l5khyKpzc6k1+DZXw3H+oPlACKz3c7nIunhhx/26wJ27dqFCRMmwGq1Ijo6GkuXLsXgwYOxY8cOGAwGxMfHt7p/WloaSkpKOny8p556Co8++qhf1xhsze12LJKIAmXdwQpYHZ6Y/TX7y1kkEVFEClT8t0R6XLbbqV/LNrs/zxyInOQo5JXXA2j+PokkXY4A37ZtG9577z289957+Omnn7q8gAEDBmDHjh3YvHkzbr31Vlx//fXYs2dPlx/vvvvuQ01NjfxWUFDQ5cdSijxQlkUSUcCs2tscArPWe6WMiCjSFHmLl0AVSemxnp0kFknqdnKb3Q0TewMAshI83xfcSeqEsrIyXHXVVfj+++/lXZ7q6mqcffbZ+OCDD5CSkuLT4xkMBvTt2xcAMGrUKGzZsgX/+te/cOWVV8Jut6O6urrVblJpaSnS09M7fDyj0Qij0b8RlsFm1nu+LJyTRBQYbreI7/aVye9vz69GrdWBWJNewVUREQWftEMQsDNJ8VKRFHkvskPJos2t2+ykpEPp+6K60YEGmxNRRp9Lh5Dl807SHXfcgbq6OuzevRtVVVWoqqrCL7/8gtraWtx5553dXpDb7YbNZsOoUaOg1+uxatUq+WP79+9Hfn4+JkyY0O3nUTML2+2IAmrH8WpU1NsRY9ShV5IFLreIDS2iTomIIkG9zSkPCc2IC8yZpJbpdhwoq04FVY146uvWbXaSGJMeMSZPYRRpLXc+l4PLly/HypUrMWjQIPm2wYMHY8GCBTjvvPN8eqz77rsPs2bNQs+ePVFXV4fFixfj+++/x4oVKxAXF4ebbroJ8+fPR2JiImJjY3HHHXdgwoQJYZ1sBzQHNzQxApwoIFbu8bTaTRuQguRoI97ZcBRrDpTj/CEd71ITEYWbYu+L3liTDjEB2kmX2u0a7S7UWp2IM3PHXk2kobEnt9m1lBVvxr6SOhRWN6FfWkzwF6kQn4skt9sNvb7tN7her4fb7fbpscrKynDdddehuLgYcXFxGDZsGFasWIFzzz0XAPD8889Do9Fg7ty5sNlsmDlzJl555RVflxxyGNxAFFgrveeRzh2chhiTDu9sOIq1B8ohiiIEwb/DFImI1KowwKENgOc1TYJFjxONDpTUWFkkdcLe4lqkxBiRHB344yOLNudjw2FPm90/WrTZtdSySIokPhdJ06dPxx//+Ee8//77yMzMBAAUFhbi7rvvxjnnnOPTY7399tun/LjJZMKCBQuwYMECX5cZ0uTgBp5JIvK7/MpGHCith1Yj4Kz+qdDrBBi0GhRWNyGvogG5KdFKL5GIKCikGUmBLJIAID3OjBONDhTVNGFAeuTsRHRFQVUjLnhxHWKMOrx8zUhM7e/bWX9fn0tqs/vLzIHonRzV7v3k8IYIGyjr85mkl19+GbW1tejduzdyc3ORm5uLnJwc1NbW4qWXXgrEGiMO0+2IAkfaRRrTOwFxFj0sBh1G904AAKw9wJQ7IoocUphCZoBmJEky5FlJTLg7nb3FtRBFoNbqxLyFP+KtdXkBOcvldje32Y3tnYh57bTZSaQimmeSTiM7Oxvbt2/HypUrsW/fPgDAoEGDWg19pe4xcZgsUcCs2ucpkmYMSpNvm9Y/BRsOV2LtgXLcMClHqaUREQVVMNrtgOYiiTHgpycVIhaDFo12F574ai/2FNfiycuGyq8P/WHxj81tds/+ali7bXYSKeGO7Xan4HA4YDabsWPHDpx77rny2SHyL4uBEeBEgVDT5MDmvCoArYukqf1T8NQ3+7Aprwo2pwtGnf9+ERERqVWg478lcpEUYS+yu0KaW3X12J7okWDGE1/txafbC3G4vAFv/GYU0mK7v+vX2TY7idRuJ7VnRgqf2u30ej169uwJl4sv3gOJ7XZEgbHmQDmcbhF9U6Nb/VIYmB6D1BgjmhwubD16QsEVEhEFT7DOJEkx4CW1kfUiuyukcz9Z8WbcMCkH7944FnFmPXYWVGP2S+vxU373fkf50mYnkYroklornC7fQtpCmc9nkv72t7/h/vvvR1VVVSDWQ2jZbscIcCJ/WuU9j3TOoNRWtwuCgCn9PIdjeS6JiCKB2y3KZ5ICNSNJIj1+pJ1p6YqTWyAn9U3GF7dPQv+0aJTV2XDl65vw8bbjXX78RT602UlSoo3QawW43CJK62xdfu5Q06XghrVr1yIzMxMDBgzAyJEjW71R93GYLJH/OVxurN5XBgA4t0WrnWRq/2QAnt0mIqJwV1Fvg8MlQiPALy1cp5Le4kwSB8qeWnstkL2SovDpHybh3MFpsLvcuGfJTjz+5R6fd3V8bbOTaDSCvBsYSQl3Pgc3XHrppQFYBrUkFUlWnkki8putR0+g1upEYpQBI3omtPn4lH4pEARgX0kdymqtSA3wiwYiIiVJZ1/SYk3Qa32+Zu4T6QV2o92FOpsTsQEaXBvqbE4Xyrw7NdI5IEm0UYfXfz0KL6w8gBe/O4S31x/BgdI6vHz1SMRZTv/3KbXZNfrQZtdSVrwZ+VWNEbUb6FOR5HQ6IQgCbrzxRvTo0SNQa4p4HCZL5H9S9PfZA1Khbae9IDHKgKFZcfj5eA3WHqzAr0bxZxwRha+iICXbAZ7XNfEWPaobHSiutiI2nUVSe6SIdJNeg4R2Ch+NRsD88wZgQHos7lmyE+sOVuCSBevx1vWj0Tf11POnutJm11JmBCbc+XTpQKfT4R//+AecTp6VCSSznsENRP4kiqJcJJ07OLXD+03luSQiihDBLJIAID1WarmLnBfZvmp5HkkQOi5iLhyWgY9vnYCseDOOVjbi0gUb5DO37WnZZvfX8zvfZteStLN1PILa7XzeX50+fTrWrFkTiLWQlxQB3uhwsXeXyA8Ol9fjWGUjDFqNHNDQHmmy+fpDFXC7+W+PiMJX8wvy4LQWS8UYZyV1TEob7Ewk+xmZcfji9kkYl5OIepsTv313KxasPtTmdaPbLeIvHze32V0/oXeX1pYVH3nhGz6fSZo1axbuvfde7Nq1C6NGjUJUVOtq9OKLL/bb4iKV1G7ncotwuEQYdL5tiRJRa9/u8QQ2TMhNQpSx4x97I3rGI9qoQ1WDHb8U1WBYj/ggrZCIKLjknaS4IO0kcaDsabWM/+6MpGgj3vvtODy6bDfe25SPf6zYj73FtfjHr4bLryUX/ZiPjXldb7OTZMVbPGtkkdSxP/zhDwCA5557rs3HBEHgDCU/kIIbAE/LnUEX2AOVROFOakOYMajjVjsA0Gs1mJibhP/tKcXaA+UskogobAVrRpIk01sklbDdrkNdaYHUazV44tKhGJQRi4c/340vfy7GkYoGvHHdaLjdYrfb7CTNA2WbIIriKdsBw4XPr77dbneHbyyQ/EOv1UDnrfQbHTz/RdQdlfU2bPMO3zunnejvk0ktd2sPVAR0XURESpLOBgWr3S49ju12p1NU0/VzYteO64XFN49HUpQBu4tqcfFL6/GHRds9bXY5XW+zk0izrhrtLlQ3Orr1WKGCWxQqxYQ7Iv/4bl8ZRBE4IzO2U794pnmLpG35J1BrjYxfBEQUWawOFyrq7QA639rVXRlstzutwnZmJPlibE4iPr99EgZnxKKywY5dhTUw6TX4Rzfa7CQmvRbJ0cZW6wx3nS6SLrjgAtTU1MjvP/3006iurpbfr6ysxODBg/26uEgmtdwx4Y6oe1bt9ZxH6swuEgBkJ1qQkxwFl1vEhkOVgVwaEZEipELFYtAizhycOO4Mud2ORVJ7RFFsd5Csr3okWPDxrRMwe3gmtBoBD88+A72Sut5m15IU3sAi6SQrVqyAzWaT33/yySdRVVUlv+90OrF//37/ri6CSQl3TRwoS9RlVocLaw964rzP7WSRBABT+yUDgPy5RGr0+Y5C3PH+Txw8Tj4r6mTUtD9JA2XrbU7u0rejqsEOq8MNQQDS4ozdeiyLQYeXrh6BXx6ZiavH9vTTClufS4oEnS6STo4UZDR1YJn0bLcj6q5NeZVotLuQFmvEkKzYTn/etAHN85L4s47UyO0W8fiXe7BsZ5E8A4yoswqDPCMJaB4oC3A3qT1SkEZKtBFGnfY09+4cs8E/jyORkhALI2RWEs8kqRTb7Yi6T3rxeM6gNJ+ulo7vkwSDVoPjJ5pwpKIhUMsj6rK9JbXymZK8cn6Pkm+a47+DE9ogkQbKRspOhC/k80gJwStcfSWtje12JxEEoc2LjEiI/1OKXCQx3Y6oS0RRlM8j+dJqB3haFUb3TgDg2U0iUpt1B5vTF/PK6xVcCYWi4iDHf0t4LqljSuzu+UpaW6QUuZ2ekySKIubNmwej0dMnabVa8fvf/14eJtvyvBJ1n5ntdkTdsruoFsU1Vpj1WkzITfL586f2T8GGw5VYe7AC8yblBGCFRF23rsV5uTzudpKPuhM13R0Z8YwB74g/QhsCTVpbpOwkdbpIuv7661u9/+tf/7rNfa677rrur4gANPeRst2OqGukVrsp/ZLlM36+mNovBU9/sw8bD1fC5nT5rUecqLua7C5sOXpCfj+vvCFihjuSfzTvWgS33S4jVooBj4wX2b4IhSKph7fdrqLeDqvD1aXfraGk00XSwoULA7kOOgnPJBF1j9RqN8PHVjvJoIwYpMQYUV5nw7ajJzCxb7I/l0fUZT8erYLd6UZarOf7s97mRHmdDamxwX3BS6HJX1HTXZHOWUkdCoV2uzizHhaDFo12F4qqm9AnJVrpJQUUgxtUyqz31K+NjHYl8llxTRN2FdZAEICzB6Z26TEEQcAUbxT4GkaBk4qs856TO6t/KrITLQCAwwxvoE460eiA1eEG0Fy0BItUAPBMUltFCu3u+UIQBLmwltL4whmLJJUyGzxfGu4kEflO2kU6MzseKTFdnzcxrb8UBV5xmnsSBY8U2jClfzL6JHvOBedVMLyBOkd6MZ7sx6jpzuJOUvusDpecVqnmdjugudAtrG5UeCWBxyJJpaRhso12ptsR+WqV9zxSV1vtJJP7JkMQgL3FtSir4y91Ul5prRX7S+sgCMCk3GTkJHvaXY5wJ4k6qbnVLvg7FlK6Xb3NiToOlJVJRWOUQYs4s17h1Zxacwx4+P9OZJGkUlK6XZN3S5yIOqfR7sQPhysBAOcO7l6RlBRtxJDMOADAOu4mkQpIu0jDsuKQEGVAnxRpJ4lFEnVOkYJnXywGnVwEcDepmTScNTPerPoAFjnhLgIGyrJIUqnm4AbuJBH5Yt3BCtidbmQnmtEvtfuHSqf295xLWstzSaQCUvT3lH6eVlC5SOKsJOqkohplZiRJMthy14aShauvsthuR0qTIsA5J4nINyv3NLfa+eOK3FTvi9F1ByvgdovdfjyirnK7Raz37iRN9oaK5HrTpQpONMHuZOcBnZ7SKWrNA2XDfyeis5T+mvhCardjcAMphsNkiXzncov4bl/3or9PNrJXAqKNOlQ12LG7qNYvj0nUFXuKa1HZYIfFoMXIngkAgNQYI6IMWrjcIvKr2HJHp6fkmSQASI+LnBfZnSUVSdIcIjXLlAcCN4X9hUMWSSolBTdYGQFO1Gk7CqpR2WBHjEmHsTmJfnlMvVaDCblJANhyR8qSziNN6JMEg87z61sQBHlWCWPAqTOkIikjTumdJBZJklCI/5akxRih1QhwuESU19uUXk5AsUhSKbbbEflupTfV7qwBqdBr/ffjbao3CnzNfhZJpJzm80itBxs3n0tikUSnZne6UVbneWGrdLtdEdvtZHKRpFDh6gudVoN07+Dq42Ee3sAiSaXYbkfku+bo764NkO3INO+5pO35JxhbS4posruw9egJAMAUb9EuyUlmeAN1TmmtFaIIGHQaJEUZFFmDtIPFnSQPt1uUwzSyQqDdDkCLgbIskkgBUrod2+2IOudYZQMOlNZDqxFwVn//Fkk9kyzISY6C0y1igzdenCiYNh+phN3lRla8WR4gK5Ha7Y4wBpxOo3nHwgSNRpmo6Yx4ttu1VNFgg93phkYA0mLV324HNLcFFrJIIiVY5HY7J0QxvA/GEfnDyr2ewIYxvRMQZ/H/ML6p3hantQfYckfBJ51HmtIvuU1qo1Q0cVYSnY7U4qZkiprUqlXHgbIAmgMs0mJNfm0TD6TmhDsWSaQA6UySWwRsjHUlOq3mVjv/pNqdTDqXtPZgOS9cUNCdPB+pJelMUlWDHdWN9qCui0KL9IJcySIpyqhDrMkTTsXdpNCakSTJjJCBsiySVEo6kwR4etGJqGM1TQ78eKQKQOCKpPF9kqDXCiioasLRyvAfokfqUVJjxYHSeggCMKlvUpuPWww6+TA8E+7oVApbtNspqTlGmkVScyR76BRJzQNlWSSRAnRaDQzebdcmnksiOqU1B8rhdIvomxqN3ied1/CXKKMOo3t5YsXZckfBJO0iDesRj3hL+4ftmxPuGN5AHVPLrkW6t0grZsKdnBCn9NfEF9I8JxZJpBjGgBN1zso9gW21k8gtdyySKIik80hTT4r+bqlPsie8geeS6FSKVdBuBzTHgHMnSfnhvl0hff/UWZ2oDeNzZSySVExquWO7HVHHHC43Vu/3hDb4O/r7ZFP7e16kbsyrhJ1nBSkI3G4R6w9JoQ1tzyNJuJNEpyOKIgpOeFqFlY6almLApaItkqkhTMNXFoMOCd6ApHAOb2CRpGItE+7UasXuEvkFKpESthytQp3VicQoA0b0TAjocw1Kj0VytBGNdhe2HqsK6HMRAcCe4lpUNdgRZdBiRM/4Du/XPCuJO0nUvrI6GxrtLmgEIDvBouha5Ha7WhZJUviB0oWrryIhvIFFkopJ7XZqPZNUVN2EW9/bht/9dxt3u0gxK/d4ivSzB6RCG+C5HxqN0CIKvCKgz0UEeNIUAWBCbtIp44FzvbOSjlU2wuVm+iK1Jc3R6pFggUGn7Mu/THmgbPi+wO6MRrsTJxo97WqhtJMERMZAWRZJKibtJKm1ANlwuBJuEbA73RxiSIoQRRGr9nnOI507OLCtdhKeS6JgWnfg9K12gOcFlkGngd3lDusru9R1R72/pwMVbuMLeScpwtvtpEj2GKMOsSb/z/cLJKmoO84iiZRg0qs7uGHj4Ur5//Mq2AdPwXeorB7HKhth0GpO+yLSXyZ7d5L2FNeivM4WlOekyNRod8ptnVNOEdoAAFqNgJwkz4vfw/x5TO2QRhfkJCnbagc0BzdE+kBZtaQNdoWccBfGF2VYJKmYfCZJhe12oihiU15zkXS4jDtJFHzfegfITshNQpRRF5TnTI42YkhWLIDmaGaiQNh8pAoOl4iseLN85uhUmsMb+POY2pJ2knolKb+T1HKgbGkEn0uSIrRD7TwSwHY7UpjF4PkBYlXhTlJBVVOrfHzuJJESVu31ptoNDmz098mm9mPLHQWe1Go3tX8yBOH05+2YcEencrTSUyR1puAOBinhriiCW+6ad5JCJ/5bkhkBA2VZJKmYmuckbczz/PLWeQ/KH+YvZQqyinobtuefAACcMzA455Ek0rmkdQcr4OYheQoQaaeys62k8qwk7iTRSdxuUS6S1HAmCWg+lxTOOxGnUxjC7XbS7ldZnS1sR2KwSFIxaU5So0N9EeAbvOeRZp6RDsDzS1kU+WKRgmf1vjKIInBGZmzQf8GM7JmAaKMOlQ127C6qDepzU2QormnCwbJ6aARgYm5Spz4nR9pJ4s4+naS0zgqrww2tRpDPkihN2tGK5IuszYNk1fE18UVSlAFGnQaiCJSE6VBgFkkqJp1JUlu7nSiKcmjDlWOyodUIaLS7UBLBfcUUfCu955HOGRTcVjsAMOg0mOB94bqW55IoANYd9OzWD+sRj3iLoVOfk+vdSSqttaHBpr6La6ScoxWe0IbsBPMpo+SDaWB6DABgX0mdwitRTmEIF0mCIMjrDteWO3X8S6F2qbXdLq+iAWV1Nhh0GozNSUSvRE9SDls8KFisDpc8p+hcBYokoLnlbg3PJVEASEXS1NOk2rUUZ9EjKcpTUHEsA7WktlY7ABgQ4UWSyy3KOzCh2G4HhP+5JEWLpKeeegpjxoxBTEwMUlNTcemll2L//v2t7mO1WnHbbbchKSkJ0dHRmDt3LkpLSxVacXBZ9OpMt5N2kUb2jIdJr5UPC0fyljkF18a8SjQ5XEiLbU6aC7Zp3nMi24+diOgIW/I/t1vEeuk8Un/fou3585jaI89IUkGynaR/WgwEASivs6GiPvLGKVTU2+BwidBqBKTGGJVeTpeEe8KdokXSmjVrcNttt2HTpk349ttv4XA4cN5556GhofkK2N13341ly5ZhyZIlWLNmDYqKijBnzhwFVx08ZpUOk93ojf6emOu5wilNeudOEgXLexuPAfC02nUm9SsQeiZZ0DvJAqdbbDUzjKi7dhfV4kSjA9FGHc7MjvfpcxneQO05IhdJys9IkkQZdXInyv4I3E067p0vlB5rgk4lLZC+kneSwnRWUnAGi3Rg+fLlrd5/5513kJqaim3btmHq1KmoqanB22+/jcWLF2P69OkAgIULF2LQoEHYtGkTxo8f3+YxbTYbbLbmKxK1taF7qNrsjQBXU5EkiiI2eV8QSmcyeOWSgun7/WVYta8MOo2AGyf1VnQtU/un4OjGY1h7sBzneUNMiLpLOuc2vk+Sz+dH5BhwtttRC2pstwM8LXdHKxuxr6QOk/p2vrU0HIRyaINESrhju10Q1NTUAAASExMBANu2bYPD4cCMGTPk+wwcOBA9e/bExo0b232Mp556CnFxcfJbdnZ24BceIGpstztQWo/KBjvMei2G94gHwJ0kCh67043HvtwDALh+Ym/0TY1RdD3N85IqFF0HhRcp+ntqf99fNPaRfx7zohV5uN0ijlV6ghvUMiNJMjDd0y69rzh0L2h3VSjPSJKw3S5I3G437rrrLkyaNAlDhgwBAJSUlMBgMCA+Pr7VfdPS0lBSUtLu49x3332oqamR3woKCgK99ICxyO126kkp2njY82JwdO8EGHSebx/pl3JhdRMaVbRWCj/vbjyKvPIGJEUZcOc5/ZReDibkJkGvFZBf1Sj3/BN1R4PNiW3HPPO/OjsfqSVpJ+lIBccykEdJrRU2pxs6jaC6XYtBGZEb3lAUwjOSJC3T7cLx541qiqTbbrsNv/zyCz744INuPY7RaERsbGyrt1BlUmG6nXQeaXyf5rkdiVEGJFj0AJioRIFTXmfDv1YeBAD8eeYAxJn1Cq/I01M/qlcCAEaBk39sPlIJh0tEjwRzl86PZCdYOJaBWpEu4GQnWlR39mWAdyfpQGkdXBE2mFuO/1bJ3KquSI8zQRAAm9ONyga70svxO1X8a7n99tvx5ZdfYvXq1ejRo4d8e3p6Oux2O6qrq1vdv7S0FOnp4d//L89JUkm7ndstYlNeFYC2ww2l3aTDbLmjAPm/FftRZ3NiSFYsLh+tnjZaKQp89b4yhVdC4UCK/p7SL6VLoSQGnQY9vYfhj/DnMQE4Uqm+0AZJz0QLzHotbE63fG4qUhRWh3b8N+D5eSMl84VjeIOiRZIoirj99tuxdOlSfPfdd8jJyWn18VGjRkGv12PVqlXybfv370d+fj4mTJgQ7OUGnUXvCW5Qy07SnuJa1DR5EpeGZsW1+liudFiYffAUALuO1+CjbZ7W2UdmnwGtRplEu/acN9hzwWbtwQqU1fHKPXVPV+YjnayP99zJYe7sE1rEf6vsPBIAaDUC+kvzkoojq+UuHIIbgPA+l6RokXTbbbfhvffew+LFixETE4OSkhKUlJSgqcnzFx0XF4ebbroJ8+fPx+rVq7Ft2zbccMMNmDBhQrvJduHGZPB8eZocLlX0em7yttqN6Z3QZss+lztJFCCiKOKRZbshisClZ2ZidO9EpZfUSt/UaIzsGQ+XW8TS7YVKL4dCWFF1Ew6V1UMjNI9Y6Io+vGhFLRypUGdog2RgmqdI2l8SOeEN9TYnapo88/VCeScJCO+BsooWSa+++ipqampw1llnISMjQ3778MMP5fs8//zzuOiiizB37lxMnToV6enp+PTTTxVcdfBYvBHgoghYHW6FV9M8RHbCSa12ABOVKHA+31GEbcdOwGLQ4t5Zg5ReTruu8Lb/fbi1QBUXNCg0rffuIg3Pjkecpetn7vowcZRaOFapvkGyLQ30hjfsjaDwBmnXJc6sR7RR0Wk83RbOMeCKfmU682LCZDJhwYIFWLBgQRBWpC5mbwQ44NlNkobLKsHpcuPHI57zSBP6tL3C2dxu1wC3W4RGRe1QFLoabE489c1eAMBtZ/dFepw6o1IvGp6JR5ftQV55A7bnn8CoXura7aLQIIV/dCXVriWp3S6vghetIp3bLeJYlWcnSbVFkje8IZIGyhaGQbKdpEcYD5RVRXADtU+rEWD0xmwrHa39S1Et6mxOxJp0GJzZNjEwO9ECnUZAk4OJSuQ/C1YfQmmtDT0TLbhpcs7pP0Eh0UYdLhyWAQD4aMtxhVdDocjlFrH+UPfPIwHNO0nHTzSpJviHlFFU0wS70w29VlDtPJ6B3jNJ+VWNqLdFxhiR5vNI6vya+ILtdqQYszwrSdlfdFKr3bg+Se0emtdrNejlTc45zJY78oNjlQ14a90RAMDfLhwEk165ndTOuHKMp+Xuy5+L0BAhv+jJf3YX1aC60YEYow7Ds+O79VjJ0QbEmHQQRchDRCkyHfWeR1Jj/LckIcqAtFhPQlqk7CZJuy6hHtoANLfbMbiBgs6iV8esJGk+0oQ+bc8jSdgHT/70xFd7YXe5MblvMs4bnKb0ck5rdK8E5CRHocHuwle7ipVeDoUYKdXOM6C4e7+aBUFobrnjRauIJsV/56i01U4SaS134TBIViL9GU40OhTvevI3FkkqJ+8kKdgy4XC5sfWo9zxSO6ENkuaEO/5Spu5Zd7Ac3+4phVYj4OHZg7s0LybYBEHA5aM9c94+2lKg8Goo1Kw9IJ1H6l6rnUS+aMUY8Ih2TMXx3y1JLXf7IiThrigMZiRJYk16xJg8EQfhtpvEIknlpIQ7Jdvtfj5ejUa7CwkWPQZ4ozrbI8XOskii7nC43Hh02R4AwHUTeqHfKb7n1OZXI3tAqxGw9dgJ/jugTqu3ObE9/wSA7oc2SJp3klgkRbKjKh4k25KUcBcps5LCKbgBaG4bPB5m4Q0sklTOrIJ2uw2HmqO/T5Val8t2O/KD/248hkNl9UiMMuCuGf2VXo5PUmNNOKu/50XuR1u5m0SdszmvEg6XiOxEs3y2s7uad5JYrEeyIyGykzQgzdNut6+kNuzHKDhdbjngqkdCeBVJ0g5ZuGCRpHJqaLfrzHkkoDkGvLjGyoPr1CWV9TY8v/IAAOCe8wYgztz1WTFKucIb4PDJtkI4XMrPNyP1k84jTemX4rfW0j4txjKE+4tOap/LLaKgynNlX63x35Lc1CjoNAJqrU4U14TXC+2TldXZ4HKL0GsFpEQblV6OXzQn3IVXUAyLJJWzyOl2yhQdNqcL24552kBOdR4JAOItBiRFGQA0X70i8sX//e8A6qxOnJEZK6fFhZrpA1ORHG1ARb0Na/aXK70cCgHrvPORuhv93VJOchQEAahpcqCqwe63x6XQUVTdBLvLDYNWo/q2LqNOK3ejhPu5JOncTnqcKWxmSjYn3IVXgcsiSeWknSSl2u1+yq+GzelGSoxR/gF2KjyXRF31S2ENPtiSDwB4ePYZ7UbNhwK9VoPLRmQBAD5kyx2dRmF1Ew6XN0AjABNy/VckmfRaZMZ5XrgwvCEySeeReiZZQuLn6QA5vCG8zyUVVodP/LckK0wHyrJIUjmlzyRJ85HG90nqVBtIc8IdfylT54miiEe+2A1RBGYPz8TYnESll9QtV4z27IJ9t68MZXXhdWWN/Gu9dxfpzOx4v7eXNrfc8aJVJDpaERqhDZJICW8It9AGIHwHyrJIUjmp3U6pqelSkTTxNK12Eu4kUVd8sbMIW4+dgEmvwX2zBiq9nG7rlxaDET3j4XKLWLq9UOnlkIqtbXEeyd+YcBfZjngHyar9PJJkUHpzeEM4KwrDnSQpgKKk1gpnGJ3FZZGkcmZvBLgSO0lNdhd+KvCeRzpNaIOECXfkq0a7E099vQ8AcNtZfcPm6tqV3t2kj7YW8OA8tcvlFvHDIU+RNLW//1rtJJyVFNnk+G+VJ9tJpHa7vPIG2JzKhVUFWjjNSJKkRBuh1wpwuUWU1tmUXo7fsEhSOSXb7bYdOwGHS0RGnKnTsbTSL+UjFfVwu/nCkE7v1e8Po6TWih4JZtw8tY/Sy/GbC4dlwKzX4nB5gzwDh6ilXwprUN3oQIxRh+E94v3++Gy3i2xSu11OiBRJGXEmxJp0cLpFHC4L38JeOrcTTjtJGo2AjDgpvCF8Wu5YJKmcnG7nCH663cY8zxXOCZ08jwQA2Qlm6LUCrA43imrC5x8KBUZBVSNeX5sHAHjgwkEweS8KhIMYkx4XDssAAHy05bjCqyE1klLtJvZNgk7r/1/H0kWr/KrGsGqBodNzutwoOOFttwuRIkkQBAzMCP+Wu6IwPJMEAJnxJgDhFd7AIknl5DlJCuwkyaENnTyPBAA6rQa9kqRzSeF7JYj84+9f7YXd6cbE3CTMPCNd6eX4nRTg8OXPRZwdRm0E8jwSAGTEmmDSa+BwiSgIoxcudHpF1VY4XCIMOg0yYk1KL6fTBnpb7vaHacJdrdWBOu/vAqmoCBdZ8Z6Oo3AKb2CRpHIWhSLA621O7DxeA6DzoQ2SXLZ4UCdsOFSB5btLoNUIeHj2GX4boqkmY3onICc5Cg12F77aVaz0ckhF6m1ObPfOoJvix/lILWk0AnKSpXOi/HkcSY54zyP1SrSE1Cyegd7whr1hWiRJu0gJFj0s3jPn4UKalcQiiYJGOpPUFOR0uy1Hq+Byi8hONKNHgm/xoX3kGHD+Uqb2OV1uPLpsDwDg1+N6ygd2w40gCLh8dA8AwBLOTKIWNh2uhNMtomeiRd59D4Tmc0nc2Y8kcvx3iLTaSZpjwMOz3U4+j5QQXq12AJDl3RnjmSQKGqWGyW7yttp1NtWuJSbc0eks2pyP/aV1SLDocfe5/ZVeTkDNHdkDGgHYcvQELxyQTDqPFKhdJIkcA17B771IciTEQhsk/dM8RVJZnQ1VDXaFV+N/8nmkuHAskrztdmHU2ssiSeWk7dhgn0namOctknxstQM4K4lOrarBjn/+bz8A4E/nDUC8xaDwigIrLdaEswekAgCWbGWAA3msC/B5JAl3kiKTHP8dIjOSJNFGHXomel5sh2N4Q2EYxn9L5OCG6qawGXvBIknlmtPtglck1TQ58Euh5zzShD6+X+XM9fbAl9baUM/D6nSSf/5vP2qtTgzKiMXVY3sqvZyguNwb4PDJ9uNMGSMcP9GIvIoGaDVCly5E+aJPMmclRaJjlVKynW/t8moghTfsKw6/c0nhOEhWIhV+jXYXapocCq/GP1gkqVzznKTgFRs/HqmCW/S0aaTH+Z6+EmfRIznaszvAw8LUUlF1E97/MR8A8MjswdCG0IHi7pg+MBVJUQaU19nw/f5ypZdDClvt/R44MzsecWZ9QJ9L2kkqr7OhzhoeL1zo1JwuNwqqvEVSiO0kAeGdcCeFGoTjmSSTXiu/9jseJi13LJJUTjqTZHW4gzactSvR3yfrw3NJ1I71ByvgFoGRPeMxrgvn3UKVQafBnJFZAICPGOAQ8b7YUQgAOG9wWsCfK8akR0qMEQB/HkeK4yea4HSLMOo0SA+h+G9JOM9KCtcZSRJphyxcwhtYJKmc1G4HAFZncFru5PNI3XgRm8uEO2rHhsOecxiT+gb2sLoaSTOTvttXhvI6m8KrIaUUVDViy9ETEATgkjOzgvKcDG+ILEdanEcKpfhvibyTVFoHV5AuDgeDw+VGaa10Jin0itfOkIq/cIkBZ5GkciZdc5EUjIS7Ew127PVGb47vVpHEw8LUmiiKfinAQ1W/tBiM6BkPp1vE0p8Y4BCplv7k2UWamJvUpXbmruDOfmRpjv8OvfNIANArKQomvQZWhxv53rbBcFBSY4Vb9HQWJEcZlV5OQHAniYJKoxFg0nu+TMFIuNt8xPMitl9qtNyi0RXcSaKTHaloQGmtDQadBiN7JSi9HEVIu0kfbikIm/Qf6jxRFPGZt0i6bESPoD2vvJPEIikiNIc2hN55JADQagQ5Cjyc5iU1x3+bQnKHrzPCbaAsi6QQIMeAByHhboP3PNLEbiYuSYeFj1Q0hNV2OXWd9L01smc8THrtae4dni4algGzXovD5Q3Ynl+t9HIoyHYer0FeRQNMeg3OH5IetOflWIbIIs1ICsXQBonUcrc3jMIbimrC+zwS0LLdzqrwSvyDRVIIaE64C3yRJIU2dDeWtkeCBQatBjanO2y2Xal7mlvtIu88kiTGpMcFQzMAAEsY4BBxpF2k8wanI9qoC9rzSu12RysbghYARMoJ1RlJLQ1I94Q37A+j8IaiMJ6RJJHa7cJloCyLpBAghTcEOga8vM6Gg2X1EARgXE73iiStRpD7oXn1kkRRxCZpl7Jv5J1HaumK0Z42q2U7i9DAOWIRw+FyY9nOIgDAZSODE9ggyU4wQ68VYHW4UVwbHld4qX0Ol1uOX84J0XY7ABgkzUoKo50k6esSjjOSJNKfraLeBmsQ53sGCoukECDFgAf6TNIm75X+gemxSIgydPvxms8lsQ8+0h0orUdlgx1mvRbDe8QrvRxFjc1JRO8kCxrsLny9q1jp5VCQrDtYjsoGO5KjDZgS5HRHnVaDnomei1acXRfeCqoa4XKLMOu1SIsN3XCAAd4iKb+qMWwuJoXzIFlJvEUvX9gvrgn9CzIskkKA1G4X6DNJ/k4e6yMn3PGXcqTb6I3+Ht07AQZdZP/YEQQBl3sDHDgzKXJ8ut3Tajd7eCZ02uD/G2DCXWSQQht6JVkgCKEbDpAUbURKjBGiCBwoDY/dpHCfkQR4fr9lhlHLXWS/WgkRze12AS6S/BTaIGHCHUnkAtxP31uh7lejekAjAFuOnuBFhAhQa3Xg2z2lAIA5QUy1a4kXrSJDOIQ2SAaGUcudKIotiqTwnJEkCacYcBZJISAY7XYlNVYcqWiARgDG9kn0y2PyyiUBgNstYlNeFYDInI/UnrRYE84akAoA+GgrZyaFu+W/lMDmdCM3JQpDsmIVWUNusvfncQV/HoczObQhhM8jSeShsmFQJNU0OdDgfQ0XzjtJQHMM+HEWSRQMZr0nBSmQO0kb8zztUEOy4hBr0vvlMaUrl2V1NtRZHX55TAo9e4prUdPkQLRRh6FZcUovRzWkAIdPth+H0+VWeDUUSEu9rXZzRvZQrAUqhwO+I4K0k5QTooNkWxroTbjbGwazkqS5QcnRhrAfgcGdJAoqqd0ukGeS5OhvP17pjzXp5YG0/MUcuaRAkLE5iYqcxVCr6QPTkBRlQHmdDWsOlCu9HAqQouombPIO6b54eKZi65AGyhZWNwVlMDkpIxzivyUDM5rb7UJ9+HYkxH9LwikGnK9YQoBcJAUwAlw6MzLez2dGcjnEMOJtCEABHg4MOg0uG+GJgv5wCwMcwtXnO4ogip6LBNmJyl3dT4wyIM7s6RKQXkhTeLE73fIL01CO/5b0TY2GViOgpsmB0lqb0svplsITnkCNcE62k0iFoDQ8N5SxSAoBpgAPky2oakRBVRN0GgFjevvnPJKkD8MbIprT5caPR7znkRja0MYVYzwpd9/tK0N5XWi/CKC2RFHE0p88Z86kglgpgiC0CG9gkRSOCk40wi16LqxKXRyhzKjTyjuge0N8qGxRTQTtJHnPJBVXW0N+eDWLpBAQ6HY7aRdpWI84v0+Bz2V4Q0TbVViDepsTcWY9Bmcoc2BdzfqnxeDM7Hg43c0vpil87CmuxYHSehh0GlwwNEPp5aCPFN7Ai1Zh6aj3PFKvpKiQjv9uaaD398a+4tAObyiMgPhvSVqMEVqNALvLjfL60L74xyIpBFgCnG636XDg4pn7sN0uokkF+LicRGg04fFL29+uHCPNTDoe8n331JoU2DBjUKrc6qYkeSeJCXdhKZxCGyTNCXchvpMkD5IN7/hvwDO8Oj3W8+csDPHwBhZJIcBsCFy6nSiKLYbI+n8KfF/vTtLRCs8UcIos/p69FY4uGpYBk16DQ2X12J5frfRyyE9cbhGf7ywCAFx6prKtdpJczkoKa+EU2iAJl1lJ0lmxrPjwKWBPRZoFFerhDSySQoBZH7idpGOVjSiusUKvFTCqV4LfHz8z3gyDTgO7y43j3oOLFBnsTje2Hj0BAJiQ6/8CPFzEmPRyK9aSrQxwCBc/HKpAeZ0N8Ra9PBNLaS1n13HXMvwcrfD8jg2HGUkSqd3uUFk97M7QHJVgc7pQ5j1zGu6DZCXhEgPOIikEBPJMkpQ8NqJngjy01p+0GkE+eMlzSZFl5/FqNDlcSIoyoH9atNLLUbUrR3ta7pbtLEJjAFMsKXg++8nTanfRsAwYdOr4Vdsz0QJBAOpszpA/K0BtheNOUmacCTEmHZxuEXkVobkDWlrj+bdm1GmQGGVQeDXBIYU3sN2OAk4qXgLx4qm51S5w7VA8lxSZpFa78blJYXOIOFDG5iSid5IFDXYXPtnGAIdQ12h3YvnuEgDAZSN6KLyaZia9Fj28L1540Sq82Jwu+ap97zA6kyQIQnPLXYiGNxyvbo7/jpTfhZncSaJgCVRwgyiKzUNkA3hmJFeOAQ+NX8pbj1aF/D9sNdhwuAIA5yN1hiAIuGFSDgDgpe8OwRrAwdEUeCt2l6DR7kKvJAtG9oxXejmtSAl3RxjeEFYKqjzx31EGLVKiQz/+u6WB6Z6Wu1CNAZcGyUq7K5FAarc7zjNJFGjSmaRGP79wOlxej4p6G4w6DUYE8Bd5KO0kLf+lGL96bSNu+s9WpZcS0qwOlxxCwPlInXPV2GxkxZtRVmfDfzYcVXo51A1Lf2oObFDbleM+DG8IS0danEdS2/dcdw2QE+5CcydJuuiaGRd5RVKoX3BmkRQCzAHaSZJ2kUb1SoBR5//zSJJQmZVUa3Xgoc93AwD2FteGfC+tkrbnn4Dd6UZarFE+k0anZtRpcdeMfgCAV9ccRq3VofCKqCvKaq1Yf7AcgPIDZNvTJ0R+HpNvpBlJ4RTaIBmUEdrtdkURNCNJIv1Za61O1IXw7zIWSSHA4o0Atzndfo3R3hCkeOYc7w/tinobaprU+4/lH8v3ywk0AOQXOuQ7uY2zD88j+eKyEVnITYlCdaMDb607ovRyqAu+2FkEtwiM6BmvyhesucmclRSOpNCGnDAKbZD0T/MUSSW1VlQ32hVeje+kC66R1G4XZdQh3uKZDRfKF5xZJIUAqd0O8F/CndstYlNe4M8jAZ6I47RYT4+0Wls8th07gfc2HwMATOrr+ftYf6hSySWFtGCcdQtHOq0GfzpvAADg7XV5qGQCWchZ6k21m6PCXSSgeScpv6oxZCOVqS2pSOqVFD6hDZIYk14OHAnFeUmF8k5SZMR/S8Kh5Y5FUggw6TWQLsb7K+Fuf2kdTjQ6YDFoMaxHvF8e81Skw8JqDG9wuNy4/9NdEEVg7sgeuGtGfwCeOSduDsD1WYPNiR0F1QCAiZyP5LNZQ9IxNCsODXYXXv3+sNLLIR8cKK3D7qJa6DQCLhqWqfRy2pUWa4TFoIXLLSK/irPrwoU0IylHhbuX/iCFN+wrDq3wBlEU5SIhK4La7YDmP28oD5RVtEhau3YtZs+ejczMTAiCgM8++6zVx0VRxEMPPYSMjAyYzWbMmDEDBw8eVGaxChIEQd5Nstr9c+VPutI/unci9NrAfxvkpqr3sPCb6/Kwv7QOCRY9/nbhIJyZHY9oow5VDXbsCbEfyGqw9dgJON0isuLNyE4Mv6uagSYIAu6Z6dlNenfTsZC+ChdppF2kswakIkGl81AEQZBfSKvx5zH5zupwoahGiv8OzyJJPpcUYjtJJxodsDo8r9vS4yJrJ0k6l1ToTfcLRYoWSQ0NDRg+fDgWLFjQ7sefffZZvPjii3jttdewefNmREVFYebMmbBaQ/cvvKukGPBGh392koIdz9wcA66uX8rHKhvwr5WewvuBCwcjMcoAvVaD8X0SAQDrD1UoubyQxFa77pvaLxljcxJhd7rx0neRd2EoFLndIj6XWu1GqrPVTiK13DEGPDzkVzVCFIEYow5JKi3Ou0tKuAu1IknaRUmNMQY0IEuNeoTBQFlFi6RZs2bhiSeewGWXXdbmY6Io4oUXXsADDzyASy65BMOGDcO7776LoqKiNjtOkcAkxYD7IeHO5nTJoQ1T+gWnHUqNiUqiKOKBz36BzenGpL5JrV7YTOrr+XtZf5BFkq82egvwQAeChDNBEPAX727SR1uP88VsCNh8pApFNVbEmHSYPjBV6eWcUh95J4nfV+GgZbJduAblSO12+0vqQqoNvjACk+0k4TBQVrVnko4cOYKSkhLMmDFDvi0uLg7jxo3Dxo0bO/w8m82G2traVm/hQNpJsvqhSNp69AQa7S6kxBhxRmZstx+vM3K9szmOVjbA6VLHYeHPdxRh3cEKGHQaPHHp0Fa/XKTi8cejVRzs6YNaqwO7CmsAcCepu0b3TsT0galwuUU8/+0BpZdDp7H0p+MAgAuHZsgXtdRKnpVUoa6dfeqacA5tkPROssCg06DJ4Qqps3SReh4J4JmkgCopKQEApKWltbo9LS1N/lh7nnrqKcTFxclv2dnZAV1nsJi9MeD+2Elac8ATbT21X0rQrjplxplh0mvgcImqmMBc3WjH41/uAQDcOb1vm8OuuSnRSI81we50Y8vRKiWWGJK2HKmCW/T8QsuIoMF5gfKn8zwhIl/sLMKeovC44BOOrA4Xvtnl+b2kxtlIJwuV2XXUOUfCPLQB8CR/9k/zfN+GUstdpCbbAc07SaV11pBN0lRtkdRV9913H2pqauS3goICpZfkFxap3c4Puxrf7y8DAJw1IKXbj9VZGo2AnGT1nEt68uu9qGywo39aNG6Zmtvm44IgYHI/ttz5aoN8Hompdv5wRmYcLhqWAQD45//2K7wa6sjKvaWoszmRFW/GmN6JSi/ntKQX05UNdtQ0qnd2HXWO3G4XhjOSWpIT7kpC54JRJO8kJUcbYNBpIIpAaW1oZgmotkhKT08HAJSWlra6vbS0VP5Ye4xGI2JjY1u9hQOzt92uqZsR4EXVTThQWg+NELzzSBK5xUPhq5eb8irx0VZPa8yTlw2FQdf+PwPp72cdi6ROY2iD/80/tz+0GgGr9pVh2zHuaqrR0u2ewIZLR2RCo1H/mZAoow7psZ4r24fZchfypHa7cE22kwyUwhuKQ2cnqSiCzyQJgiAXh2roIOoK1RZJOTk5SE9Px6pVq+TbamtrsXnzZkyYMEHBlSmjuUjq3k6S1Gp3ZnY84i3BTcFRQ8KdzenC/Ut3AQCuGdcTo09x1VcKb9hTXIsKDvU8rRMNduz1XuELVmpiJOiTEo3LR/UAADy7fD9EMXQOLUeCynqb/HM1FFrtJDkMbwgLVocLxTWeq/Th3G4HtAhvKA2dIkmKv47EIgkI/YGyihZJ9fX12LFjB3bs2AHAE9awY8cO5OfnQxAE3HXXXXjiiSfwxRdfYNeuXbjuuuuQmZmJSy+9VMllK8Jf7XbNrXbBT1/KVcFO0iurDyOvvAEpMUb89fyBp7xvcrQRgzI8P5R/YBT4aW0+UglRBPqlRiMlxqj0csLKnef0g0GrweYjVUGJpbc6XPh6VzFqrWzFOp0vfy6G0y1iaFYc+qbGKL2cTmve2edOUig7Vuk5jxRj0iHBold4NYE10Dsr6WhlAxq72VUTDFaHS77AGontdkCL8AYWSb7bunUrRowYgREjRgAA5s+fjxEjRuChhx4CAPzlL3/BHXfcgVtuuQVjxoxBfX09li9fDpMp8g7AWfywk+RwufHDIU871LT+wTuPJFF6J+lQWT1e/f4wAODh2YMRZz79L5QpPJfUaWy1C5zMeDN+Pb4XAOAfKwK7m9Rod2Lewh/xh0Xb8fcv9wbsecKFNED20hDaRQI4KylcSF+/nDCO/5YkRxuRHG2AKAIHS9Vf3Es7fBaDFvFhXsB2JNRjwBUtks466yyIotjm7Z133gHg6Wd87LHHUFJSAqvVipUrV6J///5KLlkxJkP35yRtO3YC9TYnkqIMGJoV56+ldVrLw8LVjfagPrfbLeL+pbtgd7lx9oAUXDg0o1OfN9nbcvfDoQq2OZ2GFNrA+UiBcdvZuYgyaPHz8Rqs2N1xwmd3NNqduPGdLdiU5zn79NWu4m63+IazvPJ67CiohlYj4OLhmUovxydqOSNK3SOfRwrz0AZJKIU3tDyPFO4FbEeyQnygrGrPJFFrFr0nArypG+12cvR3/xRFDhdHGXXIiPMeFg7yL+Yl2wrw45EqmPVaPHbJkE7/wBqbkwiDToOiGivyeMW1Q+V1Nhwsq4cgAONyWCQFQlK0ETdNzgEA/N//DsDl54GKTXYXbnpnKzblVSHaqENytBH1NidW7i09/SdHqM92FAHw7DiHWotprjdt9Ehlg9+/lyh4Wg6SjQRSeMPeEAhviORBshIp+pxFEgWUP9rtvt/vKZKUaLWTKNEHX1Fvw5Nf7wPgSQrLTuz8wD2TXovRvRIAsOXuVDbleXaRBqbHIiEquIEgkeS3U/sgzqzHobJ6fOZt8/KHJrsLN76zBRvzKhFt1OE/N47FVWM8M+b8+TzhRBRF+e8mlAIbJFkJZhh0Gtid7pBthaGW7XbhO0i2pQHeIml/CMxKkoaoRup5JADoEe/5viyqbgrJbhwWSSHCLLfbde2wYmmtFXuLayEoEP3dUvO5pODtyjzx5R7UNDlwRmYsbpjU2+fPn8wo8NNiq11wxJr0uPUsz1yv51ce8MuAvrYF0hiM6pWAS0d42sfWHChHJdMd29h27ATyqxoRZdDivMEdj6VQK61GQO8kzwsYNcyuo66Rght6RUi7nRSmtK+kVvUvuptnJEXeOXpJepwJggBYHW5UNgT3mIU/sEgKEWZ9984kSa12w7LikBStXFtIn+Tg7iStO1iOz3YUQSMAT80ZCp3W92/5KX09O2+b8irhcIXm1OhAk3aSGP0deNdP6I3UGCOOn2jCB1vyu/VYTXYXbvqPp0CKMmi9BZInFr9vagyGZsXB6Rbx1a5ifyw9rEiBDTOHpMsXsUINY8BDW5PdhRLvkM6cCCmS+qZGQyMAJxodKKtT98Wbohq22xl0GqR6W5FDcceaRVKIkNrtrF08k7RGarVTIPq7pdzU4CXcNdld+NvSXwAA10/sjWE94rv0OGdkxiLBoke9zYmdBdX+W2CYKK5pwpGKBmgEYGyfjudOkX+YDVrccU4/AMCLqw51eXe5ye7Cb9/dgg2HPQXSuzeNlQskiZTYtpQtd63YnC58+bOncJwzoofCq+k6KeEujwNlQ5IU2hBn1kdMm7NJr5WL+30qb7mT2u0iuUgCmv/8hSE4UJZFUogwdyPdzulyY91BT5F01gDlziMBzb+U86saA74r8+J3B5Ff1YiMOBP+dN6ALj+ORiNgYl+23HVEiv4emhWHWFNkxpwG25Wjs5GdaEZFvQ3/2XDM58+XCqQfDkk7SG0LJACYPTwDGgH4Kb9aPiBOnvOdNU0OpMUaQzryvg93kkJapIU2SAZKLXfF6k24c7tFFHkjwCP5TBIQ2rOSWCSFCKndrivBDTsKqlFrdSLeosfwLu6m+EtGrAlmvRYOl4iCqsaAPc++klq8uTYPAPDYJUMQbdR16/GmeIukYAzyDDVSkTQ+hF8shhqDToP553rGIby25jBqmjo/9NXqcOHmd7e2KpBG925/BzA1xoTJ/TwXVj7bwd0kydLtnr+LS87MglaBpFB/4ayk0HbEu5OUkxQZoQ2SQd7wBjXvJFU22GF3uiEInnM5kSyUY8BZJIUIi6HrEeBSqt2UfimK/0LXaISA98G73SLu+3QXnG4R55+RjnMHp3X7MaXwBk/B2fkXpJFgI88jKeLi4VnonxaNmiaHfEHgdKwOF377n61Yf6gCFoMW75yiQJJc5g1w+OynQtUflA6GmkYHvttXBiA0U+1ayvWmjRbXWLvctknKOVYRWaENkgHyrCT1FknS+Zu0GBP0XTgLHU6yQnigbGR/5UJId9rtpNCGsxSM/m4p0OeSFm0+hp/yqxFt1OGRi8/wy2P2SLAgJzkKLreITd6dEwIKqhpx/EQTdBoBY07zYpv8S6sR5DbSf/9wBOWnOcR8coH0nxvHduprdt7gdJj1WhytbMQOnsnDV7uKYXe5MTA9Rk7aClXxFgMSvWdZ2HIXeuSdpEhrt/PuJB0qq1NtmFLzjKTI3kUC2G5HQdDVOUnldTbsKqwB4BkiqwZSH3wgiqTSWiueXb4fAPCX8wf4dZt7Mlvu2pBa7YZnxyOqmy2N5LvzBqdheHY8Gu0uvPL9oQ7vJ7XYyTtIN3SuQAI8Q6BnnuHZjY30mUmiKOLT7ccBhP4ukkQ+l8SWu5ATqWeSeiSYEW3UweESVVvcy/HfCZHVCtmeTHknyarwSnzHIilESGeS7C43nD5cOVnr3UUakhWrmonw0k5SIH64PfLFbtTZnDgzOx7Xjuvl18eWWu6CWSTZne4uJxoGA1vtlCUIAv4y07ObtGhTfrtX6qQCad3B5gJpbI5vu35Syt2yn4tVe+U2GN5adwRbj52AViPgkjPDpEhSYMA3dV+DzSlHYEdK/LdEEAR5qOy+EnWGN3AnqZl0JqmqwR5ybb0skkJEyzkcvpxLklrtpqlkFwkI3E7Syj2l+OaXEug0Ap6aM9Tv56/G90mCRvAUd8HorbU5XbjgxXU4559rfDqYHyyiKGLDYU/ByCGyypnUNxkTc5Ngd7nxr5UHWn3s5AJp4bwxPhdIgGcXNTnagKoGu5yUGWk+31GIv3+9FwBw7/kDw+Ywdk5y4C5aUeBI8d8JFj3iLJGXKjpQ5eENzYNkIzvZDvAMQY/xdpqE2rkkFkkhwqjTQHrN39mWO5dbxFo5+lvZ+UgtSVcuTzQ6UOWnCcxldVbcv3QXAOC3U/oE5KxAnFmP4dnxAID1QYgC//ynIhwqq0dhdRPe+eFowJ/PV0cqGlBaa4NBq8HIXglKLyei3ePdTfp423H54oPV4cIt/92GdQcrYNZ7CqRxXdzx02k1uGiYJ8Bh6U9F/ll0CNlwqAL3LNkJALhxUg5+OyVH4RX5j/TzOBiz68h/jlVGZmiDRO0x4IUsklppTrgLrZY7FkkhQhAEOeGus+ENO49Xo7rRgRiTDiO8L+7VwGLQIdN7FdYfLR5Olxt3vv8Tyups6J8WjT96B20GghQFvi7ALXdut4jX1x6W3397fZ7qUvU2eM8jjewVD5Nee5p7UyCN7JmAGYPS4BaB5749IBdIaw+UewqkG7peIEmkMzj/212COpV9LwbS3uJa/O6/2+BwibhwWAYeuHAQBCF0Y79PdkZmLAQB2F1UK+8Mk/pJse2RFtogkXaS9qt2J8lTDET6IFlJVogOlGWRFEKkF6KdLZLWyNHfydCpLILSn+eS/vntAWzKq0KUQYtXfz2qVWuiv0kzY344VAG3O3BxyKv2leFweQNiTDr0SY5CrdWJdzccDdjzdUXzeaRkhVdCAHDPzP4QBOCrn4tx1RubWhVI4/1wZmxYjzj0SY6CzenGit2lflix+hVWN2Hewh9RZ3NiXE4i/nn5cGhCeC5Se3okWHDtuJ4AgAeW/gKbU71nIKmZHNoQoTtJ0pmkohorahrVddGmye6Su2RYJHlkhmgMuLpeOdMpyQl3nTyT9L0c/a2eVjuJv84lfbunFK9+79lxefZXw5HrHY4YKCN6xiPKoEVVgx17ArjN/9oaz5/p1+N74Y8zPDtjb60/gnqbOg49imJzFPoEnkdShYHpsbhkuKclbkdBNcx6Lf49zz8FEuDZzZYCHD6PgMGy1Y12XP/vH1Fa69mhfuO60WG7Y/rnmQOREmNEXkWD/POU1E06k9Q7OTLT02JNenl3Qm3hDVKrXbRRh1gTU1+B0B0oyyIphPgSA17VYMfPx6sBqCf6u6XmWUld30nKr2zE/I92AABumNQbFw7L8MfSTkmv1cgvOgOVcrf1aBW2HTsBg1aDGyb2xkXDMtEnOQrVjQ68u/FoQJ7TVwdK61HZYIdJr8GZKmrljHR3n9sfBp0GJr0G/543xu8F7KXeRLcfDlWgtDa0est9YXW4cMu723CorB7psSa8c8NYxJnD93B8nFmPhy4aDAB4ZfVhnk8KAUe8g2Qjtd0OaNFyV6qulruWoQ3h1JrbHZkhOiuJRVIIaR4oe/rdhHUHyyGKnh8iakxhknZ8unomyepw4dZF21BndWJkz3jcN2uQP5d3SnIUeIDCG15bkwcAmDMyC6mxJmg1Am6f3heAJ4K4QQW7SRu9ZxfG9E6EQccfI2rRKykKX985GSvumhqQHb6eSRaM6pUAtwgs2xmeAQ4ut4j5H+3Aj0erEGPS4Z0bx0REy8xFwzIwrX8K7C43Hlj6C0QxcO3E1D31Nicq6j3x35Ea3AAAAzM8RdLeYnUWSYz/bjY+JxH/njcaT142VOml+ISvbkKINCupM+123+9XX6pdS1KiUn5VY5fmrjy6bDd2F9UiMcqABdeODOoL9SneIunHo1V+n2F0qKwOK/eWQhCAm6f2kW+/eHgmeidZUNVgx3ubjvn1ObtCOo/kr1Yu8p++qTEBfeEktdwtDcPBsqIo4vEv9+DrXSUwaDV44zejMTDd/0mZaiQIAp64dAhMeg025lXi0+3h9/UNF9J5pMQoQ1jvcJ7OAO+/TbW12zUXSeF/caWzUmNNmD4wDX1TA3skwt9YJIWQzrbbud2iPERWTfORWkqPNcFi0MLpFuUo0876eNtxvP9jAQQB+NdVZyIjLrg/iHJTopEea4Ld6caWo1V+few31np2kc4bnNbqfJVOq8FtZ/eV79PZGPhAcLtFbMrz/Lk5HynyXDQ0AzqNgN1FtTigsjaX7npjbR7e8Qak/POK4RF33i470YI7vemgf/96L074aUQD+Zd8HikpMs8jSQZ52+0OlNQFNEjJV8dZJIUNFkkhxNzJCPBfimpQ2WBHtFGHUSqdXyMIQpcmve8trsXfvPOQ7p7RH1P6Bb8IFAQhIC13pbVW+er876bltvn4pSOykJ1oRmWDHYs2K7ebtKe4FjVNDkQbdRiaFafYOkgZCVEGeYf6szDaTfp8RyGe+mYfAOCBCwdhtjcEI9LcPKUPBqTFoKrBjqe+2av0cqgdcrJdBJ9HAjznsQxaDRrsLhxXUbS0tJPUI4FFUqhjkRRCzHrPl+t07XZS9PfE3CRVnxeRdko6G95Qa3Xg1ve2weZ046wBKbjdu7OihMneeUn+DG/49w9H4HCJGNs7ESN7ti1u9VqN/Gd+bU2e31v9OmuTt9VuTO8E1UXLU3BcJqfcFanqCm5X/dBiWOxvJ+fgt1P6nOYzwpdeq8GTc4YAAD7aelz+907qIYc2RPB5JMDTYSG1b+1VUcsdZySFD77CCSHNw2RPfXBfjv5W6XkkSZ/kzoc3iKKIvyz5GUcrG5EVb8bzV5yp6LySSd4iaXdRLSq9B2i7o9bqwOJN+QCA303r+AXaZSN6ICvejIp6GxZvzu/283aFNER2Yi7nI0WqcwalIsaoQ2F1k99bToNtT1HzsNiLhmXg/guCFwKjVqN6JeLqsZ7ZSX9buouzk1SmOf47soskoDm8QS1DZd1uEcU1bLcLFyySQohZPpPUcdBBdaMdP+WfAABMG6DO80iS3NTOz0p6e/0RLN9dAr1WwIJrRyIhyhDo5Z1SSoxRjh/94XD3r7S+vzkfdTYn+qVG4+xTFLcGXfPZpNfWHA76bpLT5caPRzwviiPtvAY1M+m1mDU0HQDwWQjPTDp+ohHzFv6IepsT4/sk4p9XhN+w2K669/yBSI424HB5A97wJm6SOhyrjOxBsi0NUll4Q3m9DQ6XCK1GQFqMUenlUDexSAohFjndruOdpPWHKuAWgX6p0fKgNbWSdpIOlzecMm52y9Eq+azAQxcNVs1cninyuaTybj2OzenCv384AgC4ZWqf075I+9WoHsiMM6GszoYPtxR067l9tauwBvU2J2JNOgzKiIzUL2qflHL35c/FirV+doc0LLaszoYBaTF4/TejYdSF57DYroiz6PGgd3bSS6sP4UhF12fakf/UWR2oqPcEakTqINmWBngvVv58vAa7jtegpsmh6HqkOUDpsSa2o4cBfgVDSPOcpI5fkDRHf6t7FwnwHLoUBKCmyYGqDlKUyutsuG3RdrjcIi45MxO/Ht8ryKvs2GRvaMT6gxXdminy+Y4ilNbakBZrxCXeYZ2nYtBpcKt3N+nV7w8HtRWmZfS3llfcI9r4nCRkxJlQZ3Xi+/1lSi/HJ1aHC7/9z1YcLm9ARpwJ79w4JqKjlDty8fBMTOmXDLvTjQc+28XZSSpw1HseKTnagBgTv2eldrvjJ5ow++X1GP7o/zD80f9h9kvrcdui7Xhm+T68/2M+fjhUgYKqRji7MHLEF5yRFF50Si+AOs98mghwt1vEGjn6W93nkQDPnyczzozC6ibkVTQgKbr11rTT5cad7/+Esjob+qZG48nLhqpqevXY3okwaDUoqrEir6KhVWR3Z7ndohz7fdPknE4HbVwxugcWfHcIJbVWfLT1OH4TpOJxo7e1kK12pNEIuPjMTLy+Jg9LfyrE+UMylF5Sp7jcIu76YAe2HjvhGRZ7w9igjxEIFdLspPOeX4sfDlXi8x1F8g4iKeMIW+1aSY0x4a/nD8S3e0qQX9WEinobapoc2FVYg12FNW3ur9MIyEowo2eipdVbdqIFPZMsiO1m4Vl4gueRwgmLpBAiz0nqoLVlb0ktyutssBi0GJOjzujvk+WmRqOwugmHy+oxpndiq489v/IANuZVwmLQ4rVfj0SUUV3frmaDFqN7J2DD4UqsP1jRpSLpu31lOFRWjxijTj4o3RlGnRa3npWLh7/YjVdXH8KVo7MDnmRod7qx9ajnvBuLJAI8KXevr8nD6n3lqG60I96i7FnB0xFFEY8u243luz3DYt+8brTcrkPt65UUhTvP6Yd/rNiPx7/cg7MGpKj+6xzOGP/d1q1n5eLWszxjMxrtTuRXNSK/shH5VY0oqGrEsSrP/x+vaoLd5caxysYO5zNaDFqkxBiRGmNESowRKdFGpMaakBLtfd/7scQoQ7vtdNJOktqPO1DnqOtVJ52SWX/qOUnft4j+DpXe+j7JUVh7oBx5J/W7r9pbigWrDwMAnpk7DH1T1flCZnK/ZGw4XIl1Bytw/cTePn/+a2s8f8Zrx/fyuXXiyjHZWLD6EIpqrPh423FcM67zRVZX7DxejSaHC0lRBvRX6deDgmtgeiwGpsdgX0kdvt5VEvDvwe56bU0e3t14DIIAPHflcIzvw2K/M26e0gef/VSIg2X1ePqbfXh67jCllxSxOEj21CwGnffnUtszs263iNI6K461KKDyqzwFU0FVIyob7Gi0u05ZREkEAUiKai6cPMWUEZu9wUbcSQoPLJJCyOnOJDW32qn/PJIk1zvj4HBZc8JdQVUj7v5wBwBg3sTeqh7qOKVvCp7FfmzKq4TD5Ybeh4OaW49WYeuxEzBoNbhhUm+fn9uk1+L303Lx2Jd7sGD1IVw+uodPz+8rqdVufJ8kJoCR7LIRWXjqm3347KdC1RZJLreIt9bl4Znl0rDYwbhomHp/rqiNQafB3y8biite34gPthRg7qgebXb+KTi4k9R1Go2AjDgzMuLM7V4gabA5UV5nQ3m9DWW1NpTXWZv/v97m+VidDRX1NrhFoKLe8/97i9s+FwfJhgcWSSFEardrL0mq1urAtmOeVii1z0dqKdf7g17aSbI6XLh10TbUWp04Mzte9TNLzsiMRbxFj+pGB3YWVGO0Dy8cXveeRbpsRBbSYrt2yPOacT3xyveHUVjdhE+3H8eVYwLzIvX4iUY5SW88W+2ohYvPzMTTy/fhx6NVKKhqRHaiuq5w7y+pw18/+Rk7CqoBADdPycFNk3OUXVQIGpuTiKvGZOODLQW4/9Nd+OrOKaoeVh6ujnp3OHgmyf+ijDpEGXWnLUBdbhFVDfYWBZVVLqLK6myIM+vlWYoU2lgkhRCzXtpJahsB/sPBCrjcIvqkRKnuRcqpSDtJ+VWNsDvdeHTZHvxSWIsEix4Lrh2p+l/CGo2ASbnJ+GpXMdYdrOh0kXSorB7f7ikFANw8tePhsafj2U3qgye+2ouXVx/CnJH+3006UtGAa9/chKIaK7ITzZg9LDQO6FNwZMSZMaFPEjYcrsQXO4vkOV5KszvdWLD6EF75/hAcLhExRh3uvWAgrvHh7B+1du+sgfh2TykOltXjzXV5qvlaR4qWSbDcSVKOViPIbXYU3tT9CpRasZyi3S4UW+0AIDXGiCiDFi63iOdXHsD7P+ZDEIB/XTUiZA4+TpbmJR2q6PTnvOndRTp3cBr6pvoe+NDSNeN6IinKgIKqJnz2k38He+4vqcMVr29EUY0VuSlRWPK7iTy0TW1IiWefbj+uipjon/JP4KKX1uFfqw7C4RIxY1Aq/jd/Kq4d10tVCZmhJt5iwAMXeXb3X1x1UB5qSsEhtdqlxBgRrbIgI6JwxCIphHQUAS6KYov5SKHTagd4Imal3aRXv/eEGPzxnH6YGkLF3mTvtvqOgmrUWU8/yK601oql3mLm99Nyu/38FoNO3o1asPqQ3+ZA7Dpeg6ve2IjyOhsGpsfgw99NQHocZz9QW+cPSYdRp8Hh8gbsLqpVbB2Ndice/3IP5ry6AQdK65EUZcBLV4/Am9eNZsy3n1x6ZhYm9U2CzenGA5/9ooqiOFIwtIEouFgkhRCLN93O6RbhaPFCeH9pHUpqrTDqNBiXE3qHafu0aBuY2j8Fd07vp+BqfJedaEHvJAtcbhGb8qpOe/+FPxyF3eXGmN4JGNXLP1HtvxnfCwkWPY5WNuKLnUXdfrytR6twzZubcKLRgeHZ8fjglvFIjmZrAbUv1qTHjMFpACBfAAi29QcrMPOFtXh7/RGIIjBnRBZWzp+G2cMzuXvkR57ZSUNh0Gmw7mCFX37eSPLK67Fg9SH8Y8U+bM8/AbebBVhL0iBZnkciCg4WSSFE2kkCWrfcrfHuIk3ITYJJHxrR3y31984pyYwz4YUrzwzJ5DS55e5g+SnvV2d1YNGmYwCA303t/i6SJMqow2+neHaTXv7uEFzdeHHxw6EK/ObtH1Fnc2JsTiIW/XYcW+zotC4709Ny98XOom59//mqptGBv3y8E79+ezMKqpqQGWfCwhvG4Lkrz0RCFL9vAyEnOQq3e88jPf7lXtQ0nn4HvSOF1U14fc1hXPTSOkz/5xr8Y8V+LFh9GHNe2YBJz3yHR77YjR+PVAX1e0qt5J0knkciCgo2tYYQg04DnUaA0y2iye5CnNkzV0dutQuhFrWWrhnbE/VWJ+aM7IHEEH1RM7lvCt7blI91pzmX9P6P+aizOdE3NRrTB/q3NfL6ib3x5ro85FU04Mufi3CJ90WrL1btLcWti7bD7nRjav8UvP7rUa2Kc6KOTO2fggSLHuV1Nmw4XIEp/QL/82j5L8V48PPdKK+zAQCun9ALfz5/IM9rBMHvpvXB5zsKcbi8Ac+s2IcnLxva6c8tq7Pi65+LseznYjmVFfAciJ/cNxlxZj2+21eG4hor3tlwFO9sOIqUGCNmnpGGC4ZkYGxOYruDPNVKakns7o7mEe+ZpBwWSURBwd8kIcas16LO5pQT7uptTmw95mnxmhZi55Ek8RYD/nL+QKWX0S0TcpOgEYC88gYUVTe1O0jO7nTj7fVHAAC3TO3j9x2zaKMON03KwT+/PYCXvjuEi4ZlQuvDc3z1czH++MFPcLpFnDc4DS9dMyJkhhKT8gw6DS4cloH3NuVj6U+FAS2SyuqsePjz3fjmlxIAQJ+UKDwzdxhn9wSRUafF3y8biqve2ITFm/Mxd2QWRvXq+O//RIMdy3eXYNnOImzKq4S0MSQIwLicRMwenolZQzLkC2VWhws/HKrA17tK8O2eEpTX2fDepny8tykfiVEGnDc4DbOGZmBiblJA58N1hiiKqKi3o+BEI46faEJBVSOOt/j/omorzAYthvWIw7AecRiaFY/h2XFIjzX5VDg1n0likUQUDCySQozZ4CmSmryzkjYcqoDDJaJXkoVXlxQUZ9ZjeHY8fsqvxvqDFbhiTHab+3y+oxCltTakxRpxyZmBGWR5/STPbtKhsnp880txpwdmLtlagL9+8jPcInDJmZn4v8uHK/7Cg0LPZSOy8N6mfKz4pQSNlzphMfj3V4woiliy7Tie+HIPaq1O6DQCfj8tF7dP7xuSrcahbnyfJFw+qgeWbDuO+z/9BV/eObnVz406qwMr95Zi2c5irD1QDmeLlrkRPeMxe1gmLhyW0e6cOJNei3MGpeGcQWmwO4diY14lvtlVjBW7S1DVYMcHWwrwwZYCxJp0OHdwOi4Ymo7J/ZIDcmFHFEXUNDlQUNWE4ycaUXCiscX/e/5rdZw6MMfe5Ma6gxVYd7C52yA52ojhPeIwtEcchveIx9AecR2e/axutKPa29bYi8ENREHBIinEWE5KuPs+RKO/w9GUvsn4Kb8a6w61LZLcbhFveGO/b5yUE7AdmliTHjdOzsELKw/ixVUHccGQjNPuWP1341E8+PluAMDVY7PxxKVDfdqBIpKM7JmA7EQzCqqa8O2e0i61fHakoKoR9326S47aH5IVi2fmDsMZmXF+ew7y3f0XDMKqfWXYX1qHt9YdwbyJvbF6fxmW7SzCd/vKYHM2Fw+DMmIxe3gGZg/L9Gmen0GnwbT+KZjWPwVPXDoEPx6pwte/FGP5L6WoqLfhk+3H8cn244g26nDOoFTMGpKBaf1T5FZhh8uNBpsTdVYnGuxONNicqLe5UG+V/t/7X7uzxW0uNNicONFox/ETTai3tZ1P2JIgAOmxJmQnWNAjwYweiRZkJ5jRw/t+daMDPxdW4+eCGvxcWIMDpXWoqLdh1b4yrNpXJj9OVrwZQ7PiMCw7DsOyPIVTnFkvD5FNjTEiiu2kREHBf2khxqRvnpUkiqIc2nDWABZJSpvUNxkvfncIPxyqgNsttipOVu8vw8GyesQYdbh6XGCHWd4wKQdvrzuCA6X1WLG7BLOGdjz89fU1h/HUN/u8n9cbD100mElg1GWCIOCyM7Pw4neH8NlPhX4pkmoaHfhwaz6e//YgmhwuGHUazD+3P26anBNS51LCVUKUAfdfMAj3LNmJ51cewMvfHURDi2ChPslRmD08E7OHZ6Bvaky3n0+n1WBi32RM7JuMRy8egm3HTuDrXcVY/ksJSmqt+HxHET7fUQSTXgOLQYd6mxN2p3/GIqTEGOXCJzvR+19vEZQZbz7l8PPsRGBojzhcO87zfpPdhT3Ftfj5eDV2Ha/BzuPVyKtoQGF1Ewqrm7B8d4n8ub2TLHJ4DkMbiIKHRVKIkXeSHC4cLq9HYXUTDDoNxvdJUnhlNKJnAiwGLaoa7NhTXIshWc1XuF9b45kBdc34nog16QO6jjizHjdM6o0XvzuEf606iJlnpLfZTRJFEc97d5sA4I7pfTH/3P4skKjbLhnhKZLWHqxARb2tS9Hx9TYnVu4pxbKdRVh7sBwOl6dNa1xOIp6eO4ytxSozd2QWPt5WgE15VbDDsxsiFUaDM2ID9nNFqxEwNicRY3MS8dBFg7HjeDW+2VWMr3eVoLC6CVaHvdX9jToNoo06RJt0iDLoEG3UIcqoRbRJj2ijFlEGHaKMOsSYPP+NMuoQa9LJu0H+bOk0G7QY1av1GIg6qwO/FNZiV2E1dh6vwa7jNcivavTsInl3knJTujd8nIg6j0VSiJF6/JvsLjnVblxOot97/8l3UrH63b4yrD9U8f/tnXdYVEf7/p9depEiUqUqNhRFsQSsMXasMdYo1iRYkuhrLIlRY4rBmJiYGEvsRo0meUneGHvBYItGVFARGyAqgh1EFCn37w+/7I8V2F3l2d1xM5/r2uvy7LC39/OcmTkze87OqCZJ8Zfv0D9pd8nCTEEjWwYYxMvIVgG08mAaJWfep11ns6hzfQ9VGQD6bMtZWv5/i0hM6VKHxrYLNIgvielT09WeGnk7UsLVbPozIYOG61jnHxUU0d7kG/RnYgbtOav+mFZdjyo0LNyfBjT1eSG3CDB1FAoFfT+4CcUcv0ZN/Jypia+Twb9wUSoV1MTXmZr4OtMH3erRpZu5VFRMZGdlRlWsLMjWykz431lWsbagsJouFFbz/3/peffBYzp1LZtOXcumjHsP6Y3/2+pBIpHoHzmyfsEoecY673ER/SV/jyQcrQKrPZkkXbhFUW2f7IO09K8nv0Xq07h6uT9Q1gdOtpY0LNyPvo+9RN/uuUCdgtxJoVBQcTHow/+dpg1H0omI6KMeQToPYiUSXenduDolXM2m305qniQ9Liym/Rdu0uaEDNqVlKX2mFZAyWNaDT2plnvlH9OS6BcXeyt6o40YA3iFQsHyaJ8IONtZUpvartRGXuclEoMjJ0kvGDb/d7v/zoN8OpLyZOlv+XskcWj9f5vKHk27Q48Kiujq3Ye062wWET1Z9tuQjG5Vg1YdTKMzGTm05+wNalfHlab8mkgxJ66RUkEU/WrDclfhk0gqS/eGXvTplrOUcOUepdzMpRqlHhEqLCqmwym3aXNCBm0/nUk5j/7/D+KrO9lQ9//7YX99L/09piWRSCQSiTbkJOkFo+Q3SXuTb9DjomKq7mQjn1EWiEA3e3J3sKKsnHw6lnaX/kzMIICoQz13g3+z6WxnSZFh/rTkr0u0YM8F+u/xq7TtdCaZKxX09YAQ6tFIP8uQSySuVayoda1qtO/cTfr9ZAZNeKUWHbt8lzYnZNDWU9fp9oP//1sRtypWFNHQk3o08qLGPoZ/TEsikUgkkvKQk6QXjJLH7Y6n3yOiJ3eR5KBCHBQKBbUKdKX/Hr9KMSeu0p8J14mIKKqtcR5DeaN1AK05lKZ6pt3STEnfv96EOga5G8WP5N9Dn8bVad+5m/Tj4TT6+Z8rlJnzSFXmbGtBXYOf3DFqHlBVLjkvkUgkEuGQk6QXjJI7SSXI3yOJR+ta1Z5Mko5fIyKipn7O1NS/4p3o9YmLvRUNDfOjH+JSyMbCjH6IDKXWtWSdkeifjkHuZGtpRnfzCoiogKpYmVPnBh7Uo5EXhdd0Ef5H9BKJRCL5dyMnSS8YNqWWILUwU1B4YDUjupGUR8unzslb/7eAg7F455VaZGGmoM71Paiht5NRvUj+PdhamtO81xrRgYs36eU6btS2jqveNlGWSCQSiYSbF+KrvO+//578/f3J2tqaWrRoQUePHjW2JaNhU2qp76Z+Vcle7rwtHK5VrKiux5PfH9V0taNX6roZ1Y+9lTlN7lxXTpAkBieioSd9/mpD6lTfQ06QJBKJRPJCIfwkadOmTfSf//yHZs2aRcePH6dGjRpR586d6caNG8a2ZhRKP24nV7UTl9dCvUmhIHqvUx25r4tEIpFIJBLJC4bwk6T58+fTG2+8QSNGjKCgoCBasmQJ2dra0sqVK41tzSioT5KMe4dCUjGjWgXQmdmdqWuwp7GtSCQSiUQikUieEaEnSY8fP6b4+Hjq0KGD6j2lUkkdOnSgw4cPl/uZ/Px8ysnJUXuZEnb/97idh4M11XaXS3+LikKhIFtL+SikRCKRSCQSyYuI0JOkW7duUVFREbm7qy9X7O7uTpmZmeV+5vPPPydHR0fVy8fHtDbLfKmmC/UO8aKZPYLk0t8SiUQikUgkEokeEHqS9Dy8//77lJ2drXpduXLF2JZYsbcyp28GNqZu8jEuiUQikUgkEolELwj9PFC1atXIzMyMsrKy1N7PysoiDw+Pcj9jZWVFVlZWhrAnkUgkEolEIpFITBCh7yRZWlpSaGgo7dmzR/VecXEx7dmzh8LCwozoTCKRSCQSiUQikZgqQt9JIiL6z3/+Q8OGDaOmTZtS8+bN6ZtvvqEHDx7QiBEjjG1NIpFIJBKJRCKRmCDCT5IGDBhAN2/epJkzZ1JmZiaFhITQ9u3byyzmIJFIJBKJRCKRSCQcKADA2Cb0SU5ODjk6OlJ2djY5ODgY245EIpFIJBKJRCIxErrODYT+TZJEIpFIJBKJRCKRGBo5SZJIJBKJRCKRSCSSUshJkkQikUgkEolEIpGUQk6SJBKJRCKRSCQSiaQUcpIkkUgkEolEIpFIJKWQkySJRCKRSCQSiUQiKYWcJEkkEolEIpFIJBJJKeQkSSKRSCQSiUQikUhKISdJEolEIpFIJBKJRFIKOUmSSCQSiUQikUgkklLISZJEIpFIJBKJRCKRlEJOkiQSiUQikUgkEomkFHKSJJFIJBKJRCKRSCSlMDe2AX0DgIiIcnJyjOxEIpFIJBKJRCKRGJOSOUHJHKEiTH6SdP/+fSIi8vHxMbITiUQikUgkEolEIgL3798nR0fHCssV0DaNesEpLi6mjIwMqlKlCikUCqN6ycnJIR8fH7py5Qo5ODgYVUckL1w60ot+daQX/eqI5IVLR3rRr470ol8dkbxw6Ugv+tWRXvSvwwEAun//Pnl5eZFSWfEvj0z+TpJSqSRvb29j21DDwcGBpYJw6IjkhUtHetGvjvSiXx2RvHDpSC/61ZFe9KsjkhcuHelFvzrSi/51KoumO0glyIUbJBKJRCKRSCQSiaQUcpIkkUgkEolEIpFIJKWQkyQDYmVlRbNmzSIrKyuj64jkhUtHetGvjvSiXx2RvHDpSC/61ZFe9KsjkhcuHelFvzrSi/51DInJL9wgkUgkEolEIpFIJM+CvJMkkUgkEolEIpFIJKWQkySJRCKRSCQSiUQiKYWcJEkkEolEIpFIJBJJKeQkSSKRSCQSiUQikUhKISdJEolEIpFIJBKJRFIKOUl6QcnKyqL09PTn+mx2djadO3eOzp07R9nZ2czOJBKJRCKRlGbEiBGUkZHBpldYWPjcYwAOCgoK6MKFCyxjiOcZzxQWFlJCQgLt2LGDduzYQQkJCVRQUFBpL1xwn29duHXrll71OWMydv3VFbkEuAG5d+8e/fLLL5Senk5+fn7Ur18/cnR01PiZ+/fv05gxY2j//v3Url07WrZsGU2cOJEWL15MCoWCWrVqRZs3byYHBwet///y5ctp/vz5dO7cObX369SpQ5MmTaJRo0bpPZ4SAFBaWhr5+PiQubk5PX78mH777TfKz8+nbt26UbVq1XT2cfToUTp8+DBlZmYSEZGHhweFhYVR8+bNtX72v//9L3Xt2pVsbW11/v8qQpSY3n77berfvz+1bt36uWPRRI0aNWjHjh1Uq1atSms9ePCA4uPjqU2bNlr/9saNG3T69GkKDQ0lR0dHysrKojVr1lBxcTFFRERQcHDwM///AGjfvn108eJF8vT0pM6dO5OFhYVOn7169So5OTmRvb292vsFBQV0+PBhnWIiIkpJSaEDBw7Q9evXSalUUo0aNahjx446tenySE1NVcXToEEDnT93/fp12rNnD1WtWpU6dOhAlpaWqrIHDx7QV199RTNnztSqk5CQQF999VWZmHr37k2TJ0/WGtfVq1fJ2tpa1V72799PS5YsUfUz48aNo7CwMJ1ikm3y2dG1TXL2neXBGdPdu3dp8+bNFBkZqfVvK9vPJCYmlvt+06ZN6eeff6YaNWoQEVHDhg2fPZBSJCQkUJMmTaioqEjr31Y2pi+++ILefvttsrGxoaKiIpo6dSp99913VFhYSEqlkoYOHUpLly7V2ndyjGeKi4tp5syZ9P3335eZoDk6OtL48eNp9uzZpFRqvgfAVX8Ncb51PddmZmbUrl07GjVqFPXt2/e59yMSKSajA4ne6NOnD3755RcAwOnTp1GtWjW4urqiRYsWcHd3h4eHB5KSkjRqjB8/HnXr1sW3336Ldu3aoVevXmjQoAEOHDiAv/76C0FBQfjggw+0evniiy9ga2uLadOmITY2FklJSUhKSkJsbCzef/992NnZYd68eXqPBwCSk5Ph5+cHpVKJwMBApKSkIDQ0FHZ2drC1tUW1atVw/vx5rTpZWVlo1aoVFAoF/Pz80Lx5czRv3hx+fn5QKBRo1aoVsrKyNGooFAo4ODjgjTfewN9//631/3xRYlIqlahVqxaio6Nx/fr154ppwYIF5b7MzMzw/vvvq44rw8mTJ6FUKrX+XWxsLOzs7KBQKODh4YGTJ0/C29sbtWrVQp06dWBlZYUdO3Zo1enatSvu3bsHALh9+zZatGgBhUIBV1dXKJVK1K1bFzdu3NCokZGRgWbNmkGpVMLMzAxDhw7F/fv3VeWZmZk6xZSbm4vXXnsNCoVCdc48PDxgZmYGe3t7LFy4UKvGmDFjVP93Xl4e+vbtC6VSqdJ7+eWX1bxVxNGjR+Hk5AQHBwfY2NggMDAQp0+ffuaYtm/fDhsbG/Tt2xdDhgyBra0txo8fj6lTpyIwMBA1a9bUWh+bN2+OzZs3AwB+//13KJVK9OzZE1OnTkWfPn1gYWGhKteEbJPPh65tkqvvFCkmjn6m5FyXtOvSr9Jts7IYMialUqmq4/PmzYOzszNWrlyJM2fOYN26dXBzc8PcuXO1euEYz0yePBmurq5YsmQJUlNTkZeXh7y8PKSmpmLp0qVwc3PDlClTtHrhqr+GON8nT56EQqHQyUuXLl1gaWkJZ2dnjB8/HidOnHjm/89QMXG0A30jJ0l6xNnZGWfPngXwZHA2ePBg5OfnAwAeP36MUaNGoVOnTho1fHx8sHfvXgDAtWvXoFAo1AYIf/75J+rUqaPVi6+vLzZt2lRh+caNG+Hj46P3eACgV69e6NmzJxITEzFhwgTUq1cPvXr1wuPHj/Ho0SP06NEDQ4YM0arTt29fhIWFITk5uUxZcnIywsPD8dprr2nUUCgU+Pjjj9G4cWMoFArUr18fX3/9NW7duqX1/xc5pt27d+Pdd99FtWrVYGFhgZ49e2Lz5s0oKirSOSaFQgFvb2/4+/urvRQKBapXrw5/f38EBATorFceunaUrVq1wrhx43D//n3MmzcP1atXx7hx41Tl7733HsLDw3WKqeRiP2bMGAQFBSElJQUAcOXKFYSGhiIqKkqjRmRkJFq0aIF//vkHu3btQmhoKJo2bYo7d+4AeDKh0OWC9uabb6Jly5Y4deoULly4gNdeew1TpkzBgwcPsGLFCtja2mL9+vUaNUoPXt5//314e3tj7969ePDgAQ4cOICaNWti2rRpWr106NABI0aMQFFREXJycjBmzBi4uLjg+PHjqph0OU8hISFYvHix6njnzp2oW7cugCd9xCuvvILhw4dr1LCzs1OdkxYtWiA6Olqt/LvvvkPjxo21epFt8vl4lkkSR9/JEVN2drbG1/79+w3WzzRq1AgRERE4e/Ys0tLSkJaWhtTUVJibm2PXrl2q97TRuHFjja+6desaLKbS/Wbjxo2xdOlStfJ169ahfv36Wr1wjGfc3d2xffv2Csu3b98ONzc3rV646i/H+e7Tp4/GV/v27XVuk1lZWbh58ya+/PJLBAUFQalUokmTJli0aBGys7MNFhNX/TU2cpKkR2xsbHDx4kUAgKenp2rAUcK5c+fg6OioUcPKygrp6emqY1tbW5w7d051nJaWBltbW61erK2tNd7lOXPmDGxsbDRqcMQDAK6urqpvN3Jzc6FQKLB//35V+cGDB+Hr66tVx97evoyH0hw7dgz29vYaNUp3/seOHcOYMWPg5OQEKysr9OvXDzt37tTqAxA3psePH2PTpk3o3LkzzMzM4OXlhQ8++AAXLlzQ6uWtt95CSEhImXpjbm6OM2fOaP088GRirenl4OCgU0fp4OCgqnsFBQUwNzdX+4bs/PnzOtW90rmpU6cO/ve//6mV7969W+uAzMvLC0eOHFEdlwy4Q0JCcPv2bZ0nFNWqVcOxY8dUx3fu3IG1tTUePHgAAFi4cCFCQkJ0jqdBgwbYsGGDWvn//vc/1K5dW6sXZ2dntX4FAD7//HM4Ozvj6NGjOsdkbW2N1NRU1XFxcTEsLCyQkZEBAIiLi4Orq6tGDUdHRyQkJAAA3NzcVP8u4eLFizr1ebJNlg9Xm+TqOzliKvlmu6KXrt98c/Qz+fn5ePfddxEUFKRWb54lHuDJtX/YsGH46KOPyn299dZbBotJoVCo7rC7uLjg1KlTauUpKSk6tUmO8YytrS0SExMrLE9ISICdnZ1WL1z1l+N8m5ubo2vXrhg+fHi5r549ez5zmyzh0KFDGDlyJKpUqQJbW1sMHTrUIDFx1V9jIydJeqRFixb44YcfADyZVf/2229q5Tt37oSHh4dGDS8vL8THx6uOBw0apNYITp8+DWdnZ61eWrdujcjISBQUFJQpKywsRGRkJNq0aaNRgyMe4Mlk6/Lly6pje3t7VScOAOnp6bCystKq4+Lign379lVYHhsbCxcXF40a5XUqDx8+xNq1a9GuXTsolUr4+/tr9SJ6TABw+fJlzJo1S/UIki7ExMTAx8cH3333neq9Z+kobW1tMWnSJKxevbrc1+zZs3WeUJQ8/vXgwQMolUocPnxYVZ6QkIBq1app1Sl9sXdzc1N7pAx4cpHWdp7s7OzKPKZVUFCA3r17o2HDhkhMTNQpJicnJzWdx48fw9zcXOXv/PnzsLa21jme0jkqHY+2Lz+AJwPnpycjwJNHa5ycnBATE6NTTDVr1lT7lvfChQswMzNT3XFOSUnR6qdnz56qu1+dO3cu86jVsmXLUKtWLa1eZJssH642ydV3csTk4OCAuXPnYt++feW+li1bZtB+BgC2bt0Kb29vzJkzB0VFRc88SQoNDcWiRYsqLD9x4oTBYlIoFPjss8+wYMECeHp64q+//lIrT0hI0GkcwjGe6datGzp16oSbN2+WKbt58ya6dOmCiIgIrV446y9QufMdHByM5cuXV1iu67ku/WTB0+Tm5mL58uU6PXFRQmVi4qq/xkZOkvTIn3/+iapVq2LVqlVYtWoV/P39sXz5chw8eBArV66Ej48PJk+erFGjS5cuWLJkSYXlq1at0qnSJyQkwMPDAy4uLujTpw+ioqIQFRWFPn36wMXFBZ6enmW+HdJHPMCTgVTpb3QXLVqEnJwc1XF8fLxOk62xY8fCz88PMTExareRs7OzERMTA39/f4wfP16jhqZOBXgyyNPlN18ixVTRgKyE4uJinb8lA4CrV6+iffv26NKlC65fv/5MHWV4eDi++eabCst1fbSnV69e6N69Ow4cOIA333wTTZs2RUREBHJzc/HgwQO89tpr6NKli1YdhUKBbt26oU+fPnB2di7z25a///4b7u7uGjWCg4Px66+/lnm/ZKLk6+urU0wdO3ZUe+xl3rx58PT0VB0fP35cp8HLW2+9hYkTJ8LNza3MeY2Pj9dpUNe6dWu1x+RKM3fuXFhZWekU0+zZs+Ht7Y3Fixdj5cqVaNCgAfr06aMqj4mJQVBQkEaNpKQkuLi4IDIyEp988gns7e0xZMgQfPbZZ4iMjISVlRVWrVql1Ytsk+XD1Sa5+s4SKhNTu3btNP4mRtffdHD1MyVkZmaia9euaN269TNPkt555x28++67FZZfvHgR7dq106rDEZOfn5/ao5Bff/21Wvk333yDl156SasXjvFMeno6GjRoAHNzczRu3BhdunRBly5d0LhxY5ibm6Nhw4Zqd6sqgrv+As9/vocPH46xY8dWWJ6UlKTThE1bP/M8PG9MXPXX2MhJkp759ddf4e3tXeZHcNbW1pgwYQIKCws1fv727du4e/duheVbt25FbGysTl5ycnKwaNEiREZGolOnTujUqRMiIyOxePFinZ9VrWw8wJPHK5YtW1Zh+eeff45u3bpp1Xn06BGioqJgaWkJpVIJa2trWFtbQ6lUwtLSEmPGjMGjR480anB1KiLF5O/v/8zPVWujuLgYc+bMUS0soGtH+dlnn+Gjjz6qsDw9PV3rb1SAJ3dVatWqBYVCgXr16uHq1avo2bMnzM3NYW5uDldXV7VvKCvi6ccYnv6d3uTJk9G5c2eNGlOmTKnwt3cFBQU6PxoRHx+PqlWrwsPDA76+vrC0tMRPP/2kKl+4cCEiIyM1arRt2xbt2rVTvZ6ug5988gnatm2r1cuyZcs0/j4nOjpap4t0QUEBpkyZAi8vL7i4uGDw4MFq3/geOXKkzLfQ5XHx4kUMHDgQVapUUfUxFhYWCA8PL3MHuyJkmywfrjapjwHZ88b0ww8/aFzcITMzU2PMJXD1M0+zYMEC9O7dG1euXHnmz1YWfcVUmsOHD2t8JLUErvFMUVERtm7dipkzZ+LNN9/Em2++iZkzZ2Lbtm06/8ZPH/W3hGc9348ePVI9Zl0ZVq9erbUvel6MWYeNiVwC3AAUFRXR8ePHKSUlhYqLi8nT05NCQ0OpSpUqxrb2XBQVFVF8fDylpqbqJZ7U1FSytrYmT09Pnf4+JyeH4uPj1ZbmDQ0N1WkJ5cuXL5Ovry8pFIpKedaGIWPSJ/Hx8XTgwAGKjIwkZ2dng///t2/fJhcXF9Xxnj176OHDhxQWFqb2/vPy4MEDMjMzI2tr6wr/prCwkPLy8io8F4WFhXTt2jXy8/PT+v9dv36d/vzzT8rPz6f27dtTUFDQc3svj5SUFLK0tCRvb29WXUMBgG7cuEHFxcVUrVo1nZdn1wXZJiuHPvtOU+9njIEpxlQZDHXtl7zYyEnSC0JxcXG56/4DoCtXrpCvr69OOkVFRWRmZqY6PnLkCOXn51NYWBjrAEQikUgkkn8jjx8/pt9//73Mvlrh4eHUq1cvtT3Inpdn2WOOC6694Sqz55g2jJEXIp7ccI3P9Jlfomfbd6yisWtxcTFdvXpV57Gr0TDmbax/O3fu3MGaNWs0/k12djb69esHa2truLm5YcaMGWqPtOm66lRGRgZatmwJMzMztGnTBnfu3EFERITqUZbatWurVqDSRH5+PjZt2oQJEyZg4MCBGDhwICZMmICff/5Z9ePsypKZmYnZs2fr9Ld5eXnYv39/uY9lPHz4UGt+uTSAJz8anTt3Lnr37o2XXnoJL730Enr37o0vvvhC6947uvIsuamIixcv4uWXX9bpbzMyMvDjjz9iy5YtZc5vbm6uTl646owh6l56ejpGjBih9e848lLClStXyt3L6PHjxzo9mmaIepeUlFTppaWfRYcrv7JNls+tW7ewd+9e3L59G8CTPEVHR2P27Nk67XVXgiHyq2ub5OrHgcq1yQsXLqBGjRqwtrZG27Zt0b9/f/Tv3x9t27aFtbU1AgMDdVrJUBtc+8zoMg7h2huOY88xbXDlRdd2zZEbrvGZIfIL6JZjrrGrsZGTJCOiS0V75513ULt2bfzyyy9YtmwZ/Pz8EBERobo46rony9ChQxEeHo4//vgDAwYMQHh4OFq3bo2rV6/i8uXLaNmypdqPyMtDtM7/3LlzqsavVCrRpk0bXLt2TVWuSyMsT6N0Z6RrQz569CicnZ1RvXp1DBs2DFOmTMGUKVMwbNgweHt7o2rVqvjnn3+06miD4wKgqwbHBqNcdUakuse18SrHxfVFqne66nDl90XKjSHb5JEjR+Do6AiFQgFnZ2ccO3YMAQEBqFWrFmrWrAkbGxudfqMiUn65+nGONtmhQwf06tWr3N/5Zmdno1evXjrtJ6gNQ7ZJrr3hOPYc04Yh8wLw5IZjfAbw5Zdj3zGusauxkY/b6ZGcnByN5YmJidS2bVsqKiqq8G/8/PxozZo11K5dOyIiunXrFkVERJCTkxP98ccfdO/ePfLy8tKoQUTk5eVFMTEx9NJLL9GdO3eoWrVqtGvXLnrllVeIiGjv3r30xhtv0KVLlyrU6NixI9nZ2dHatWvLPIefk5NDkZGR9PDhQ9qxY4fWuDWRnJxMgwYN0hpTnz59qKCggFavXk337t2jCRMmUFJSEu3bt498fX0pKytLa244NIiIXnrpJWrUqBEtWbKkzDPOACgqKooSExPp8OHDGnU4cvPtt99q1Lh27Rp9+eWXWmPq2LEj+fj40PLly+nBgwc0depU+vnnn2nXrl3UuHFjnXLDVWe4dP744w+N5SkpKTRp0iStMVU2L0REw4YNo3PnztHChQvp3r17NG3aNFIoFLRz505ydnamrKws8vT0pOLi4go1uOrdf/7zH43lN2/epA0bNmiNiUOHK7+yTVas4e/vT/Pnz6elS5fSggULqEuXLrRs2TIiIho5ciTdvXuXfvvtN41euPLL0Sa5+nGONmlra0tHjx6lBg0alFt+6tQpatGiBeXl5Wn0UrVqVY3lRUVFlJubqzUmjnFI9erV6bffflM9rpWfn0/9+vWjK1eu0J49e6igoECn/FapUoXi4uKocePG5ZbHx8dTu3bt6P79+xVqcOWFaxzCkRuO8RkRT36JiJRKpcbfagEghUJhkLGr0THiBM3k4djgzsbGRrX7fAk5OTkICwtD+/btkZKSovMmj6WXxbSzs1P75v3y5cs6bSaraZnwxMREnfZkKYm79Op4Ja9n2fjPzc1NbVO54uJiREVFwdfXF5cuXdLpWz8ODeBJfs+ePVth+dmzZ7XueQPw5EahUMDLy6vMDvYlLy8vL51i4thglKvOGKLulc6zJrg2XuXYlJar3pXsyl56pbzSr6ZNm+q8LHRldTg3tpVtsnyNkkfqHj9+DKVSqVYP4+PjUb16da1eDJFfXdskVz/O0SY9PT3LbC1Qmj/++ENtqf+K4NzPqrLjEK694Tj2HOPOS2XHIRy54RifATz5BXj2HeMauxobOUnSIxwVrU6dOtiyZUuZ9+/fv4+wsDA0atRIp4rm6+ur1vlPnTpV9Tw68OTWsrb9VLg6fxcXF6xYsQJpaWnlvrZs2aJTTFWqVCn3+flx48bB29sbcXFxWnU4NIAnS/xqeq57zZo18PPz06rDkRt/f/8yS1uXRtdN3Dg2GOWqM1w6Xl5e+P333yss1yU3XBuvclxcuepd7dq18eOPP1ZYrmud4dDhyq9sk+VjZ2eH1NRU1bG9vT0uXbqkOr58+bJOkxuu/HK0Sa5+nKNNzpgxA87Ozpg/fz4SEhKQmZmJzMxMJCQkYP78+ahatSpmzZql1QvXflYc4xCuveE49hzjygvXOIQjNxzjM4AnvwDPvmNcY1djY27sO1mmTJMmTYiIqG3btuWWOzk5EbQ87dipUydatWoVdevWTe19e3t72rFjB3Xs2FEnLyEhIXT48GHVLeHo6Gi18gMHDlDDhg01aowePZoiIyNpxowZ9Morr5C7uzsREWVlZdGePXvo008/pbffflurl9DQUMrIyKhwieR79+5pzQsRUd26denYsWNUr149tfcXLlxIREQ9e/Y0iAYR0XvvvUdvvvkmxcfHl5ubZcuW0ZdffqlVhyM3oaGhFB8fT/379y+3XKFQ6JTfBg0a0KFDh8rUi/fee4+Ki4tp0KBBWjW46gxn3YuPj6devXqVW65LbjjyQkRUo0YNSkxMpFq1aqneMzc3p19++YX69etH3bt316rBVe+aNm1K8fHxNGTIkHLLda0zHDpc+ZVtsnx8fHwoJSWF/P39iYho48aNasugX79+napVq6ZVhzO/lW2TXP04R5v8+OOPyc7OjubNm0eTJk1SPbYEgDw8PGjq1Kk0ZcoUrToRERF07969CsurVq2q0+piHOOQrl270g8//EB9+/ZVe78kN3379qWrV69q9TJ//nwqLi6mgQMHUmFhoWqVv8ePH5O5uTmNGjVKa53hygvXOIQjNxzjMyKe/BIRDR48mB4+fFhhuYeHB82aNUujBtfY1egYZWr2L4Fjg7s7d+6o/TD3aXJycjTeXtWVI0eOaHycqYTo6Gh4enqq3cJXKBTw9PTU+M1DaWJiYjR+23znzh2sXr1aq86cOXPQtWvXCsvHjBmj9dsODo0SNm7ciBYtWsDc3Fx1297c3BwtWrTQ+C1yaThyc+bMGY0/mH78+DHS0tK0euHaYJSjznDpxMXFYdu2bRWW5+bmam1PXHnh2pSWo95dv35dpzphCB2u/AKyTZbHRx99pLZp8dN88MEHePXVV7V6AXjyy9EmufpxrjZZQkpKCg4dOoRDhw6VefTIUHCMQwoKCjRuOF9QUPBM7T47Oxt79+7Fhg0bsGHDBuzdu1fnDe254BqHcOemPHQdn5UgQn4NNXbVN3LhhheQq1evkpeXV7lrzxuK1NRUtTX4AwICjOZFNAoKCujWrVtEROwbYL7IcNUZU6l7nJvSEsl6pwmZG93Jy8sjMzMzsrKy0vkzppJf7jZZwsGDB6lp06bPlFPR4YpJhPEMNyKdb678cui8iOf6xXFqIly9elXjyji6EBQURGlpaZX24uDgQCkpKc/12YCAAAoLC6Pi4mLy8vKqtJeDBw9Sfn5+pXV++uknevDggVE1LCwsyNPTk/bt20ePHz+ulBcintxER0drfETBEDpcdYa77nHUmefJi7m5eZnBWOlzbW5u/kyDMe56N3bsWNXA19g6la2/sk1qpnQ8tra2zzy4486vsfpx7jZZQteuXenatWvP/Lmnqcw1uzQc4xCumDjGM1x54RqHcOSGKyau8SKHDpcXg2LsW1n/NqpUqaL2I9nn4ekf2hpThyMe0XRE8sKlI73oV0d60a+OSF64dKQX/eqI5EWkazZgejGJlBcuPyLll0uHy4shkXeSDAxM7OlGrnhE0hHJC5eO9KJfHelFvzoieeHSkV70qyOSF9EwxZg4kHmRPI2cJL2AfPDBB1o3VNOFIUOGVPjstUQikUgkksqzdOlS1ep/lUGkazZXTBzjGZHyQsSTG66YuMaLHDpcXgyKQe5XSVTMmTMHd+/eNbYNNtavX4/c3FxhdPbv349Hjx4ZXaNE5+HDh5XW4chNeno6CgsLK+2FQ8cU60x6ejqKiooq7YUjJq76KxJc9ZcrN7JNlg9n3ylKP86VG5EwtXEIF6Z4roEnqywWFBQIocPlxVDI1e0Ep0ePHtS/f3967bXXyMbG5rl13n77berfvz+1bt2a0d3/B4BqPwhj62RlZan2pDCGRlFREd26dYuUSiW5uro+twcO0tPT6fr166RUKqlGjRrk4uJiVJ2SH8VWdtUfDp3s7Gy1VfIcHR2f6fOFhYV05swZNY2goKDnXtmLKzf6oLCwkDIyMsjX11cIHYlEZBISEmjz5s1UtWpV6t+/v9q+Uzk5OTRhwgRauXKlVp2HDx9SfHw8Va1alYKCgtTKHj16RD///LNOewJxwBXTrl276MCBA9S2bVtq3749xcXF0eeff075+fk0dOhQGjFihFaNs2fP0t9//01hYWFUt25dSk5OpgULFlB+fj4NGTKE2rdvX6lYn5Xly5fT/v37qV27djRixAjatGkTffTRR6qYZs+erVVDnzFZWlpSQkJCmX3EjKHD5cVgGHOGZup0794da9euRV5e3nNrlOw74ejoiKioKBw7duy5dZRKJWrVqoXo6Ghcv379mTUePXqESZMmoXXr1oiOjgYAfPrpp7Czs4OdnR0GDRqk01r8XDq3b99G37594ePjg6ioKBQWFmLUqFGqWMPCwpCRkaF3jRL+/PNPtG7dGlZWVqp9fBwdHTFkyBBcvnxZJw3gyW7WQ4cORUBAAKytrWFra4sGDRrgww8/1Hmvg++//16103fpV8uWLZ+pDnHo7Ny5E127doWTk5Pq805OTujatSt27dqlsxcunWXLlqFevXplYqpXrx6WL1+u9fNFRUWYPn06nJycVHvDlLycnJzw4Ycf6nxXiSumikhKSkJAQECldXTdxd4QOs+isWXLFowaNQqTJ0/G2bNn1cru3LmDl19+Wef/85NPPsH333+PmzdvqpVlZ2djxIgRWjW+//57vPLKK+jXrx92796tVnbz5k2dzxOHDkc82uCqexw6XF4uXryotc7s2LEDlpaWqF+/Pnx9feHi4oK9e/eqyjMzM3Wqv+fOnYOfn5/qWtSmTRtcu3btmXUAICMjAz/++CO2bNmC/Px8tbLc3FzMnj3bIDH9+OOPMDc3R5MmTWBvb49Vq1bByckJo0ePxsiRI2FpaYlffvlFo8a2bdtgaWmJqlWrwtraGtu2bYOrqys6dOiA9u3bw8zMDHv27NHqBXhyLYiMjMTKlSsBPNn3q27duggICMDMmTN10vj6669hZ2eHV199FZ6envj000/h4uKCTz/9FLNnz4aDgwOWLl1qkJj69OlT7kupVKJDhw6qY0PocHkxNnKSpEc4JjgKhQJnzpzB119/jeDgYCiVSjRq1Ajfffcd7ty580w6u3fvxrvvvotq1arBwsICPXv2xObNm3Ue0E2cOBFeXl6YNGkS6tWrh7Fjx8LX1xfr1q3Dhg0bEBgYiLfffttgOiNHjkSDBg3w3XffoW3btujVqxcaNmyIAwcO4NChQ2jWrBkiIyP1rgEAa9euRZUqVTBp0iRMnz4dHh4emDZtGhYvXoy2bduiWrVqOH/+vFad7du3w8bGBn379sWQIUNga2uL8ePHY+rUqQgMDETNmjW1TnDnzZsHLy8vfPfdd6oJwccff4xt27Zh6NChsLW11bixJafO6tWrYW5ujoEDB2LVqlXYunUrtm7dilWrVmHQoEGwsLDA2rVrtXrh0vniiy9ga2uLadOmITY2FklJSUhKSkJsbCzef/992NnZYd68eRo1Jk+eDFdXVyxZsgSpqanIy8tDXl4eUlNTsXTpUri5uWHKlCkGi0kTIk1uuHROnjyp08ag69evh5mZGSIiItCqVStYW1tj3bp1qnJdB3YcA8QFCxbA1tYW48aNw5AhQ2BpaYk5c+Y8sxcOHa4BrzZEqzOG8hIWFoYPPvgAAFBcXIy5c+fC3t5etWGurvnt3bs3IiIicPPmTVy4cAEREREICAhQfeGmq87Ro0fh5OQEBwcH2NjYIDAwUG2TT110uGIKCQlRbWy7e/du2NjYYP78+aryL7/8Ei1bttTqZfr06QCAn376Cc7OzipvADBt2jR07NhRqxeOyQ0A1K1bF+vXrwcAHD9+HObm5mpfti1fvhyhoaEGiUmhUKBt27YYPny42kupVKJ3796qY0PocHkxNnKSpEc4JjgKhQJZWVmq4yNHjuDNN9+Eo6MjbGxsMGjQIJ2+YSit8/jxY2zatAmdO3eGmZkZvLy88MEHH+DChQsaNXx8fFTfbl+6dAlKpRK///67qnznzp3w8/PT6oVLx9PTEwcPHgTwpJNWKBTYuXOnqvzAgQOoXr263jWAJx3lxo0bVcf//PMPvL29UVxcDAAYMGCATt+ahISEYPHixarjnTt3om7dugCenLdXXnlFa8fi7++PrVu3qo7PnTsHFxcX1XPA77zzjk4dLodOrVq1sHDhwgrLv//+ewQGBmr1wqXj6+uLTZs2VVi+ceNG+Pj4aNRwd3fH9u3bKyzfvn073NzctHrhiGnixIkaX0OGDNFp8NK4cWONr7p16xpMp6JvIEte7du3f+YBGQBs2rQJdnZ2qgGMrgM7jgFiUFCQaiAFAAcPHoSrqytmzJjxTF44dLgGvFx1j0OHy8uCBQs0vqZMmaJVx8HBARcvXlR7b/369bCzs8PmzZt1zq+bmxsSExNVx8XFxYiKioKvry8uXbqks06HDh0wYsQIFBUVIScnB2PGjIGLiwuOHz8OQLfzzRWTnZ0dUlJSVMcWFhZISEhQHZ89exYuLi5avZSMVYqKimBubq6KBQBOnToFd3d3rV44JjcAYGNjo/akiJWVldok9MKFC3BycjJITD/99BO8vb1Vd8ZKMDc3x5kzZ7R+nlOHy4uxkZMkPcIxwXlao4QHDx5g1apVaNWqlU6dU0U6ly9fxqxZs+Dn56dV5+nOwMLCQq0zSE1Nha2trVYvXDq2trZIS0tT0zl16pTqOCUlBXZ2dnrXAJ7ElJqaqvaeubm56vGII0eOaO0oAcDa2lpNp7i4GBYWFqpH/uLi4uDq6qpRw9bWtoyGubm5SuPkyZOwt7fX6oVDx8rKCsnJyRWWJycnw9raWqsXLh1ra2skJSVVWH7mzBnY2Nho1LC1tVUbvDxNQkKCTnWGIyalUokmTZqgXbt25b6aNm2qU/9gZWWFYcOG4aOPPir39dZbbxlMx9zcHF27di3zDWTJq2fPns81IAOAvXv3wt7eHosXL9Z5YMcxQCyvfygZ+EybNk1nLxw6XANerrrHocPlRaFQwMvLC/7+/uW+vLy8tOq4urqW+9TITz/9BFtbWyxevFgnL1WqVCm3rxo3bhy8vb0RFxenk46zszPOnTun9t7nn38OZ2dnHD16VKfzzRWTk5OTWp/39L45KSkpWq/9T9ffpzXS0tJ0uhZwTG4AwMXFRe08eXt7q40pLly4oPU6yRUT8GT81LJlS7z66quqL+OfZ2LCocPlxZjISZIe4ZjgVKRRmqc7wOfRKS4uVruDUh516tRR3S05evQoLC0t1b4l2LhxI2rVqqXVC5dOo0aNVN/Eb926FVWqVMFXX32lKl+8eDEaNGigdw0AqFevntqz1PHx8bC0tFStOnXhwgWdBs41a9ZUu0tx4cIFmJmZqZ4jT0lJ0TqIDwkJwQ8//KA63rNnD2xtbVV3tZKTk1GlShWtXjh0mjRpgsmTJ1dYPmXKFDRp0kSrFy6d1q1bIzIystzVdQoLCxEZGYk2bdpo1OjWrRs6depU5rccwJPfhHTp0gURERFavXDEVLt2bfz4448Vlp84cUKnwUtoaCgWLVokhE5wcLDG34bp6sXT0xOHDx8u8/6+fftgb2+P6dOn66TDMUD08fFBXFxcmffPnDkDd3d3REZG6uSFQ4drwMtV9zh0uLz4+/trvNOsi07Hjh0rfGR3w4YNsLCw0MlLs2bNKnzcdty4carfMWrD2dlZ7W5NCfPmzYOTkxNiYmIMFlPTpk3VnhrJzs5WXU8AYNeuXahdu7ZGjYYNG6ruegJPviQo3Z/HxcXp9PszjskNALRs2VLtKZKn2bx5s9YxBFdMJRQVFWHmzJnw8fHB9u3bYWFh8VwTEw4dLi/GwtzYC0f8G7G1taXhw4fT8OHD6fz58xr/tm3btmRpaanxb2rXrq31//Tz8yMzM7MKyxUKBXXs2FGjRlRUFA0fPpyWL19O8fHx9OWXX9IHH3xAycnJpFQqafHixTRp0iStXrh0Jk+eTMOGDaNvvvmGrly5QuvWraN3332Xjhw5QkqlkmJiYmj+/Pl61yAiGjduHI0ePZr++ecfsra2puXLl9PQoUNVOT9y5IhO5ykyMpJGjx5N06dPJysrK5o/fz717NlTVQdOnjxJAQEBGjXef/99GjJkCO3evZusra0pJiaG3nnnHdWqgfv27aMGDRpo9cKh89VXX1H37t1p+/bt1KFDB9XeEVlZWbRnzx5KSUmhLVu2aPXCpbNw4ULq3LkzeXh4UJs2bdR04uLiyNLSknbu3KlRY8mSJdStWzfy9PSk4OBgNY1Tp05RUFAQ/fnnnwaJqWnTphQfH09Dhgwpt1yhUOi0QWLLli3p3LlzFZZXqVKF2rRpYxCd0NBQOn78OI0aNarccisrK51Wx2vevDlt27aNXnrpJbX327ZtS5s3b6bu3btr1SAiCgkJodjYWAoNDVV7f+DAgQSAhg0bplWjVatWFBMTU2Z10aCgINqzZw+9/PLLOnnh0OGIh4iv7nHocHkJDQ2l+Ph46t+//3PrjBkzhuLi4sotGzRoEAGgZcuWafXSp08f+umnn2jo0KFlyhYuXEjFxcW0ZMkSrToNGjSgQ4cOUcOGDdXef++996i4uJgGDRqkVYMrpg8++ICcnZ1Vx0/vA3Ts2LEKc1/aS1FRker46WvQtm3bdFoJrm7dupSYmKhaZe3KlStq5cnJyeTv769VZ+7cuWRnZ1dheXp6Or311lsaNbhiKkGpVNLs2bOpY8eOFBkZqab9LHDocHkxFnIJcD3y8ssv02+//UZOTk7GtsLGhg0b6PDhwxQeHk6DBg2iffv20cyZMykvL4969OhBM2bMIKVS+x7FXDoHDx5ULZsZHh5OSUlJFB0drdLR5YLPoUFEtHjxYlq3bh3l5+dT586dacaMGWRtbU1ERBcuXKCioiKqW7euRo3CwkKaPn26ms6CBQtUy60ePXqUHj16pHWguW3bNjWNN954Q1V2+/ZtIiKdlvHm0ElLS6PFixfT33//rbZcdlhYGEVFRel0IeLUuX//Pq1bt65cncGDB+u0gV9xcTHt2LGjXI1OnTrpVHc5YsrMzKT8/Hzy8/PT6f97EcjPz6eioiKytbWtlM5ff/1Fhw4dovfff7/c8tjYWFq7di2tWrVKo85vv/1GcXFx9PXXX5dbvmHDBlq2bBnFxsZWqJGYmEjx8fEVLm98+vRp+u9//0uzZs3S6IVDhyMeIr66x6HD5SUpKYny8vKoadOm5ZYXFBRQRkbGC9Xeli9fTn/99Rf9+OOP5ZbPnTuXlixZQqmpqQZ2ZlwOHjxIdnZ2FBISUm75okWLqLi4mMaPH29YY8zk5ubSpUuXqG7dupXaXoJDh8uLIZGTpBeIyu7rUhqR92SRSCQSieRFxhT3UeOMiWs8I0JeiHhzI8I+gJw6nGNXg2OUh/z+hdy7dw/JyclITk7GvXv3numzld3XpQTOPVkqEw+3TkFBAU6ePInt27dj+/btOHnyJB4/fmxwDU4doPK5uX79On7//XcsWbIES5Yswe+///5c+2Nx6bwIPH78+Jn2tCqP3Nxc/PXXX0yOxIArJg6dgoKCSp8jTh0ORMrvsyJS3ylC/yvyPmoixMQxnuHMS2XrDFdu9LUPYMk+W886XuTQ4fJiTOQkSc9UtkPg2NcF4NuThWvCxqHD0TlxdXAiXURyc3Px+uuvQ6lUwtzcHG5ubnBzc4O5uTnMzMwwZMgQPHjwwGA6mhBpLxUuHelFvzoieeHSeRG9iNR3itT/iriPmigxcYxnuPLCVWc4ciPSPoBcOlxejI2cJOkRjkrCsa8LwLMni0gNEODpnLg6f5EuIqNGjUKtWrWwfft21ep6wJPV23bs2IHatWtj9OjRWr1w6WhC141BDakj0oC3sjGJlBcuHZG8lOhwnCdRYtI1HpH6TpH6X5H2UQPEioljPMOVF646w5EbkfYB5NLh8mJs5G+S9Iifnx/NmzevwtVaNm3aRJMnT6b09PQKNWxsbOj48eOqFVieJikpiZo2bUp5eXkavVhbW1NCQgLVqVOn3PJz585RSEgIPXz4sEINjng4dTw8PGjNmjXUuXPncst37NhBkZGRlJWVpVcNTh2O3Dg7O9OWLVsoPDy83PKDBw9S9+7d6e7duxq9cOi8+uqrGv+P7Oxs2rdvn9YVb7h0mjRporH84cOHdP78eY06VatW1ahRVFREubm5BomJKy9cMXHocJwjTh2OHIuUX646I1LfKVL/a2dnR3///TcFBweXW56YmEjh4eGUm5ur0QvHNZtIrJg4xjNceeGqMxy54YqJa7zIocPlxdjIJcD1yI0bNypsOEREwcHBdOvWLY0azZo1o+joaFqxYgWZm6ufrqKiIpo7dy41a9ZMq5f69evTihUr6Isvvii3fOXKlRQUFKRRgyMeTp379++Tl5dXheWenp704MEDvWtw6nDkpri4WOOy8ZaWllRcXKzVC4fO5s2bqWPHjqrlrZ9G1+VAuXSSkpJo4MCBFS6jfv36da3L8ufn59OYMWMqPE+XL1+m2bNna/XCERNXXrhi4tDhOEecOhw5Fim/XHVGpL5TpP63Xbt29N5779H69etVq5KWcOvWLZo6dSq1a9dOqxeOazaRWDFxjGe48sJVZzhywxUT13iRQ4fLi9Ex9q0sU4Zj48qEhAR4eHjAxcUFffr0QVRUFKKiotCnTx+4uLjA09MTp06d0uolNjYWdnZ2CA4OxsSJExEdHY3o6GhMnDgRDRs2hL29vdYf/HLEw6nDsakn18agXDocuRk8eDAaN26M48ePlyk7fvw4QkND8frrr2v1wqHDtTEolw7HZqfh4eH45ptvKizX9ZEnjpi48sIVE4eOSBvbAjw5Fim/XHVGpL5TpP43PT0dDRo0gLm5ORo3bowuXbqgS5cuaNy4MczNzdGwYUOkp6dr9cJxzRYtJo7xDFdeuOoMR264YuIaL3LocHkxNvJOkh7h2LiyYcOGdP78edW+LikpKUT05Fbxp59+qvO+Lu3ataPTp0+XuydL165dddqThSMeTh2OTT25Ngbl0uHIzcKFC2nw4MEUGhpKzs7O5ObmRkRPvlG8d+8ede7cmRYuXKiTl8rqcG0MyqXDsdlpREQE3bt3r8LyqlWrUmRkpFYvHDFx5YUrJg4dkTa2JeLJsUj55aozIvWdIvW/Pj4+lJCQUGYftebNm9OcOXN03keN45otWkwc4xmuvHDVGY7ccMXENV7k0OHyYmzkb5L0DMfGlSLBFQ+XDsemnlwbg3LpcOUmOTmZDh8+XEZD24a2nDpcG4Ny6YgER0ymmBfRMLUcc8YjUt8pWv8rEqYYEwdcdUZiwhj7Vpbk2enWrRsyMjIqrTNmzJhybzVLJBKJRCLhoUGDBjo9jqYNka7ZXDFxjGdEygvAkxuumLjGixw6XF4MiZwmG5iIiAi6fv16pTTi4uK0rnKiC+vWraOcnJxKaXDEw6kTHBxMV65cMboGpw5HbhwcHFS3u42tY4p1hiu/HDFx5UWkOiPbpH51RGpLXDoineu0tDQqKCiotBeOazaRWDFxjGe48sJVZzhywxUT13iRQ4fLiyGRkyQDI1IlAcOTliI1QCKezomr8xfpIsJxrrl0TLHOcOVXpAuRSHVGtkn96ojUlrh0RDrXXIjUz4gEV1646gwHXDFJKoecJL2A+Pn5kYWFhbFtSCQSiUQi0ULr1q3JxsbG2DZY4YrJFMczIp1vrvxy6LyI51qubmdgOCrJ6dOnWbzcv3+/0hoiNUAins6Jq4MT6SIyZMgQlh/ncuiYYp3hyq9IFyKR6oxsk/rVEaktcemIdK63bt1aaR9EPNdsIrFi4hjPcOWFq85w5IYrJq7xIocOlxdDIle3ewEAQGlpaeTj40Pm5ub0+PFj+u233yg/P5+6detWZgMzTRQVFZGZmZnq+MiRI5Sfn09hYWEv3AxfIpFIJJIXgRo1atCOHTuoVq1aldIZMWIEffbZZxo3QjUUXDG1b9+eVq1aRX5+fs+tIVJeiHhywxUTR365dLi8GAp5J0nPVHaCc+7cOercuTNduXKFatSoQTt37qR+/fpRcnIyASBbW1s6dOiQ1oZ4/fp16tevH/3999/UsmVL+v3332no0KGqbzxq1apF+/btI09PT73Gw61z+/ZtSkxMpEaNGlHVqlXp1q1btGLFCsrPz6d+/fpRvXr1DKLBqcORm7Nnz9Lff/+tWqo7OTmZFixYQPn5+TRkyBBq3769Tl44dEyxznDllyMmrryIVGdkm9SvDucXb0/DNXDm0DHGIP7bb78t9/309HRatWoVeXh4EBHRO++8o1EnMTGx3PfXr19PvXr1oho1ahDRk/1ongdjxPTHH3+U+35cXBz9+eef5OPjQ0REPXv2rFBD33l51jrDkRuumDjyy6XD5cXoGGwdvX8hycnJ8PPzg1KpRGBgIFJSUhAaGgo7OzvY2tqiWrVqOH/+vEaNXr16oWfPnkhMTMSECRNQr1499OrVC48fP8ajR4/Qo0cPDBkyRKuXoUOHIjw8HH/88QcGDBiA8PBwtG7dGlevXsXly5fRsmVLjBs3Tu/xcOocOXIEjo6OUCgUcHZ2xrFjxxAQEIBatWqhZs2asLGxQXx8vN41OHU4crNt2zZYWlqiatWqsLa2xrZt2+Dq6ooOHTqgffv2MDMzw549e7R64dAxxTrDlV+OmLjyIlKdkW1SvzpcdWbBggXlvszMzPD++++rjg2hw+Xlf//7X7kvMzMzLFy4UHWsCYVCAW9vb/j7+6u9FAoFqlevDn9/fwQEBGj1olAooFQqoVAoyrxK3lcqlSYTU+nYDJEXrjrDkRuumDjyy6XD5cXYyEmSHuGY4Li6uuLEiRMAgNzcXCgUCuzfv19VfvDgQfj6+mr14unpicOHDwMAbt++DYVCgd27d6vK9+zZgxo1aug9Hk6dDh06YPTo0cjJycG8efPg7e2N0aNHq8pHjBiB3r17612DU4cjN2FhYZg+fToA4KeffoKzszM++OADVfm0adPQsWNHrV44dEyxznDllyMmrryIVGdkm9SvDled4Rw4cwwyRRnEv/XWWwgJCUFSUpLa++bm5jhz5oxWDyU0atQIEREROHv2LNLS0pCWlobU1FSYm5tj165dqvdepJi6dOmCiIgIZGVlPbcOZ1446gxHbrhi4sgvlw6XF2MjJ0l6hGOCY2Njg8uXL6uO7e3tcfHiRdVxeno6rKystHqxtrZW29zMzs4OFy5cUB1fvnwZNjY2eo+HU8fZ2VnVMT1+/BhKpRJHjhxRlcfHx6N69ep61+DU4ciNg4OD6twWFRXB3Nwcx48fV5WfOnUK7u7uWr1w6JhineHKL0dMXHkRqc7INqlfHa46wzVw5tARaRAPADExMfDx8cF333333Br5+fl49913ERQUpHaOX+SYAGD+/Pnw8fHB5s2bn0uHKy9cdQaofG64YgIqn19OHS4vxkROkvQIxwSnZs2aahewRYsWIScnR3UcHx8PDw8PrV58fX3VBghTp07F7du3VccnT55EtWrV9B4Pp46dnR1SU1PVdC5duqQ6vnz5MqytrfWuwanDkRsHBwe1zzztJS0tTScvHDqmWGe48ssRE1deRKozsk3qV4erzgB8A2cOHVEG8SVcvXoV7du3R5cuXXD9+vXnHhxu3boV3t7emDNnjmpi/KLHdOLECQQFBeHNN9/EgwcPnkuHIy9cdQbgyQ1HTABPfrl0uLwYC7lPkh7x8vKi9PR01fEXX3xBbm5uquObN2+Ss7OzRo0OHTpQcnKy6njMmDFUpUoV1fHOnTupSZMmWr2EhITQ4cOHVcfR0dFUtWpV1fGBAwe0/iiQIx5OHR8fH7Wd5jdu3Ki28MT169e1/gCZQ4NThyM3/v7+dOHCBdXx4cOHydfXV3Wcnp6udYEOLh1TrDNc+eWIiSsvItUZ2Sb1q8NVZ4iI+vTpQ4cPH6bffvuNunbtSpmZmTp9Th86XF4mTpxIf/zxB02dOpXeeustysvLey6d6tWr0+7du6lNmzbUuHHj594ctGvXrnTs2DHav38/tWvX7rk0RIspJCSEjh07RgqFgkJCQp5LhyMvXHWGiCc3HDER8eSXS4fLi7GQq9vpkZIJTqtWrYjoyQSnNLpMcJYsWaKxfMCAATRs2DCtXv73v/9pLG/WrBm1bdtW499wxMOpM3DgQLpx44bqOCIiQq38jz/+oObNm+tdg1OHIzdjxoyhoqIi1XGDBg3Uyrdt26bTClgcOqZYZ7jyyxETV15EqjOyTepXh6vOlFAyOIyOjq7UwJlDh8tLycBu4sSJlRrYKRQKev/996lTp0504MABnSbC5eHu7k5bt26lb7/9llxcXJ5rXyzRYrKxsaElS5bQH3/8QbGxsc+1oiJHXrjqDBFPbjhiIuLJL5cOlxdjIPdJMiKpqalkbW393J2MaHDFw6WTl5dHZmZmZGVlZVQNTh1ZZ/Srw3WeOOCIydTqC5Fsk/qmMvHEx8fTgQMHKDIyUue7UfrS4fJSMrB7//331e64vciYYkwccNUZiekgJ0kvAA8fPqT4+HiqWrUqBQUFqZU9evSIfv75Z4qMjNRJ6+rVq+Tk5ET29vZq7xcUFNDhw4epTZs2bL4lEolEIvm3cf36ddqzZw9VrVqVOnToQJaWlqqyBw8e0FdffUUzZ87USUuUazZXTFzjGVHyQsSXG46YuPLLocM5djUaBv8V1L+MvLw87N+/v9wfqj18+BBr1qzR+Plz587Bz89PtUxnmzZtkJGRoSrPzMzUaa35jIwMNGvWDEqlEmZmZhg6dCju37//zDqVjYdbJyMjAz/++CO2bNmC/Px8tbLc3FzMnj3bIBqcOhy5OXnyJD755BN8//33uHnzplpZdnY2RowYoZMXDh1TrDNc+eWIiSsvItUZ2Sb1qyNSW+LSEeVcHz16FE5OTnBwcICNjQ0CAwNx+vRpVbmhr9kixcQxnuHMC0ed4cgNV0xc40UOHS4vxkZOkvQIRyXp3bs3IiIicPPmTVy4cAEREREICAhQrU6ka0WLjIxEixYt8M8//2DXrl0IDQ1F06ZNcefOHZWOQqHQezycOhydE1fnL9JFZMeOHbC0tET9+vXh6+sLFxcX7N2795m9cOiYYp3hyq9IFyKR6oxsk/rVEaktcemIdK47dOiAESNGoKioCDk5ORgzZgxcXFxUSzsb8potWkwc4xmuvHDVGY7ccMXENV7k0OHyYmzkJEmPcFQSNzc3JCYmqo6Li4sRFRUFX19fXLp0SeeK5uXlpbYEeMmmgSEhIbh9+7ZBKz2XDkfnxNX5i3QRCQsLU20wWVxcjLlz58Le3h7btm17Ji8cOqZYZ7jyK9KFSKQ6I9ukfnVEaktcOiKda2dnZ5w7d07tvc8//xzOzs44evSoQa/ZosXEMZ7hygtXneHIDVdMXONFDh0uL8ZGTpL0CEclqVKlSpnNzgBg3Lhx8Pb2RlxcnE4Vzc7ODufPn1d7r6CgAL1790bDhg2RmJhosErPpcPROXF1/iJdRJ7eSwUA1q9fDzs7O2zevFlnLxw6plhnuPIr0oVIpDoj26R+dURqS1w6Ip1rZ2dnJCQklHl/3rx5cHJyQkxMjMGu2aLFxDGe4coLZ/2tbG64YuIaL3LocHkxNnKSpEc4KkmzZs2wdu3acsvGjRsHJycnnSpacHAwfv311zLvlzREX19fg1V6Lh2Ozomr8xfpIuLq6opjx46Vef+nn36Cra0tFi9erJMXDh1TrDNc+RXpQiRSnZFtUr86IrUlLh2RznXr1q2xePHicsvmzp0LKysrg12zAbFi4hjPcOWFq85w5IYrJq7xIocOlxdjIydJeoSjksyZMwddu3atsHzMmDE6Pas6ZcoUdOrUqdyygoIC9OzZ02CVnkuHo3Pi6vxFuoh07NgR8+bNK7dsw4YNsLCw0MkLh44p1hmu/Ip0IRKpzsg2qV8dkdoSl45I53rZsmUYMmRIheXR0dHw9/fX6oXjmg2IFRPHeIYrL1x1hiM3XDFxjRc5dLi8GBs5SdIjIlWSgoICZGdnayxPS0vTqCFSAwR4Oieuzl+ki0hMTAwmTJhQYfn69evRrl07rV44dEyxznDlV6QLkUh1RrZJ/eqI1Ja4dEQ611xwXLMBsWLigCsvXHWGA66YJPzIfZJeMPLz84mIhNjsUiKRSCQSSflkZ2dTZmYmERF5eHiQo6OjkR1VHs6YTG08I9r55sovh86Leq6VxjbwbyI/P19VUZ6FXbt2Ubdu3cjZ2ZlsbW3J1taWnJ2dqVu3brR7926ddZKSkmjs2LHUuHFj8vT0JE9PT2rcuDGNHTuWkpKSntnX88ajD53s7Gw6d+4cnTt3jrKzs42mwalDVLncFBYWUkJCAu3YsYN27NhBCQkJVFBQYDQdItOqM5x5IeKJqbIaotUZ2Sb1q0MkRlvi1BHhXC9fvpyCgoJUm2iW/veKFSt01uG+ZhMZPyaO8Qx3XipbZzhywxUT13iRQ4fLi1Ex9q0sU2fnzp3o2rWr6rlfpVIJJycndO3aFbt27dL6+dWrV8Pc3BwDBw7EqlWrsHXrVmzduhWrVq3CoEGDYGFhUeHzxqXZunUrLC0t8dJLL2HWrFlYtGgRFi1ahFmzZiE8PBxWVlbYvn273uPh1lm2bBnq1aun0ih51atXD8uXLzeYBqdOZXNTVFSE6dOnw8nJCQqFQu3l5OSEDz/8EEVFRQbTMbU6w5UXrpg4NESrM7JN6ldHlLbEqSPKuf7iiy9ga2uLadOmITY2FklJSUhKSkJsbCzef/992NnZVfi7stJwXbNFioljPMOZF446w5Ebrpi4xoscOlxejI2cJOkRjkpSq1YtLFy4sMLy77//HoGBgVq9NGzYEDNmzKiwfNasWQgODtaoIVIDBHg6J67OX6SLyOTJk+Hq6oolS5YgNTUVeXl5yMvLQ2pqKpYuXQo3NzdMmTJFqxcOHVOsM1z5FelCJFKdkW1SvzoitSUuHZHOta+vLzZt2lRh+caNG+Hj46PVC8c1GxArJo7xDFdeuOoMR264YuIaL3LocHkxNnKSpEc4KomVlRWSk5MrLE9OToa1tbVWL9bW1pXWEakBAjydE1fnL9JFxN3dXeO3Ttu3b4ebm5tWLxw6plhnuPIr0oVIpDoj26R+dURqS1w6Ip1ra2vrcpfcLuHMmTOwsbHR6oXjmg2IFRPHeIYrL1x1hiM3XDFxjRc5dLi8GBv5myQ9kp6eTh06dKiw/JVXXqGrV69q1Khfv77GZ1pXrlxJQUFBWr34+/vTli1bKizfsmUL+fn5adTgiIdT58aNGxQcHFxheXBwMN26dUvvGpw6HLm5f/8+eXl5VVju6elJDx480OqFQ8cU6wxXfjli4sqLSHVGtkn96ojUlrh0RDrXzZo1o+joaCosLCxTVlRURHPnzqVmzZpp9cJxzSYSKyaO8QxXXrjqDEduuGLiGi9y6HB5MTrGnqWZMk2aNMHkyZMrLJ8yZQqaNGmiUSM2NhZ2dnYIDg7GxIkTER0djejoaEycOBENGzaEvb09/vrrL61efv75Z5ibm6NHjx5YsGABNm7ciI0bN2LBggXo2bMnLC0ty93MjDseTp3WrVsjMjISBQUFZcoKCwsRGRmJNm3a6F2DU4cjN926dUOnTp1w8+bNMmU3b95Ely5dEBERodULh44p1hmu/HLExJUXkeqMbJP61RGpLXHpiHSuExIS4OHhARcXF/Tp0wdRUVGIiopCnz594OLiAk9PT5w6dUqrF45rtmgxcYxnuPLCVWc4csMVE9d4kUOHy4uxkUuA65F9+/ZR9+7dqUaNGtShQwdyd3cnIqKsrCzas2cPpaSk0JYtW6hNmzYaddLS0mjx4sX0999/qy0vGRYWRlFRUeTv76+Tn0OHDtG3335Lhw8fLqPz7rvvUlhYmEHi4dJJTEykzp07U0FBAbVp00ZNJy4ujiwtLWnnzp3UoEEDvWpw6nDk5sqVK9StWzdKTk6m4OBgNY1Tp05RUFAQ/fnnn+Tj46PRC4eOKdYZrvxyxMSVF5HqjGyTFSNSmxTpPIl0rome3PFbt25dudfswYMHk4ODg8bPl1DZa7aIMXGMZzjywlVniHhywxETEd94kUOHy4sxkZMkPWMKlaQ0IjVAIp7OiavzF+kiUlxcTDt27ChXo1OnTqRU6vakLYeOKdYZrvyKdCESqc7INqlfHZHaEpeOSOdaNEwxJg646ozEdJGTJIlEIpFIJBKJRCIphVy44QVg0aJF1KFDB+rfvz/t2bNHrezWrVtUo0YNnXS2bt1Ko0ePpilTptDZs2fVyu7evUvt27dn8ywxPsXFxRW+n56ebnAdU8MU8yLrjH6R+TV9CgoKaMqUKRQYGEjNmzenlStXqpVnZWWRmZmZTlqiXLM5Y+IYz4iSFyK+3HDFxDVe5NDh8mJUjPmDqH8D33//PV555RX069cPu3fvViu7efMmAgICNH5+wYIFsLW1xbhx4zBkyBBYWlpizpw5qvLMzEwolUqtPtavXw8zMzNERESgVatWsLa2xrp1655Zp7LxcOo8fvwYkydPRs2aNdGsWTOsWLFCrVyXmDg0OHWAyucmOzsb/fr1g7W1Ndzc3DBjxgwUFhY+sxcuHVOrM1x54YqJQ0OkOiPbpP51RGlLXDoinetZs2bB3d0d8+bNw/Tp0+Ho6Ig333xTzYtCodDqg+uaLVJMHOMZrrxw1RmO3HDFxDVe5NDh8mJs5CRJj3BUkqCgIKxfv151fPDgQbi6uqo2HtO1ooWEhGDBggWq402bNsHOzk61q7QhKz2XDkfnxNX5i3QReeedd1C7dm388ssvWLZsGfz8/BAREYH8/Pxn8sKhY4p1hiu/Il2IRKozsk3qV0ektsSlI9K5DgwMxObNm1XHFy5cQGBgIIYPH47i4mKDXrNFi4ljPMOVF646w5Ebrpi4xoscOlxejI2cJOkRjkpiY2OD1NRUtfdOnToFd3d3TJs2TeeKZmdnh5SUFLX39u7dC3t7eyxevNiglZ5Lh6Nz4ur8RbqI+Pr6IjY2VnV88+ZNNG/eHJ06dcKjR4909sKhY4p1hiu/Il2IRKozsk3qV0ektsSlI9K5Lu+affXqVdSuXRuvv/46rl27ZrBrtmgxcYxnuPLCVWc4csMVE9d4kUOHy4uxkZMkPcJRSXx8fBAXF1fm/TNnzsDd3R2RkZE6VTRPT08cPny4zPv79u2Dvb09pk+fbrBKr0+dZ+2c9Nn5G+siYmNjU6bDzcnJQVhYGNq3b4+UlBSdvVRWx1TrDFd+RbkQiV5nZJvk0xGpLXHpiHSuAwICyjzSBgDXrl1D7dq10bFjR4NdswGxYuIYz+gzL89TZzhywxUT13iRQ4fLi7GRkyQ9wlFJBg0ahAkTJpRbdvr0abi6uupU0Xr16oWZM2eWW1ay6ZehKj2XDkfnxNX5i3QRqVOnDrZs2VLm/fv37yMsLAyNGjXSyQuHjinWGa78inQhEqnOyDapXx2R2hKXjkjnetSoURg5cmS5ZVevXkVgYKDBrtmAWDFxjGe48sJVZzhywxUT13iRQ4fLi7GRkyQ9wlFJEhISsHLlygrLT506hY8++kirl3379qk9h/w0e/fuxfDhwzVqiNQAAZ7OiavzF+kiMn78eLz22mvlluXk5KBFixY6eeHQMcU6w5VfkS5EItUZ2Sb1qyNSW+LSEelcp6WlYfv27RWWX7t2DatXr9bqheOaDYgVE8d4hisvXHWGIzdcMXGNFzl0uLwYGzlJ0iMclWTFihW4ceNGpb3s2bNHbRWk50GkBgjwdE5cnb9IF5E7d+7g9OnTFZbn5ORg3759Wr1w6JhineHKr0gXIpHqjGyT+tURqS1x6Yh0rmfMmIF//vlH6/+lDY5rNiBWTBzjGa68cNUZjtxwxcQ1XuTQ4fJibOQkSY9wVJKXX34ZVlZWCAsLQ3R0NJKSkp5LJyAgAM7Ozhg0aBA2btyI7OzsZ9YQqQECPJ0TV+cv0kVk6NCh+PXXX3H//n2j65hineHKr0gXIpHqjGyT+tURqS1x6Yh0rkeMGAFXV1dUr14dUVFR2Lp1q2r1wWeB45oNiBUTx3iGKy9cdYYjN1wxcY0XOXS4vBgbOUnSI1yV5M6dO/jxxx/Rr18/VKlSBYGBgfjPf/6Dv/76C0VFRTrrJCQk4JNPPkGzZs1gbW2NDh064Ntvv8Xly5cNGg+XDkfnxNX5i3QRmT17Npo0aQJra2t06dIFixYtwtWrV42iY4p1hiu/Il2IRKozsk3qV0ektsSlI9K5BoCioiLExcVh8uTJqF27NqpUqYJXX30Va9aswe3bt3XWqew1GxAvJo7xDEdeuOoMwJMbjpgAvvEihw6XF2MiJ0l6hruS5OfnY9u2bRgzZgy8vb3h4uKCoUOH4pdffkFubq7OOteuXcPixYvRtWtXWFtbo1GjRjp9syJSAwR4Oieuzl+kiwgAXLlyBd9//z06deoEKysrNGnSBLNnz8aJEyd01uDQMcU6A/DkV7QLkSh1RrZJ/eqI1pZE6sf1MbBLSkrC3LlzER4eDisrK7Ru3Rrz5s17pgnu816zRY6JYzxTmbxw1ZmnqWxuKhNTabjGixw6XF4MjZwkGRB9VJJ//vkHM2bMQMOGDfHxxx8/l0Zubi5+/fVXDB06FC4uLvjss890+pxIDbAEjo6bQ4NLhys3OTk52LRpEwYPHgxnZ2f4+vpi3LhxGn/foA8dU60zHPkV7UIkSp0BZJvUp45obYlLR6RzXZobN25g+fLl6NmzJ+bNm/dcGs97zQbEjQmo/HimMnkB+OpvabKysiqVm8rGVBqO8SKXDpcXfSMnSUaEu5I8fvz4mT9TXFysdlxYWPjczy+L1AABno6bq/OvbEdZAkduCgsLsXv3brzzzjtYtmzZc3vh0DHFOsOVX5EuRCLVGa42KcrADhArvyK1JYCn7xTpXHNTmWs2IGZMwLOPZzjHMgBPnXnaU2WpbEyleZ7xor50uLzoAzlJEoSKKkn37t2xdu1a5OXl6eX/tbCw0MsP6ozZAGNjY/WWr+eBo6NMSUlBQUGB2nvG6lgyMzNx/fp1dl2ROu1n5dGjR7h48SIePXqkF31jXIg4YyouLn7u1ZsePXqkt7xWBtkm9Q/3IJMTTbk5efIkhg4dioCAAFhbW8PW1hYNGjTAhx9++Nw/ys/NzcXKlSvxwQcf4LvvvsOtW7ee13qF6Dum+Ph4tc2Q165di/DwcHh7e6Nly5b46aefntu7vsYy2nj06BEmTZqE1q1bIzo6GgDwySefwM7ODnZ2dhg0aNAzn3N9nev09HSMGDFCp7/97rvvMHToUNU5Wbt2LerVq4c6derg/fffL9P3aePatWuYOXMmBg8ejEmTJuHs2bPP7N8YyEmSnjlz5gzGjBmDkJAQeHh4wMPDAyEhIRgzZoxODVqhUMDc3ByOjo6IiorCsWPHnsvHxIkTy30plUpERkaqjiuDrg3wRZr4Xbx4ES+//LLWv9NHR1kazpiSkpIQEBCg9e9u376Nvn37wsfHB1FRUSgsLMSoUaOgUCigVCoRFhaGjIyMZ/q/K9NRZmRk4Mcff8SWLVvK/MA2NzcXs2fP1kmnshf7VatW4dChQwCAhw8fYuTIkTAzM4NSqYS5uTneeustnQf1O3fuxMyZM7Fnzx4AwF9//YUuXbrg5Zdf1rhsb2kq28dwxlRQUIDp06ejTZs2qs0Rv/jiC9ja2sLS0hKRkZE6/Th6586d6Nq1K5ycnKBUKqFUKuHk5ISuXbti165dOsXUoEEDfPzxx0hPT9fp758V2SY1Y8i+MysrS+34xIkTiIyMRHh4OPr27YvY2FidfVe2n9m+fTtsbGzQt29fDBkyBLa2thg/fjymTp2KwMBA1KxZU6cJbb169VS/i0lPT4e/vz8cHR3RrFkzVK1aFW5ubmoTjhchpoYNG6ra77Jly2BjY4N33nkHixcvxoQJE2Bvb48VK1Zo1DDEWAbQvf5OnDgRXl5emDRpEurVq4exY8fC19cX69atw4YNGxAYGIi3335bowbnudbEyZMnddr76ZNPPkGVKlXQt29feHh4IDo6Gi4uLvj0008xZ84cuLq6Vrj5bQk2Njaqu15nzpyBo6MjAgMD0a9fP9StWxe2trZISEiodEz6Rk6S9MjWrVthaWmJl156CbNmzcKiRYuwaNEizJo1S/XMq6Z1+oEnk6QzZ87g66+/RnBwMJRKJRo1aoTvvvsOd+7c0dmLQqFASEgI2rVrp/ZSKBRo1qwZ2rVrp1OHoAldGyDXxK9x48blvhQKBerVq6c6rgy6xsTRUQJAnz59yn0plUp06NBBdWyImEaOHIkGDRrgu+++Q9u2bdGrVy80bNgQBw4cwKFDh9CsWTNERkZq1ODqKI8ePQonJyc4ODjAxsYGgYGBar+5yMzM1Ckmjot9QEAA/v77bwDAe++9B39/f8TExODs2bP4/fffUbt2bUyePFmrlx9//BHm5uZo0qQJ7O3tsWrVKjg5OWH06NEYOXIkLC0t8csvv2jU4OhjOGP68MMP4e7ujv/85z8ICgpCVFQUfHx8sG7dOqxZswbVq1fH3LlzNWqsXr0a5ubmGDhwIFatWoWtW7di69atWLVqFQYNGgQLCwusXbtWqxeFQgEXFxeYmZmhc+fO+PXXX5/5209Atkl9x8TRdyqVStVE6eDBg7CwsEDbtm0xefJkdOzYEebm5vjrr7+0euHoZ0JCQrB48WLV8c6dO1G3bl0AT+7UvPLKKzptDKpQKFQxvf766wgPD8e9e/cAAPfv30eHDh0waNCgFyomGxsbpKWlAXhy/f7hhx/UytevX4+goCCNGoYYywC6118fHx/VxO/SpUtQKpX4/fffVeU7d+6En5+fRg2uc/2///1P4+vrr7/WKaaaNWviv//9L4AneTAzM8O6detU5TExMQgMDNQ5pl69eqFHjx6q/reoqAgDBw5E9+7dtXoxNgoAIIleaNSoEfXq1Ys+/vjjcss/+ugjiomJocTExAo1lEolZWZmkpubGxERHT16lFasWEGbNm2ix48fU+/evWn06NHUvn17jV6io6Pphx9+oOXLl6v9rYWFBSUkJFBQUJDWeP744w+N5SkpKTRp0iQqKirS+HdKpZJOnz5NO3fupJUrV9KZM2coODiYRo8eTa+//jo5Oztr9VLivUOHDvTSSy+p3gNAn3zyCUVFRalyNmvWrAo1vv32W43/x7Vr1+jLL7/UGpOvry+tXLmSOnToQCkpKVSrVi2KiYmhXr16ERHRrl276I033qC0tDSNOkqlktq0aUMBAQFq769du5Z69uxJTk5ORES0atWqCjX+85//aPw/bt68SRs2bNAak5eXF/36668UHh5OWVlZ5OnpSTt27KCOHTsSEdHBgwdpwIABdPXqVY3xlNTf3r17U3FxMcXExJC5uTkVFxfT66+/Trm5ubR582aNXjp27Eg+Pj60fPlyevDgAU2dOpV+/vln2rVrFzVu3JiysrLIy8tLa0yNGzemt956i6KioojoyXl555136OzZs1RQUEBdu3YlHx8fjfm1tram8+fPk6+vL9WpU4cWLFhAXbp0UZXHxcXR0KFD6fLly1q9jBgxgt555x3as2cP9ejRgz777DOaOHEiERF99dVX9Ntvv9GBAwcq1ODoYzhjqlmzJi1YsIC6d+9OFy9epDp16tCGDRtowIABRET0888/0yeffEKnTp2qUKN27dr07rvv0rhx48otX7RoEX399dd04cIFjV6USiVdvXqVjh49SitXrqRt27aRs7MzRUZG0qhRo6hevXoaP19aR7bJsojUd5aOqVOnTuTj40MrVqxQlU+YMIFOnTpFe/bs0eiFo5+xsbGhs2fPkr+/PxE9uSZZWVnR5cuXydPTk/bv3099+/alGzduaPRSOqaaNWvSkiVLVOeZiOjQoUM0cOBASk9Pf2FiqlatGu3YsYNCQ0PJ3d2ddu7cSY0aNVKVX7p0iYKDgykvL69CDY6xDBFf/bW1taXk5GTy9fUlIiJLS0s6ceIE1a9fn4iI0tLSqH79+vTgwYMKNbjOtVKpJIVCQZqG9QqFotIxXb58mYKCgnSOydfXl9avX0+tW7dWlZ84cYIiIiIoIyNDoxejY8wZmqljbW2N5OTkCsuTk5NhbW2tUaP0bLw0Dx48wKpVq9CqVSudvhkAnnyjVLt2bUyaNEn17LG5uTnOnDmj0+dLHulQKBQVvnS9k1Q6piNHjuDNN9+Eo6MjbGxsMGjQINXjR5o4cOAAatasiZkzZ6otY/qsMXl5ecHf37/cl5eXl04x2djYqO1nYGFhofZtXWpqKmxtbbXq/PTTT/D29i7zqNWzxKRUKtGkSZMy37SVvJo2bapTTLa2tqpv/UpiOnXqlOo4JSUFdnZ2GjVKn2sfHx/ExcWplR8/fhyenp5avTg7O+PcuXNq733++edwdnbG0aNHdb6TZG1tjdTUVNVxcXExLCwsVI8oxcXFwdXVVaOGn58f9u7dCwCoXr16mWVZk5KStOYFAOzs7NQeobCwsFD7Bv/s2bNwcXHRGk9l+xiALyZra2u1x9usra3VHt9KSUlBlSpVNGpYWVmxxPR0P5ORkYE5c+agVq1aqkfTtD3aA8g2qUlHlL6zdEyenp44fPiwWvnp06dRrVo1rV44+pmaNWuq3b29cOECzMzMVI+5paSkwMbGRqsXhUKhuuPn5eWldp4BIC0tTad2IFJMQ4YMwahRowAA/fr1w4cffqhWPmfOHAQHB2vVqexYBuCrv3Xq1MHGjRtVviwtLdX6io0bN6JWrVpavXCcay8vL7W7WE9z4sQJnWIKCAjAtm3bAADnz5+HUqnEzz//rCrfsmUL/P39NWoolUpVTH5+fmXuTqekpOgUk7GRkyQ9UrduXXz11VcVln/11VeoU6eORo2KJkmleboD1MT9+/cRGRmJhg0b4tSpU7CwsNC5Y+FqgJwTv3v37mHgwIFo0aIFLl68CODZOkt/f39s2rSpwnJdY+LoKEtITU1Fy5Yt8eqrr6oeqXyWmGrXro0ff/yxwnJdY2rUqBEWLlwI4MljXVWqVFGrz4sXL0aDBg00anB1lM7OzuU+AjRv3jw4OTkhJiZG58cIKnux/+CDDxAWFoa7d+9i2rRp6NGjB+7fvw/gSR3u378/OnXqpNWLk5OT2mTA3t4ely5dUh2npKRoHRxy9DEAX0zu7u5ITExUHYeHh6stn3v27Fk4ODho1GjSpInGR/umTJmCJk2aaPVS+hGsp4mNjcWQIUN0mvgBsk2Wh0h9p0KhwMWLF5GdnY2AgAAcP35crfzixYs6fUnF0c/Mnj0b3t7eWLx4MVauXIkGDRqoPY4ZExOj9ZGykpiCg4PRuHFj2Nvb49dff1Ur/+uvv1C9evUXKqZr167B398fbdq0wX/+8x/Y2NigVatWeOONN9CmTRtYWlpiy5YtWnWAyo1lAL76+/XXX6s2f3V2dsa3334LDw8PTJkyBdOmTYOjo6PWVQO5znWPHj0wY8aMCstPnjwJhUKhVefDDz+Eq6srRo8ejYCAAEybNg2+vr5YvHgxlixZAh8fH62/+1IoFHBycoKzszMsLCzK9H87d+7UOtESAXNj38kyZT7++GMaPHgw7du3jzp06EDu7u5ERJSVlUV79uyh7du304YNGzRqtG3bliwtLTX+Te3atXX2ZG9vT2vWrKGNGzdShw4dtN52LU1oaCjFx8erHoN4Gm23ebVha2tLw4cPp+HDh9P58+d1+oyjoyP99NNPtGrVKmrVqhXNnj2bFAqFzv9nSUz9+/cvt1zXmKKiomj48OG0fPlyio+Ppy+//JI++OADSk5OJqVSSYsXL6ZJkybp5Mnf35/i4uJo9uzZ1KhRI1q2bNkzxdS0aVOKj4+nIUOGVCqmyZMn07Bhw+ibb76hK1eu0Lp16+jdd9+lI0eOkFKppJiYGJo/f75GDQBUu3ZtUigUlJubS4mJidSwYUNV+cWLF8nDw0OrlwYNGtChQ4fUPktE9N5771FxcTENGjRIqwYRUWRkJI0ePZqmT59OVlZWNH/+fOrZs6eqjZ08ebLMY1VPM2vWLDp9+jTVqFGDmjZtSvv37yd3d3eqXr06ZWRkkIuLC+3atUurl8DAQEpOTqY6deoQ0ZPHO6pUqaIqv3TpEnl7e2vU4OhjOGMKCgqi48ePU3BwMBE9efyrNKdOnaJatWpp1Pjqq6+oe/futH379nJjSklJoS1btmj1oqmOt2vXjtq1a0c5OTladYhkmywP0frOkusgADp27Bg1btxYVXbmzBny8vLSqsHRz3zwwQf04MED+uSTTyg/P586d+5MCxYsUJVXr16dFi9erFXn6cfE7e3t1Y43b96s9vhSRYgUk5eXF504cYKio6Np8+bNBICOHj1KV65coZYtW9LBgwepadOmWnWIKjeWIeKrvxMmTCA3Nzc6fPgwjRw5kgYNGkTBwcE0c+ZMysvLo4kTJ9L06dM1anCd68mTJ2t8BC4wMJBiY2O16syePZtspaMwCwAALJxJREFUbGzo8OHD9MYbb9C0adOoUaNGNGXKFMrLy6MePXrQJ598olHj6cePAwMD1Y7//vtv6tOnj1YvRsdIk7N/DQcPHsSAAQPg6+sLS0tLWFpawtfXFwMGDFCtJmUsrly5gt9//13nDeTi4uJUt2DLIzc3F/v27dOq065dO9y9e1dXmzpz/vx5NGvWTLXYhS6cOXNG4y7Wjx8/Vnu8RRPr16/H+PHjsWHDBgBPvq1u3bo1QkND8dFHHz3Xzub79+9HQEAAlEqlzjFdv35dZ8/aOHDgAL788kscPHgQwJN8DR06FH379sXq1au1fn716tVqr6cfg/n44491Wolo2bJlGDJkSIXl0dHROn0rVVBQgClTpsDLywsuLi4YPHgwbt68qSo/cuSITj/wBoBt27Zh7Nix6NKlCzp16oRhw4bhhx9+0Lk9xcTEaPy/Pv/88zKPo5QHZx9T2ZjOnTuncRWm9evXa/z2toTU1FRMmTIFbdq0Qe3atVG7dm20adMGU6dOVXtcUhPDhw9HTk6OTn/7LMg2CdX/K0rfuW/fPrXX009XfPPNN/jiiy+0+uDqZ0TCFGN6mvT09GcaywC89VdiusiFGyQmRXFxMd2/f58cHBye6ZtekcnNzaVLly5R3bp1ycrKyth2JJJ/PbJNSgxNfn4+EZGsb08h81IxXLn5N+dYaWwDkspx9uxZqlGjhk5/m5CQQJ9++iktWrSIbt26pVaWk5NDI0eO1IdFjWRnZ9O5c+fo3LlzlJ2dXWk9pVJJjo6OJjFBKsnNtWvXyN/f/1/ZQZUHV53hrnsiAeCZHz8hIiosLKSEhATasWMH7dixgxISEqigoIDNV2FhodYVmkRGtsnykW1Sna1bt9Lo0aNpypQpdPbsWbWyu3fval2NtoRdu3ZRt27dyNnZmWxtbcnW1pacnZ2pW7dutHv3bn1Yfy4MPQ55UfJCpHtuuMZnXLnRd46fpc4YFSPfyfpXo+sGgprQdS3/HTt2wNLSEvXr14evry9cXFxUq1kBuu8zs2zZMkRGRqp+WLtx40bUrVsXAQEBWjcXe1qnXr16qo0iS1716tXD8uXLddbRhK652bJlC0aNGoXJkyeX2Ujxzp07Ou+5wKXzdG5KVg3kyo2ueeHS0VdenrfO6LvuPUt+K5sbrs1bi4qKMH36dDg5OZVZsdLJyQkffvjhcz0u+jS65ub777/HK6+8gn79+mH37t1qZTdv3tS53+TSkW2yfGSbLMv69ethZmaGiIgItGrVCtbW1mp7zOh6reXaL0wbL9o45EXKC6BbbrjGZ1y5MUSOufo8fSMnSUZEl0pS0e7SJa8hQ4boVNHCwsLwwQcfAHiy7PHcuXNhb2+v+o2RLo3w66+/hp2dHV599VV4enri008/Ve3CPHv2bDg4OGDp0qVavZQM4qZNm4bY2FgkJSUhKSkJsbGxeP/992FnZ4d58+Zp1dGGLiu5cF3QuHQMkRtdV7jh0BEtLyLllyM3HJu3AsDkyZPh6uqKJUuWIDU1FXl5ecjLy0NqaiqWLl0KNzc3TJkyRXvwWtClz1uwYAFsbW0xbtw4DBkyBJaWlpgzZ46qXNc6w6UjUp3h0JFtsmI4chMSEoIFCxaojjdt2gQ7OzvVZE/X/NaqVUu1kmF5fP/991o39NSFF20cIlJeAJ7ccOQF4MsNhw5XnTE28jdJeoRjA0EzMzMKCQkhBweHcstzc3Pp+PHjWh+tcXR0pOPHj1PNmjVV723YsIHefPNN2rhxIzVr1kzrhnL16tWjGTNm0ODBg+nEiRPUvHlzWrJkCY0aNYqIiFasWEGLFy+mY8eOafTi5+dH8+bNq3BVmU2bNtHkyZO1Ppbz6quvaizPzs6mffv2aYyp9IaeRE82uxw5ciQtWLCARo0a9UyblHLocOSGIy9cOiLlhUuHK78cueHYvJWIyMPDg9asWUOdO3cut3zHjh0UGRlJWVlZGnWaNGmisfzhw4d0/vx5jTHVr1+fpk+fToMHDyaiJxsp9u7dm6Kioujjjz/Wuc5w6YhUZ2SbLB+R2qS9vT2dOnVKbZXM2NhY6tmzJ82bN4/69OmjU36tra0pISFBtfrl05w7d45CQkLo4cOHGnVMbRwiUl6IeHLDkRcivtxw6HDVGWMjlwDXIwsWLNBaSbQRGBhIEydOrHDp2JMnT1JoaKhWHSsrK7p3757ae4MHDyalUkkDBgygr776SqvG5cuXqVWrVkT05GJiZmZGL730kqq8bdu29N5772nVuXHjhmqJ4PIIDg4u80xueWzevJk6duyoWiL4aXRpfBcuXKAePXqojvv370+urq7Us2dPKigo0HmJSi4djtxw5IVLR6S8cOlw5ZcjNxkZGaod6wMDA8nS0lJtB/tmzZrR5cuXtercv39f4xLJnp6eGpeWLSEpKYkGDhxY4TLq169f17q8f2pqKoWHh6uOw8PDae/evdShQwcqKCigCRMmaPXBqSNSnZFtsnxEapMODg6UlZWl1gZefvll+vPPP6l79+509epVnbzUr1+fVqxYQV988UW55StXrqSgoCCtOqY2DhEpL0Q8ueHICxFfbjh0uOqM0TH2rSxThmMDwcGDB2PChAkVluv6GEHHjh0rfGRhw4YNsLCw0OrFxcUFSUlJqmNvb2+1JTIvXLgAe3t7rV5at26NyMhIFBQUlCkrLCxEZGQk2rRpo1UnODhY4/PquuS3vN3ZgSdLytrb22P69Ok63RLm0uHIDUdeuHREyguXDld+OXLDsXkrAHTr1g2dOnVSWw69hJs3b6JLly6IiIjQqhMaGopFixZVWK5Lbnx8fBAXF1fm/TNnzsDd3R2RkZE65ZdLR6Q6I9tk+YjUJnv16lXh73NjY2NhZ2enk5eSvw0ODsbEiRMRHR2N6OhoTJw4EQ0bNoS9vb1O2xWY2jhEpLwAPLnhyAvAlxsOHa46Y2zknSQ9wrGB4FdffaVafrE8GjVqRMXFxVq9jBkzhuLi4sotGzRoEAGgZcuWadSoW7cuJSYmUr169YiI6MqVK2rlycnJ5O/vr9XLwoULqXPnzuTh4UFt2rRR2ywyLi6OLC0taefOnVp1QkND6fjx46rH/Z7GysqKfH19NWo0b96ctm3bpnZHjOjJXbHNmzdT9+7dtfrg1OHIDUdeuHREyguXDld+OXLDsXkrEdGSJUuoW7du5OnpScHBwWp5OXXqFAUFBdGff/6pVadly5Z07ty5CsurVKlCbdq00ajRqlUriomJKbN5YlBQEO3Zs4defvllrT44dUSqM7JNlo9IbXLixIl06NChcsvatWtHmzdvprVr12rVadeuHZ0+fZoWL15Mf//9N2VmZhLRk0dju3btSlFRUTpdb01tHCJSXoh4csORFyK+3HDocNUZYyN/k6RHMjMzKT8/n/z8/IxthYWDBw+SnZ0dhYSElFu+aNEiKi4upvHjx2vVun//Pq1bt65MAwwLC6PBgwdXeAu8NPn5+VRUVES2trbPFEdp/vrrLzp06BC9//775ZbHxsbS2rVry+werS8dosrnhiMvXDoi5YVLhyu/HLk5f/48WVhYVPh424YNG8jc3LzC33uUpri4mHbs2FFuXjp16kRKpWF2jEhMTKT4+HgaMWJEueWnT5+m//73v2V2qdeXDpE4dUa2yfIRqU2KhqmNQ7iQeZHohPFuYkmelzFjxpT7WIyxdCQSiUQikZRPt27dkJGRUWkdka7ZIo1DRMoLIFZMIumIdp50QW4ma2DGjh2r049ZNbFu3TrKycmptBcOHY54iIgiIiLo+vXrQuiI5IVLR3rRr44pegkODi7zSK2xdETyQiTWeTI1L1w6InmJi4vTuqKYLnBd+01tHCJSXrj8iJRfLh0uL4ZETpIMDEclAdMTkhw6XJWe6yLCoSOSFy4d6UW/OqboJS0tjQoKCoTQEckLkVjnydS8cOmI5IULrmu/qY1DRMoLkVgxiaTD5cWQyEmSgXkRK4kmTC0eiUQikUg48fPzIwsLC2PbUCGv2+Uj8yJ5Grm63QvI/fv3hdLhgOsiwqEjkhcuHelFvzqm6KV169ZkY2MjhI5IXojEOk+m5oVLRyQvp0+frrQPIrGu2SKNQ0TKC5FYMYmkI9p50gW5up3gxMfHs2y4xaUjkUgkEonk+Xjw4AHFx8drXQpfopmioiIyMzNTHR85coTy8/MpLCzMKHftOPzoK6YRI0bQZ599pnHDcEPpcHkxFHKSpEc4JiZKpZJq1KhBI0eOpOHDhz93xeLQ4Zxo3bhxg06fPk2hoaHk6OhIWVlZtGbNGiouLqaIiAiNO7Bz64jkpYSUlBQ6cOAAXb9+XXXuOnbsqPOSulwaonk5evQoHT58uMwywc2bNze4jil6qYi7d+/S5s2bKTIy0ug6xvJSXFxc7jLoxcXFdPXqVZ324eHQEM1LRXBNBjh0RPKSkJBATZo0oaKiIo1/V1BQQNOnT6eYmBiqWrUqRUVF0ciRI1XlWVlZ5OXlpVWHAy4vHDrXr1+nfv360d9//00tW7ak33//nYYOHUpbt24lIqJatWrRvn37yNPTU6fYKjsx4fDDFVNiYmK57zdt2pR+/vlnqlGjBhERNWzYUO86XF6MjoFX0/tXoVAoULNmTXz22We4du3ac2u88cYbcHNzg7m5OSIiIvDbb7+hsLDQ4Doc8QD/fzdnhUIBDw8PnDx5Et7e3qhVqxbq1KkDKysr7NixwyA6InkBgNzcXLz22mtQKBRQKBRQKpXw8PCAmZkZ7O3tsXDhQoNoiOYlKysLrVq1gkKhgJ+fH5o3b47mzZvDz88PCoUCrVq1QlZWlkF0TNGLNk6ePKnTju+G0DG0l+zsbPTr1w/W1tZwc3PDjBkz1PrNzMxMrTocGqJ50ca/uc5waMyaNQvu7u6YN28epk+fDkdHR7z55puq8szMTCgUCq06jx8/xuTJk1GzZk00a9YMK1asUCvX5XxzeeHQGTp0KMLDw/HHH39gwIABCA8PR+vWrXH16lVcvnwZLVu2xLhx47R6ycjIQMuWLWFmZoY2bdrgzp07iIiIUF2rateurdOy7Rx+uGIqucaWxFD6VfK+LnWPQ4fLi7GRkyQ9wjUxycrKQkFBAX799Vd069YNZmZmcHd3x5QpU3Du3DmD6XBN2Fq1aoVx48bh/v37mDdvHqpXr67WAbz33nsIDw83iI5IXgDgzTffRMuWLXHq1ClcuHABr732GqZMmYIHDx5gxYoVsLW1xfr16/WuIZqXvn37IiwsDMnJyWXKkpOTER4ejtdee80gOqboJTs7W+Nr//79Og/iK6sjkhcAeOedd1C7dm388ssvWLZsGfz8/BAREYH8/HwAug3sODRE86KNF3FiwqHj7Oys8eXg4KCTl8DAQGzevFl1fOHCBQQGBmL48OEoLi7WeTLLMTHh8sKh4+npicOHDwMAbt++DYVCgd27d6vK9+zZgxo1amj1wjUx4fDDFVOjRo0QERGBs2fPIi0tDWlpaUhNTYW5uTl27dqles8QOlxejI2cJOkRronJ098EX716FR9//DFq1KgBpVKJ1q1bG0SHa8Lm4OCAixcvAgAKCgpgbm6OEydOqMrPnz8PR0dHg+iI5AUAqlWrhmPHjqmO79y5A2trazx48AAAsHDhQoSEhOhdQzQv9vb2OH78eIXlx44dg729vUF0TNFLybd6Fb2e9RvIyuiI5AUAfH19ERsbqzq+efMmmjdvjk6dOuHRo0c6Dew4NETzwjUZ4NARyYutrS0mTZqE1atXl/uaPXu2Tl5sbGyQmpqq9t7Vq1dRu3ZtvP7667h27ZrBJiZcXjh0rK2tkZ6erjq2s7PDhQsXVMeXL1+GjY2NVi9cExMOP1wx5efn491330VQUJDadcHc3BxnzpzR+nlOHS4vxkaubmcAzM3NqW/fvtS3b1+6du0arVy5klavXk1ffvkltWzZkuLi4ir8rEKhKPNe9erVacaMGTRjxgzas2cPrVy5UqsHLp3KxkNEZGlpSY8ePSIiosePH1NxcbHqmIjo4cOHOj0LzKEjkhciosLCQrXf6djb21NhYSE9ePCAbG1tqVOnTvTee+/pXUM0L1ZWVhr3r7h//z5ZWVkZRMcUvVSpUoWmT59OLVq0KLf8woUL9NZbbxlERyQvREQ3b94kPz8/1XG1atVo9+7d1LlzZ+rWrRstX77cIBqiecnPz6cxY8ZU+FvLy5cv0+zZsw2iI5KXkJAQ8vHxoWHDhpVbnpCQoJMXDw8PunTpEvn7+6veq169OsXGxtLLL79Mw4cP16pBRHTt2jVq0KCB6jgwMJD27dtH7du3p6FDh9IXX3xhMC8cOm5ubnT9+nXy8fEhIqLx48dT1apVVeV3794lOzs7rTp3796l6tWrExFR1apVydbWVq1dBAYG6rSJMIcfrpgsLS3pm2++oW3btlHPnj1p7NixNHXqVK2f04cOlxejY+xZmimjVCo1/h5g9+7dGDx4sEaN8u4APQ8cOhzxAECvXr3QvXt3HDhwAG+++SaaNm2KiIgI5Obm4sGDB3jttdfQpUsXg+iI5AUAOnbsqHaLf968efD09FQdHz9+HNWqVdO7hmhexo4dCz8/P8TExCA7O1v1fnZ2NmJiYuDv74/x48cbRMcUvbRr1w5z586tsPzkyZM6PYLFoSOSFwCoU6cOtmzZUub9+/fvIywsDI0aNdL67TeHhmhewsPD8c0331RYrusjbhw6Inn57LPP8NFHH1VYnp6ejuHDh2v1MmrUKIwcObLcsqtXryIwMFCnmAICAtTukJRw7do11K5dGx07dtSqw+WFQ6dnz54az9HChQvRvn17rV58fX1x5MgR1fHUqVNx+/Zt1fHJkyd1ujZx+OGKqTSZmZno2rUrWrduXam7Nxw6XF6MgZwk6RGOicm+fftQUFBQaS8cOlwTtvPnz6NWrVpQKBSoV68erl69ip49e8Lc3Bzm5uZwdXVFfHy8QXRE8gIA8fHxqFq1Kjw8PODr6wtLS0v89NNPqvKFCxciMjJS7xqieXn06BGioqJgaWkJpVIJa2trWFtbQ6lUwtLSEmPGjMGjR48MomOKXn744QcsWLCgwvLMzEyNAz9OHZG8AMDbb79d4e+6cnJy0KJFC60DOw4N0bxwTQY4dETywkVaWhq2b99eYfm1a9ewevVqrTocExMuL1w6mjhy5AhOnTql9e/0MTGpjB99aSxYsAC9e/fGlStXKuWBQ4fLiyGRS4Drkb/++otatmxJ5uam8VQjdzy3b98mFxcX1fGePXvo4cOHFBYWpva+IXRE8nL9+nX6888/KT8/n9q3b09BQUE6//+cGqJ5ISLKycmh+Ph4taWuQ0NDn3kpcQ4dU/QiKcvdu3cpIyOD6tevX275/fv36fjx49S2bVu9aojmRfJicPnyZUpOTqbOnTuXW56RkUG7du2q8PHAfytHjx4lW1tbtUcVJf8+5CTpBeDx48f0+++/l9kHJTw8nHr16kWWlpYG1ZFIJBKJRFI+pnjNFikmkfLC5Uek/IoWkzGRkyQ9U9lKcvHiRercuTNlZGRQixYtyN3dnYiebLp25MgR8vb2pm3btlFgYKBBdERqgFw6InkxxZgM0VFmZWXR0qVLaebMmUbXkV70qyOSFy6dF9WLKfYzpnbNNrWYRMqLaDGJpMN5noyJnCTpEY5K0rFjR7Kzs6O1a9eWeXQmJyeHIiMj6eHDh7Rjxw6NXjh0RGqAXDoieTHFmAzVUeq6i70hdKQX/eqI5IVL50X0Yor9jKlds00xJpHyIlpMIulweTE2cpKkRzgqia2tLR09erTC52JPnTpFLVq0oLy8PI1eOHREaoBcOiJ5McWYuLwkJiZqLE9OTqZBgwZpHdhx6Egv+tURyQuXjil6McV+xtSu2aYYk0h5ES0mkXS4vBgdY60Y8W/AxsZG44okiYmJWjcI8/T0VNsI7mn++OMPtSWV9anDEY9oOiJ54dIxRS8lG38qFIoyr+fZYLQyOtKLjOlFjonLiyn2M6Z2zQZMLyaR8sLlR6T8culweTE2prHsmqA4OTlRWlpahTPptLQ0cnJy0qgxevRoioyMpBkzZtArr7yidkt4z5499Omnn9Lbb7+t1QuHDkc8oumI5IVLxxS9VK1alb744gt65ZVXyi0/c+YM9ejRwyA60ot+dUTywqVjil5MsZ8xtWu2KcYkUl5Ei0kkHS4vRsfYszRTZsaMGXB2dsb8+fORkJCAzMxMZGZmIiEhAfPnz0fVqlUxa9YsrTrR0dHw9PRUfcNX8m2fp6enxs0SuXW44hFJRyQvphgTl5dOnTrhk08+qbBc141BOXSkF/3qiOSFS8cUvZhiP2Nq12xTjUmkvIgUk2g6XF6MiZwk6RnOSpKSkoJDhw7h0KFDSElJeW5PldERqQFy6YjkxRRj4tCIiYnBjz/+WGH5nTt3dNqEkENHetGvjkheuHRM0Qtgev0Mpw4gxjUbMM2YODS4B/EixCSiDpcXYyAXbjAQqampaktMBgQEPLfWwYMHqWnTpmRlZVUpT5XR4YpHJB2RvHDpmKIXiUQiFqbYz5jaNZvINGPi0OC+NokQk4g6XF4MirFnaf82Dhw4gEePHlVKo0qVKrh06VKlvXDocMQjmo5IXrh0pBf96kgv+tURyQuXjvSiXx2RvIh0zQZMLyaR8sLlR6T8culweTEkSmNP0v5tdO3ala5du1YpDTDd/OPQ4YhHNB2RvHDpSC/61ZFe9KsjkhcuHelFvzoieRHpmk1kejGJlBcisWISSYfLiyGRkyQD8yJWEk2I1AC5dETywqUjvehXR3rRr45IXrh0pBf96ojkRTRMMSYOZF4kTyMnSS8gS5cuVS2nKIKORCKRSCSS8jHFa7ZIMYmUFyKxYhJJR7TzpBN6e5BPUi7r169Hbm6usW2wwRWPSDoieeHSkV70qyO96FdHJC9cOtKLfnVE8gIAsbGxyMvLE0LHFGMSKS9cfkTKL5cOlxdDISdJLwDLli1DZGQkVq5cCQDYuHEj6tati4CAAMycOdPgOhKJRCKRlIcpDsg4dCwsLJCUlFRpL1w6phaTSHnh8iNSfrl0uLwYCjlJ0jOVnZh8/fXXsLOzw6uvvgpPT098+umncHFxwaefforZs2fDwcEBS5cuNZiOaBM2Dh2RvJhiTCJ5McWYRPIiY/p3eSkPUxyQPYtO48aNy30pFArUq1dPdWwoHVOLSaS8iBaTSDr6Pk+GwtzYj/uZMt988w19+OGH1LlzZ5o+fTplZGTQ119/TRMnTqSioiL66quvqHr16vTmm29WqLF06VL64YcfaPDgwXTixAlq3rw5LVmyhEaNGkVERNWrV6fFixdr1ODS4YhHNB2RvJhiTCJ5McWYRPIiY3oxYuLy0qRJk3LfLywspL59+5K1tTURER0/flzvOiJ5OXXqFHXo0IFeeukl1XsAKCEhgV5++WVyc3PT6IFbx9RiEikvXH5Eyq9oMRkdY83O/g3UrVsX69evBwAcP34c5ubmWL58uap8+fLlCA0N1ahhY2ODy5cvq46trKxw+vRp1fGFCxfg5OSk1QuHDkc8oumI5MUUYxLJiynGJJIXGdO/y4u5uTm6dOmCjz76SPWaNWsWlEolxo4dq3rPEDoieTlw4ABq1qyJmTNnoqioSE37zJkzWj1w65haTCLlRbSYRNLh8mJs5CRJj3BMTFxcXNRu/Xp7eyMtLU1Nw97eXqsXDh2RJmxcOiJ54dKRXvSrI73oV0ckL1w6pujFFAdkXDr37t3DwIED0aJFC1y8ePG5NLh0TDEmkfLC5Uek/HLpcHkxJnIJcD1ia2tLDx48UB27urqSvb292t8UFhZq1Khbty4lJiaqjq9cuUJ+fn6q4+TkZPL399fqhUOHIx7RdETywqUjvehXR3rRr45IXrh0TNFLy5YtKT4+ns6fP0/h4eF06dIlrZ/Rl45IXoiIHB0d6aeffqK33nqLWrVqRT/88AMpFAqj6JhiTCLlhcuPSPnl0uHyYkzkJEmPcExM5s6dS3Xq1KmwPD09nd566y2tXjh0RJqwcemI5IVLR3rRr470ol8dkbxw6ZiiFyLTHJBxDuxGjBhBcXFxtHz5cp0mnvrSMcWYODS4B/EixCSiDpcXYyAXbtAjc+fOJTs7uwrLdZmYtGzZUmP52LFjdfLCocMRj2g6Innh0pFe9KsjvehXRyQvXDqm6KU0I0aMoFatWtHrr79e6QFZZXVE8kJEVKtWLfr777/p/v375ODgYFQdU4xJpLxw+REpv1w6XF4MjQIAjG1CIpFIJBLJi01xcbFqEFSZb+Q5dETyIhqmGBMHMi+Sp5GP270ALFq0iDp06ED9+/enPXv2qJXdunWLatSoYVAdiUQikUieRqlUkqOjY6UHmBw6xvQi+jX7RY9JpLxw+REpv1w6pjDmlJMkPVPZSvLtt9/S5MmTqW7dumRlZUXdunWjzz//XFVeVFREly9f1uqDS0ekBsilI5IXLh3pRb860ot+dUTywqUjvehXRxQvol2zTS0mkfIiWkwi6XCeJ6Ni7OX1TJkFCxbA1tYW48aNw5AhQ2BpaYk5c+aoyjMzM6FUKjVqBAUFqfa0AICDBw/C1dUVM2bM0FmDS4cjHtF0RPJiijGJ5MUUYxLJi4xJepExiXXNNsWYRMqLaDGJpMPlxdjISZIe4agkNjY2SE1NVXvv1KlTcHd3x7Rp03SuaBw6IjVALh2RvJhiTCJ5McWYRPIiY5JeZExiXbNNMSaR8iJaTCLpcHkxNnKSpEc4KomPjw/i4uLKvH/mzBm4u7sjMjJSp4rGoSNSA+TSEcmLKcYkkhdTjEkkLzIm6UXGJNY1GzC9mETKC5cfkfLLpcPlxdjISZIe4agkgwYNwoQJE8otO336NFxdXXWqaBw6IjVALh2RvHDpSC/61ZFe9KsjkhcuHelFvzoieRHpmg2YXkwi5YXLj0j55dLh8mJs5CRJj3BUkoSEBKxcubLC8lOnTuGjjz7S6oVDR6QGyKUjkhcuHelFvzrSi351RPLCpSO96FdHJC8iXbMB04tJpLxw+REpv1w6XF6MjZwk6RFTqSQliNQAuXRE8sKlI73oV0d60a+OSF64dKQX/eqI5EU0TDEmDmReJLogN5N9QTh69CgdPnyYMjMziYjIw8ODwsLCqHnz5kbRkUgkEolEUj6meM0WKSaR8sLlR6T8cumIdp6eFTlJMgCVqSQ3btygV199lQ4dOkS+vr7k7u5ORERZWVmUnp5OLVu2pP/+97/k5uZmEJ3KxiOqjkheuHSkF/3qSC/61RHJC5eO9KJfHRG8iHjNNqWYRMqLaDGJpMN9noyGcW9kmTZZWVlo2bIlFAoF/Pz80Lx5czRv3hx+fn5QKBRo1aoVsrKyNGr07dsXYWFhSE5OLlOWnJyM8PBwvPbaa1q9cOhwxCOajkheTDEmkbyYYkwieZExSS8yJrGu2aYYk0h5ES0mkXS4vBgbOUnSIxyVxN7eHsePH6+w/NixY7C3t9fqhUNHpAbIpSOSFy4d6UW/OtKLfnVE8sKlI73oV0ckLyJdswHTi0mkvHD5ESm/XDpcXoyNnCTpEY5K4uLign379lVYHhsbCxcXF61eOHREaoBcOiJ54dKRXvSrI73oV0ckL1w60ot+dUTyItI1GzC9mETKC5cfkfLLpcPlxdgojf24nyljZWVFOTk5FZbfv3+frKysNGoMGDCAhg0bRr/99puaVk5ODv322280YsQIGjRokFYvHDoc8YimI5IXLh3pRb860ot+dUTywqUjvehXRyQvIl2zTTEmkfIiWkwi6XB5MTrGnqWZMmPHjoWfnx9iYmKQnZ2tej87OxsxMTHw9/fH+PHjNWo8evQIUVFRsLS0hFKphLW1NaytraFUKmFpaYkxY8bg0aNHWr1w6HDEI5qOSF5MMSaRvJhiTCJ5kTFJLzImsa7ZphiTSHkRLSaRdLi8GBs5SdIjnJUkOzsbe/fuxYYNG7Bhwwbs3btXrWHrSmV0RGqAXDoieTHFmETyYooxieRFxiS9yJj+PyJcs001Jg4N7kG8CDGJqMPlxVjIJcANQE5ODsXHx6stMRkaGkoODg5GdvZ8cMUjko5IXrh0pBf96kgv+tURyQuXjvSiXx2RvIiGKcbEgcyLRCPGnqVJtJOXl4f9+/fjzJkzZcoePnyINWvWGFRHIpFIJBJJ+ZjiNVukmETKC5cfkfLLpSPaeXoe5CRJz1S2kpw7d061br9SqUSbNm1w7do1VXlmZiaUSqVWH1w6IjVALh2RvHDpSC/61ZFe9KsjkhcuHelFvzqieBHtmm1qMYmUF9FiEkmH8zwZEzlJ0iMclaR3796IiIjAzZs3ceHCBURERCAgIACXL1/WWYNLR6QGyKUjkhdTjEkkL6YYk0heZEzSi4xJrGu2KcYkUl5Ei0kkHS4vxkZOkvQIRyVxc3NDYmKi6ri4uBhRUVHw9fXFpUuXdK5oHDoiNUAuHZG8mGJMInkxxZhE8iJjkl5kTGJds00xJpHyIlpMIulweTE2cpKkRzgqSZUqVZCUlFTm/XHjxsHb2xtxcXE6VTQOHZEaIJeOSF5MMSaRvJhiTCJ5kTFJLzImsa7ZphiTSHkRLSaRdLi8GBs5SdIjHJWkWbNmWLt2bbll48aNg5OTk04VjUNHpAbIpSOSFy4d6UW/OtKLfnVE8sKlI73oV0ckLyJdswHTi0mkvHD5ESm/XDpcXoyNnCTpEY5KMmfOHHTt2rXC8jFjxkChUGj1wqEjUgPk0hHJC5eO9KJfHelFvzoieeHSkV70qyOSF5Gu2YDpxSRSXrj8iJRfLh0uL8ZGTpL0iKlUkhJEaoBcOiJ54dKRXvSrI73oV0ckL1w60ot+dUTyIhqmGBMHMi8SXZCbyUokEolEIpFIJBJJKZTGNiCRSCQSiUQikUgkIiEnSRKJRCKRSCQSiURSCjlJkkgkEolEIpFIJJJSyEmSRCKRSCQSiUQikZRCTpIkEolEYtIoFAr6/fffjW1DIpFIJC8QcpIkkUgkEr0wfPhwUigUFBUVVaZs3LhxpFAoaPjw4Wz/30cffUQhISHP/flbt26Rh4cHzZkzp0xZ//796aWXXqKioqJKOJRIJBLJi4KcJEkkEolEb/j4+NDGjRvp4cOHqvcePXpEGzZsIF9fXyM6K0u1atXohx9+oNmzZ9OpU6dU7//yyy/0559/0po1a8jMzIz1/ywqKqLi4mJWTYlEIpFUHjlJkkgkEoneaNKkCfn4+FBMTIzqvZiYGPL19aXGjRur3svPz6d33nmH3NzcyNramlq1akX//POPqnzfvn2kUChoz5491LRpU7K1taXw8HA6d+4cERGtXr2aZs+eTQkJCaRQKEihUNDq1atVn7916xb16dOHbG1tqVatWvTHH3+U67dnz540ePBgGjZsGBUUFNDNmzdp3LhxFB0dTXXq1KH//e9/1KRJE7K2tqYaNWrQ7NmzqbCwUPX5+fPnU3BwMNnZ2ZGPjw+NHTuWcnNzVeWrV68mJycn+uOPPygoKIisrKwoPT290nmWSCQSCS9ykiSRSCQSvTJy5EhatWqV6njlypU0YsQItb+ZMmUK/fe//6U1a9bQ8ePHKTAwkDp37kx37txR+7vp06fTV199RceOHSNzc3MaOXIkERENGDCAJk2aRPXr16fr16/T9evXacCAAarPzZ49m/r370+JiYnUrVs3ev3118tol7BgwQK6ffs2ffLJJzR27Fhq0KABvf3227R//36KjIykd999l5KSkmjp0qW0evVq+uyzz1SfVSqV9O2339KZM2dozZo1tHfvXpoyZYqafl5eHs2dO5eWL19OZ86cITc3t+dLrEQikUj0ByQSiUQi0QPDhg1Dr169cOPGDVhZWSEtLQ1paWmwtrbGzZs30atXLwwbNgy5ubmwsLDA+vXrVZ99/PgxvLy88MUXXwAAYmNjQUTYvXu36m+2bNkCIsLDhw8BALNmzUKjRo3K+CAifPjhh6rj3NxcEBG2bdtWofc9e/bAzMwMDg4OSEtLAwC88sormDNnjtrf/fjjj/D09KxQ55dffoGLi4vqeNWqVSAinDx5ssLPSCQSicT4mBt1hiaRSCQSk8fV1ZUiIiJo9erVBIAiIiKoWrVqqvJLly5RQUEBtWzZUvWehYUFNW/enM6ePaum1bBhQ9W/PT09iYjoxo0bWn/fVPpzdnZ25ODgQDdu3CAiovr169Ply5eJiKh169a0bds2at++Pb300ksUEhJCfn5+RESUkJBABw8eVLtzVFRURI8ePaK8vDyytbWl3bt30+eff07JycmUk5NDhYWFauVERJaWlmp+JBKJRCIecpIkkUgkEr0zcuRIGj9+PBERff/998+tY2Fhofq3QqEgItJp4YPSnyv5bMnntm7dSgUFBUREZGNjo/obc3NzMjf//5fJ3Nxcmj17Nr366qtl9K2trSktLY26d+9OY8aMoc8++4yqVq1KBw4coFGjRtHjx49VkyQbGxuVd4lEIpGIiZwkSSQSiUTvdOnShR4/fkwKhYI6d+6sVlazZk2ytLSkgwcPqu7aFBQU0D///EMTJkzQ+f+wtLR8riW6S/5PbTRp0oTOnTtHgYGB5ZbHx8dTcXExffXVV6RUPvnJ788///zMfiQSiURifOQkSSKRSCR6x8zMTPXo3NPLaNvZ2dGYMWNo8uTJVLVqVfL19aUvvviC8vLyaNSoUTr/H/7+/pSamkonT54kb29vqlKlCllZWbHFMHPmTOrevTv5+vrSa6+9RkqlkhISEuj06dP06aefUmBgIBUUFNB3331HPXr0oIMHD9KSJUvY/n+JRCKRGA65up1EIpFIDIKDgwM5ODiUWxYdHU19+/aloUOHUpMmTejixYu0Y8cOcnZ21lm/b9++1KVLF3r55ZfJ1dWVfvrpJy7rRETUuXNn+vPPP2nnzp3UrFkzeumll+jrr79W3Ylq1KgRzZ8/n+bOnUsNGjSg9evX0+eff87qQSKRSCSGQQEAxjYhkUgkEolEIpFIJKIg7yRJJBKJRCKRSCQSSSnkJEkikUgkEolEIpFISiEnSRKJRCKRSCQSiURSCjlJkkgkEolEIpFIJJJSyEmSRCKRSCQSiUQikZRCTpIkEolEIpFIJBKJpBRykiSRSCQSiUQikUgkpZCTJIlEIpFIJBKJRCIphZwkSSQSiUQikUgkEkkp5CRJIpFIJBKJRCKRSEohJ0kSiUQikUgkEolEUor/B67pdHNkDg1PAAAAAElFTkSuQmCC",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.figure(figsize=(10, 6))\n",
"plt.plot(error_total['request_month_year_week'], error_total['error_perc'], label='Error Percentage')\n",
"plt.xlabel('Month-Year')\n",
"plt.ylabel('Error Percentage')\n",
"plt.title('Error Percentage by Month-Year')\n",
"plt.xticks(rotation=90)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" error | \n",
" error_perc | \n",
" total_requests | \n",
"
\n",
" \n",
" tool | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" prediction-request-rag-claude | \n",
" 58.579 | \n",
" 2069.000 | \n",
"
\n",
" \n",
" prediction-online-sme | \n",
" 42.047 | \n",
" 2169.000 | \n",
"
\n",
" \n",
" claude-prediction-online | \n",
" 36.858 | \n",
" 3234.000 | \n",
"
\n",
" \n",
" prediction-request-reasoning-claude | \n",
" 34.929 | \n",
" 3258.000 | \n",
"
\n",
" \n",
" prediction-request-reasoning | \n",
" 32.874 | \n",
" 4423.000 | \n",
"
\n",
" \n",
" prediction-request-rag | \n",
" 28.217 | \n",
" 3101.000 | \n",
"
\n",
" \n",
" prediction-url-cot-claude | \n",
" 12.427 | \n",
" 2583.000 | \n",
"
\n",
" \n",
" prediction-offline | \n",
" 0.138 | \n",
" 2180.000 | \n",
"
\n",
" \n",
" prediction-offline-sme | \n",
" 0.000 | \n",
" 4.000 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
"error error_perc total_requests\n",
"tool \n",
"prediction-request-rag-claude 58.579 2069.000\n",
"prediction-online-sme 42.047 2169.000\n",
"claude-prediction-online 36.858 3234.000\n",
"prediction-request-reasoning-claude 34.929 3258.000\n",
"prediction-request-reasoning 32.874 4423.000\n",
"prediction-request-rag 28.217 3101.000\n",
"prediction-url-cot-claude 12.427 2583.000\n",
"prediction-offline 0.138 2180.000\n",
"prediction-offline-sme 0.000 4.000"
]
},
"execution_count": 34,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"error[error['request_month_year_week'] == '2024-04-08/2024-04-14'].groupby('tool').agg({'error_perc': 'mean', 'total_requests': 'sum'}).sort_values('error_perc', ascending=False)"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" error | \n",
" tool | \n",
" request_month_year_week | \n",
" False | \n",
" True | \n",
" error_perc | \n",
" total_requests | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" claude-prediction-offline | \n",
" 2023-09-18/2023-09-24 | \n",
" 10.000 | \n",
" 3.000 | \n",
" 23.077 | \n",
" 13.000 | \n",
"
\n",
" \n",
" 1 | \n",
" claude-prediction-offline | \n",
" 2023-09-25/2023-10-01 | \n",
" 412.000 | \n",
" 161.000 | \n",
" 28.098 | \n",
" 573.000 | \n",
"
\n",
" \n",
" 2 | \n",
" claude-prediction-offline | \n",
" 2023-10-02/2023-10-08 | \n",
" 620.000 | \n",
" 341.000 | \n",
" 35.484 | \n",
" 961.000 | \n",
"
\n",
" \n",
" 3 | \n",
" claude-prediction-offline | \n",
" 2023-10-09/2023-10-15 | \n",
" 725.000 | \n",
" 396.000 | \n",
" 35.326 | \n",
" 1121.000 | \n",
"
\n",
" \n",
" 4 | \n",
" claude-prediction-offline | \n",
" 2023-10-16/2023-10-22 | \n",
" 852.000 | \n",
" 239.000 | \n",
" 21.907 | \n",
" 1091.000 | \n",
"
\n",
" \n",
" 5 | \n",
" claude-prediction-offline | \n",
" 2023-10-23/2023-10-29 | \n",
" 572.000 | \n",
" 171.000 | \n",
" 23.015 | \n",
" 743.000 | \n",
"
\n",
" \n",
" 6 | \n",
" claude-prediction-offline | \n",
" 2023-10-30/2023-11-05 | \n",
" 111.000 | \n",
" 39.000 | \n",
" 26.000 | \n",
" 150.000 | \n",
"
\n",
" \n",
" 7 | \n",
" claude-prediction-offline | \n",
" 2023-11-06/2023-11-12 | \n",
" 1.000 | \n",
" 0.000 | \n",
" 0.000 | \n",
" 1.000 | \n",
"
\n",
" \n",
" 8 | \n",
" claude-prediction-offline | \n",
" 2023-11-13/2023-11-19 | \n",
" 4.000 | \n",
" 0.000 | \n",
" 0.000 | \n",
" 4.000 | \n",
"
\n",
" \n",
" 9 | \n",
" claude-prediction-offline | \n",
" 2023-11-20/2023-11-26 | \n",
" 2.000 | \n",
" 16.000 | \n",
" 88.889 | \n",
" 18.000 | \n",
"
\n",
" \n",
" 10 | \n",
" claude-prediction-offline | \n",
" 2023-11-27/2023-12-03 | \n",
" 0.000 | \n",
" 1.000 | \n",
" 100.000 | \n",
" 1.000 | \n",
"
\n",
" \n",
" 11 | \n",
" claude-prediction-offline | \n",
" 2023-12-18/2023-12-24 | \n",
" 18.000 | \n",
" 0.000 | \n",
" 0.000 | \n",
" 18.000 | \n",
"
\n",
" \n",
" 12 | \n",
" claude-prediction-offline | \n",
" 2024-03-25/2024-03-31 | \n",
" 5.000 | \n",
" 0.000 | \n",
" 0.000 | \n",
" 5.000 | \n",
"
\n",
" \n",
" 13 | \n",
" claude-prediction-offline | \n",
" 2024-04-01/2024-04-07 | \n",
" 3.000 | \n",
" 1.000 | \n",
" 25.000 | \n",
" 4.000 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
"error tool request_month_year_week False True \\\n",
"0 claude-prediction-offline 2023-09-18/2023-09-24 10.000 3.000 \n",
"1 claude-prediction-offline 2023-09-25/2023-10-01 412.000 161.000 \n",
"2 claude-prediction-offline 2023-10-02/2023-10-08 620.000 341.000 \n",
"3 claude-prediction-offline 2023-10-09/2023-10-15 725.000 396.000 \n",
"4 claude-prediction-offline 2023-10-16/2023-10-22 852.000 239.000 \n",
"5 claude-prediction-offline 2023-10-23/2023-10-29 572.000 171.000 \n",
"6 claude-prediction-offline 2023-10-30/2023-11-05 111.000 39.000 \n",
"7 claude-prediction-offline 2023-11-06/2023-11-12 1.000 0.000 \n",
"8 claude-prediction-offline 2023-11-13/2023-11-19 4.000 0.000 \n",
"9 claude-prediction-offline 2023-11-20/2023-11-26 2.000 16.000 \n",
"10 claude-prediction-offline 2023-11-27/2023-12-03 0.000 1.000 \n",
"11 claude-prediction-offline 2023-12-18/2023-12-24 18.000 0.000 \n",
"12 claude-prediction-offline 2024-03-25/2024-03-31 5.000 0.000 \n",
"13 claude-prediction-offline 2024-04-01/2024-04-07 3.000 1.000 \n",
"\n",
"error error_perc total_requests \n",
"0 23.077 13.000 \n",
"1 28.098 573.000 \n",
"2 35.484 961.000 \n",
"3 35.326 1121.000 \n",
"4 21.907 1091.000 \n",
"5 23.015 743.000 \n",
"6 26.000 150.000 \n",
"7 0.000 1.000 \n",
"8 0.000 4.000 \n",
"9 88.889 18.000 \n",
"10 100.000 1.000 \n",
"11 0.000 18.000 \n",
"12 0.000 5.000 \n",
"13 25.000 4.000 "
]
},
"execution_count": 35,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# clude-prediction-offline\n",
"claude_prediction_offline = error[error['tool'] == 'claude-prediction-offline']\n",
"claude_prediction_offline = claude_prediction_offline.sort_values('request_month_year_week')\n",
"claude_prediction_offline"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" error | \n",
" tool | \n",
" request_month_year_week | \n",
" False | \n",
" True | \n",
" error_perc | \n",
" total_requests | \n",
"
\n",
" \n",
" \n",
" \n",
" 14 | \n",
" claude-prediction-online | \n",
" 2023-09-18/2023-09-24 | \n",
" 73.000 | \n",
" 177.000 | \n",
" 70.800 | \n",
" 250.000 | \n",
"
\n",
" \n",
" 15 | \n",
" claude-prediction-online | \n",
" 2023-09-25/2023-10-01 | \n",
" 103.000 | \n",
" 433.000 | \n",
" 80.784 | \n",
" 536.000 | \n",
"
\n",
" \n",
" 16 | \n",
" claude-prediction-online | \n",
" 2023-10-02/2023-10-08 | \n",
" 200.000 | \n",
" 875.000 | \n",
" 81.395 | \n",
" 1075.000 | \n",
"
\n",
" \n",
" 17 | \n",
" claude-prediction-online | \n",
" 2023-10-09/2023-10-15 | \n",
" 717.000 | \n",
" 1685.000 | \n",
" 70.150 | \n",
" 2402.000 | \n",
"
\n",
" \n",
" 18 | \n",
" claude-prediction-online | \n",
" 2023-10-16/2023-10-22 | \n",
" 401.000 | \n",
" 595.000 | \n",
" 59.739 | \n",
" 996.000 | \n",
"
\n",
" \n",
" 19 | \n",
" claude-prediction-online | \n",
" 2023-10-23/2023-10-29 | \n",
" 79.000 | \n",
" 101.000 | \n",
" 56.111 | \n",
" 180.000 | \n",
"
\n",
" \n",
" 20 | \n",
" claude-prediction-online | \n",
" 2023-10-30/2023-11-05 | \n",
" 40.000 | \n",
" 43.000 | \n",
" 51.807 | \n",
" 83.000 | \n",
"
\n",
" \n",
" 21 | \n",
" claude-prediction-online | \n",
" 2023-11-13/2023-11-19 | \n",
" 0.000 | \n",
" 4.000 | \n",
" 100.000 | \n",
" 4.000 | \n",
"
\n",
" \n",
" 22 | \n",
" claude-prediction-online | \n",
" 2023-11-20/2023-11-26 | \n",
" 1.000 | \n",
" 18.000 | \n",
" 94.737 | \n",
" 19.000 | \n",
"
\n",
" \n",
" 23 | \n",
" claude-prediction-online | \n",
" 2023-11-27/2023-12-03 | \n",
" 12.000 | \n",
" 118.000 | \n",
" 90.769 | \n",
" 130.000 | \n",
"
\n",
" \n",
" 24 | \n",
" claude-prediction-online | \n",
" 2023-12-04/2023-12-10 | \n",
" 13.000 | \n",
" 303.000 | \n",
" 95.886 | \n",
" 316.000 | \n",
"
\n",
" \n",
" 25 | \n",
" claude-prediction-online | \n",
" 2023-12-11/2023-12-17 | \n",
" 2.000 | \n",
" 743.000 | \n",
" 99.732 | \n",
" 745.000 | \n",
"
\n",
" \n",
" 26 | \n",
" claude-prediction-online | \n",
" 2023-12-18/2023-12-24 | \n",
" 0.000 | \n",
" 1080.000 | \n",
" 100.000 | \n",
" 1080.000 | \n",
"
\n",
" \n",
" 27 | \n",
" claude-prediction-online | \n",
" 2023-12-25/2023-12-31 | \n",
" 51.000 | \n",
" 147.000 | \n",
" 74.242 | \n",
" 198.000 | \n",
"
\n",
" \n",
" 28 | \n",
" claude-prediction-online | \n",
" 2024-01-01/2024-01-07 | \n",
" 299.000 | \n",
" 68.000 | \n",
" 18.529 | \n",
" 367.000 | \n",
"
\n",
" \n",
" 29 | \n",
" claude-prediction-online | \n",
" 2024-01-08/2024-01-14 | \n",
" 235.000 | \n",
" 56.000 | \n",
" 19.244 | \n",
" 291.000 | \n",
"
\n",
" \n",
" 30 | \n",
" claude-prediction-online | \n",
" 2024-01-15/2024-01-21 | \n",
" 352.000 | \n",
" 66.000 | \n",
" 15.789 | \n",
" 418.000 | \n",
"
\n",
" \n",
" 31 | \n",
" claude-prediction-online | \n",
" 2024-01-22/2024-01-28 | \n",
" 324.000 | \n",
" 81.000 | \n",
" 20.000 | \n",
" 405.000 | \n",
"
\n",
" \n",
" 32 | \n",
" claude-prediction-online | \n",
" 2024-01-29/2024-02-04 | \n",
" 293.000 | \n",
" 65.000 | \n",
" 18.156 | \n",
" 358.000 | \n",
"
\n",
" \n",
" 33 | \n",
" claude-prediction-online | \n",
" 2024-02-05/2024-02-11 | \n",
" 310.000 | \n",
" 71.000 | \n",
" 18.635 | \n",
" 381.000 | \n",
"
\n",
" \n",
" 34 | \n",
" claude-prediction-online | \n",
" 2024-02-12/2024-02-18 | \n",
" 353.000 | \n",
" 88.000 | \n",
" 19.955 | \n",
" 441.000 | \n",
"
\n",
" \n",
" 35 | \n",
" claude-prediction-online | \n",
" 2024-02-19/2024-02-25 | \n",
" 808.000 | \n",
" 999.000 | \n",
" 55.285 | \n",
" 1807.000 | \n",
"
\n",
" \n",
" 36 | \n",
" claude-prediction-online | \n",
" 2024-02-26/2024-03-03 | \n",
" 0.000 | \n",
" 933.000 | \n",
" 100.000 | \n",
" 933.000 | \n",
"
\n",
" \n",
" 37 | \n",
" claude-prediction-online | \n",
" 2024-03-04/2024-03-10 | \n",
" 0.000 | \n",
" 112.000 | \n",
" 100.000 | \n",
" 112.000 | \n",
"
\n",
" \n",
" 38 | \n",
" claude-prediction-online | \n",
" 2024-03-11/2024-03-17 | \n",
" 0.000 | \n",
" 32.000 | \n",
" 100.000 | \n",
" 32.000 | \n",
"
\n",
" \n",
" 39 | \n",
" claude-prediction-online | \n",
" 2024-03-18/2024-03-24 | \n",
" 945.000 | \n",
" 117.000 | \n",
" 11.017 | \n",
" 1062.000 | \n",
"
\n",
" \n",
" 40 | \n",
" claude-prediction-online | \n",
" 2024-03-25/2024-03-31 | \n",
" 5292.000 | \n",
" 1654.000 | \n",
" 23.812 | \n",
" 6946.000 | \n",
"
\n",
" \n",
" 41 | \n",
" claude-prediction-online | \n",
" 2024-04-01/2024-04-07 | \n",
" 4810.000 | \n",
" 2412.000 | \n",
" 33.398 | \n",
" 7222.000 | \n",
"
\n",
" \n",
" 42 | \n",
" claude-prediction-online | \n",
" 2024-04-08/2024-04-14 | \n",
" 2042.000 | \n",
" 1192.000 | \n",
" 36.858 | \n",
" 3234.000 | \n",
"
\n",
" \n",
" 43 | \n",
" claude-prediction-online | \n",
" 2024-04-15/2024-04-21 | \n",
" 1.000 | \n",
" 0.000 | \n",
" 0.000 | \n",
" 1.000 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
"error tool request_month_year_week False True \\\n",
"14 claude-prediction-online 2023-09-18/2023-09-24 73.000 177.000 \n",
"15 claude-prediction-online 2023-09-25/2023-10-01 103.000 433.000 \n",
"16 claude-prediction-online 2023-10-02/2023-10-08 200.000 875.000 \n",
"17 claude-prediction-online 2023-10-09/2023-10-15 717.000 1685.000 \n",
"18 claude-prediction-online 2023-10-16/2023-10-22 401.000 595.000 \n",
"19 claude-prediction-online 2023-10-23/2023-10-29 79.000 101.000 \n",
"20 claude-prediction-online 2023-10-30/2023-11-05 40.000 43.000 \n",
"21 claude-prediction-online 2023-11-13/2023-11-19 0.000 4.000 \n",
"22 claude-prediction-online 2023-11-20/2023-11-26 1.000 18.000 \n",
"23 claude-prediction-online 2023-11-27/2023-12-03 12.000 118.000 \n",
"24 claude-prediction-online 2023-12-04/2023-12-10 13.000 303.000 \n",
"25 claude-prediction-online 2023-12-11/2023-12-17 2.000 743.000 \n",
"26 claude-prediction-online 2023-12-18/2023-12-24 0.000 1080.000 \n",
"27 claude-prediction-online 2023-12-25/2023-12-31 51.000 147.000 \n",
"28 claude-prediction-online 2024-01-01/2024-01-07 299.000 68.000 \n",
"29 claude-prediction-online 2024-01-08/2024-01-14 235.000 56.000 \n",
"30 claude-prediction-online 2024-01-15/2024-01-21 352.000 66.000 \n",
"31 claude-prediction-online 2024-01-22/2024-01-28 324.000 81.000 \n",
"32 claude-prediction-online 2024-01-29/2024-02-04 293.000 65.000 \n",
"33 claude-prediction-online 2024-02-05/2024-02-11 310.000 71.000 \n",
"34 claude-prediction-online 2024-02-12/2024-02-18 353.000 88.000 \n",
"35 claude-prediction-online 2024-02-19/2024-02-25 808.000 999.000 \n",
"36 claude-prediction-online 2024-02-26/2024-03-03 0.000 933.000 \n",
"37 claude-prediction-online 2024-03-04/2024-03-10 0.000 112.000 \n",
"38 claude-prediction-online 2024-03-11/2024-03-17 0.000 32.000 \n",
"39 claude-prediction-online 2024-03-18/2024-03-24 945.000 117.000 \n",
"40 claude-prediction-online 2024-03-25/2024-03-31 5292.000 1654.000 \n",
"41 claude-prediction-online 2024-04-01/2024-04-07 4810.000 2412.000 \n",
"42 claude-prediction-online 2024-04-08/2024-04-14 2042.000 1192.000 \n",
"43 claude-prediction-online 2024-04-15/2024-04-21 1.000 0.000 \n",
"\n",
"error error_perc total_requests \n",
"14 70.800 250.000 \n",
"15 80.784 536.000 \n",
"16 81.395 1075.000 \n",
"17 70.150 2402.000 \n",
"18 59.739 996.000 \n",
"19 56.111 180.000 \n",
"20 51.807 83.000 \n",
"21 100.000 4.000 \n",
"22 94.737 19.000 \n",
"23 90.769 130.000 \n",
"24 95.886 316.000 \n",
"25 99.732 745.000 \n",
"26 100.000 1080.000 \n",
"27 74.242 198.000 \n",
"28 18.529 367.000 \n",
"29 19.244 291.000 \n",
"30 15.789 418.000 \n",
"31 20.000 405.000 \n",
"32 18.156 358.000 \n",
"33 18.635 381.000 \n",
"34 19.955 441.000 \n",
"35 55.285 1807.000 \n",
"36 100.000 933.000 \n",
"37 100.000 112.000 \n",
"38 100.000 32.000 \n",
"39 11.017 1062.000 \n",
"40 23.812 6946.000 \n",
"41 33.398 7222.000 \n",
"42 36.858 3234.000 \n",
"43 0.000 1.000 "
]
},
"execution_count": 36,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# claude-prediction-online\n",
"claude_prediction_online = error[error['tool'] == 'claude-prediction-online']\n",
"claude_prediction_online = claude_prediction_online.sort_values('request_month_year_week')\n",
"claude_prediction_online"
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" error | \n",
" tool | \n",
" request_month_year_week | \n",
" False | \n",
" True | \n",
" error_perc | \n",
" total_requests | \n",
"
\n",
" \n",
" \n",
" \n",
" 44 | \n",
" prediction-offline | \n",
" 2023-07-10/2023-07-16 | \n",
" 1.000 | \n",
" 2.000 | \n",
" 66.667 | \n",
" 3.000 | \n",
"
\n",
" \n",
" 45 | \n",
" prediction-offline | \n",
" 2023-07-31/2023-08-06 | \n",
" 69.000 | \n",
" 0.000 | \n",
" 0.000 | \n",
" 69.000 | \n",
"
\n",
" \n",
" 46 | \n",
" prediction-offline | \n",
" 2023-08-07/2023-08-13 | \n",
" 4.000 | \n",
" 0.000 | \n",
" 0.000 | \n",
" 4.000 | \n",
"
\n",
" \n",
" 47 | \n",
" prediction-offline | \n",
" 2023-08-28/2023-09-03 | \n",
" 4.000 | \n",
" 0.000 | \n",
" 0.000 | \n",
" 4.000 | \n",
"
\n",
" \n",
" 48 | \n",
" prediction-offline | \n",
" 2023-09-04/2023-09-10 | \n",
" 3.000 | \n",
" 0.000 | \n",
" 0.000 | \n",
" 3.000 | \n",
"
\n",
" \n",
" 49 | \n",
" prediction-offline | \n",
" 2023-09-11/2023-09-17 | \n",
" 10.000 | \n",
" 0.000 | \n",
" 0.000 | \n",
" 10.000 | \n",
"
\n",
" \n",
" 50 | \n",
" prediction-offline | \n",
" 2023-09-18/2023-09-24 | \n",
" 313.000 | \n",
" 4.000 | \n",
" 1.262 | \n",
" 317.000 | \n",
"
\n",
" \n",
" 51 | \n",
" prediction-offline | \n",
" 2023-09-25/2023-10-01 | \n",
" 587.000 | \n",
" 2.000 | \n",
" 0.340 | \n",
" 589.000 | \n",
"
\n",
" \n",
" 52 | \n",
" prediction-offline | \n",
" 2023-10-02/2023-10-08 | \n",
" 1035.000 | \n",
" 9.000 | \n",
" 0.862 | \n",
" 1044.000 | \n",
"
\n",
" \n",
" 53 | \n",
" prediction-offline | \n",
" 2023-10-09/2023-10-15 | \n",
" 659.000 | \n",
" 1.000 | \n",
" 0.152 | \n",
" 660.000 | \n",
"
\n",
" \n",
" 54 | \n",
" prediction-offline | \n",
" 2023-10-16/2023-10-22 | \n",
" 649.000 | \n",
" 33.000 | \n",
" 4.839 | \n",
" 682.000 | \n",
"
\n",
" \n",
" 55 | \n",
" prediction-offline | \n",
" 2023-10-23/2023-10-29 | \n",
" 311.000 | \n",
" 3.000 | \n",
" 0.955 | \n",
" 314.000 | \n",
"
\n",
" \n",
" 56 | \n",
" prediction-offline | \n",
" 2023-10-30/2023-11-05 | \n",
" 51.000 | \n",
" 0.000 | \n",
" 0.000 | \n",
" 51.000 | \n",
"
\n",
" \n",
" 57 | \n",
" prediction-offline | \n",
" 2023-11-13/2023-11-19 | \n",
" 3.000 | \n",
" 0.000 | \n",
" 0.000 | \n",
" 3.000 | \n",
"
\n",
" \n",
" 58 | \n",
" prediction-offline | \n",
" 2023-11-20/2023-11-26 | \n",
" 7.000 | \n",
" 0.000 | \n",
" 0.000 | \n",
" 7.000 | \n",
"
\n",
" \n",
" 59 | \n",
" prediction-offline | \n",
" 2023-11-27/2023-12-03 | \n",
" 24.000 | \n",
" 0.000 | \n",
" 0.000 | \n",
" 24.000 | \n",
"
\n",
" \n",
" 60 | \n",
" prediction-offline | \n",
" 2023-12-04/2023-12-10 | \n",
" 1.000 | \n",
" 0.000 | \n",
" 0.000 | \n",
" 1.000 | \n",
"
\n",
" \n",
" 61 | \n",
" prediction-offline | \n",
" 2023-12-18/2023-12-24 | \n",
" 8.000 | \n",
" 0.000 | \n",
" 0.000 | \n",
" 8.000 | \n",
"
\n",
" \n",
" 62 | \n",
" prediction-offline | \n",
" 2024-01-01/2024-01-07 | \n",
" 1.000 | \n",
" 0.000 | \n",
" 0.000 | \n",
" 1.000 | \n",
"
\n",
" \n",
" 63 | \n",
" prediction-offline | \n",
" 2024-03-11/2024-03-17 | \n",
" 436.000 | \n",
" 22.000 | \n",
" 4.803 | \n",
" 458.000 | \n",
"
\n",
" \n",
" 64 | \n",
" prediction-offline | \n",
" 2024-03-18/2024-03-24 | \n",
" 2645.000 | \n",
" 148.000 | \n",
" 5.299 | \n",
" 2793.000 | \n",
"
\n",
" \n",
" 65 | \n",
" prediction-offline | \n",
" 2024-03-25/2024-03-31 | \n",
" 3006.000 | \n",
" 832.000 | \n",
" 21.678 | \n",
" 3838.000 | \n",
"
\n",
" \n",
" 66 | \n",
" prediction-offline | \n",
" 2024-04-01/2024-04-07 | \n",
" 2203.000 | \n",
" 97.000 | \n",
" 4.217 | \n",
" 2300.000 | \n",
"
\n",
" \n",
" 67 | \n",
" prediction-offline | \n",
" 2024-04-08/2024-04-14 | \n",
" 2177.000 | \n",
" 3.000 | \n",
" 0.138 | \n",
" 2180.000 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
"error tool request_month_year_week False True \\\n",
"44 prediction-offline 2023-07-10/2023-07-16 1.000 2.000 \n",
"45 prediction-offline 2023-07-31/2023-08-06 69.000 0.000 \n",
"46 prediction-offline 2023-08-07/2023-08-13 4.000 0.000 \n",
"47 prediction-offline 2023-08-28/2023-09-03 4.000 0.000 \n",
"48 prediction-offline 2023-09-04/2023-09-10 3.000 0.000 \n",
"49 prediction-offline 2023-09-11/2023-09-17 10.000 0.000 \n",
"50 prediction-offline 2023-09-18/2023-09-24 313.000 4.000 \n",
"51 prediction-offline 2023-09-25/2023-10-01 587.000 2.000 \n",
"52 prediction-offline 2023-10-02/2023-10-08 1035.000 9.000 \n",
"53 prediction-offline 2023-10-09/2023-10-15 659.000 1.000 \n",
"54 prediction-offline 2023-10-16/2023-10-22 649.000 33.000 \n",
"55 prediction-offline 2023-10-23/2023-10-29 311.000 3.000 \n",
"56 prediction-offline 2023-10-30/2023-11-05 51.000 0.000 \n",
"57 prediction-offline 2023-11-13/2023-11-19 3.000 0.000 \n",
"58 prediction-offline 2023-11-20/2023-11-26 7.000 0.000 \n",
"59 prediction-offline 2023-11-27/2023-12-03 24.000 0.000 \n",
"60 prediction-offline 2023-12-04/2023-12-10 1.000 0.000 \n",
"61 prediction-offline 2023-12-18/2023-12-24 8.000 0.000 \n",
"62 prediction-offline 2024-01-01/2024-01-07 1.000 0.000 \n",
"63 prediction-offline 2024-03-11/2024-03-17 436.000 22.000 \n",
"64 prediction-offline 2024-03-18/2024-03-24 2645.000 148.000 \n",
"65 prediction-offline 2024-03-25/2024-03-31 3006.000 832.000 \n",
"66 prediction-offline 2024-04-01/2024-04-07 2203.000 97.000 \n",
"67 prediction-offline 2024-04-08/2024-04-14 2177.000 3.000 \n",
"\n",
"error error_perc total_requests \n",
"44 66.667 3.000 \n",
"45 0.000 69.000 \n",
"46 0.000 4.000 \n",
"47 0.000 4.000 \n",
"48 0.000 3.000 \n",
"49 0.000 10.000 \n",
"50 1.262 317.000 \n",
"51 0.340 589.000 \n",
"52 0.862 1044.000 \n",
"53 0.152 660.000 \n",
"54 4.839 682.000 \n",
"55 0.955 314.000 \n",
"56 0.000 51.000 \n",
"57 0.000 3.000 \n",
"58 0.000 7.000 \n",
"59 0.000 24.000 \n",
"60 0.000 1.000 \n",
"61 0.000 8.000 \n",
"62 0.000 1.000 \n",
"63 4.803 458.000 \n",
"64 5.299 2793.000 \n",
"65 21.678 3838.000 \n",
"66 4.217 2300.000 \n",
"67 0.138 2180.000 "
]
},
"execution_count": 37,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# prediction-offline\n",
"prediction_offline = error[error['tool'] == 'prediction-offline']\n",
"prediction_offline = prediction_offline.sort_values('request_month_year_week')\n",
"prediction_offline\n"
]
},
{
"cell_type": "code",
"execution_count": 38,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" error | \n",
" tool | \n",
" request_month_year_week | \n",
" False | \n",
" True | \n",
" error_perc | \n",
" total_requests | \n",
"
\n",
" \n",
" \n",
" \n",
" 85 | \n",
" prediction-online | \n",
" 2023-07-10/2023-07-16 | \n",
" 12.000 | \n",
" 29.000 | \n",
" 70.732 | \n",
" 41.000 | \n",
"
\n",
" \n",
" 86 | \n",
" prediction-online | \n",
" 2023-07-17/2023-07-23 | \n",
" 56.000 | \n",
" 0.000 | \n",
" 0.000 | \n",
" 56.000 | \n",
"
\n",
" \n",
" 87 | \n",
" prediction-online | \n",
" 2023-07-24/2023-07-30 | \n",
" 43.000 | \n",
" 5.000 | \n",
" 10.417 | \n",
" 48.000 | \n",
"
\n",
" \n",
" 88 | \n",
" prediction-online | \n",
" 2023-07-31/2023-08-06 | \n",
" 650.000 | \n",
" 203.000 | \n",
" 23.798 | \n",
" 853.000 | \n",
"
\n",
" \n",
" 89 | \n",
" prediction-online | \n",
" 2023-08-07/2023-08-13 | \n",
" 300.000 | \n",
" 9.000 | \n",
" 2.913 | \n",
" 309.000 | \n",
"
\n",
" \n",
" 90 | \n",
" prediction-online | \n",
" 2023-08-14/2023-08-20 | \n",
" 1416.000 | \n",
" 102.000 | \n",
" 6.719 | \n",
" 1518.000 | \n",
"
\n",
" \n",
" 91 | \n",
" prediction-online | \n",
" 2023-08-21/2023-08-27 | \n",
" 1187.000 | \n",
" 153.000 | \n",
" 11.418 | \n",
" 1340.000 | \n",
"
\n",
" \n",
" 92 | \n",
" prediction-online | \n",
" 2023-08-28/2023-09-03 | \n",
" 1577.000 | \n",
" 7.000 | \n",
" 0.442 | \n",
" 1584.000 | \n",
"
\n",
" \n",
" 93 | \n",
" prediction-online | \n",
" 2023-09-04/2023-09-10 | \n",
" 4446.000 | \n",
" 327.000 | \n",
" 6.851 | \n",
" 4773.000 | \n",
"
\n",
" \n",
" 94 | \n",
" prediction-online | \n",
" 2023-09-11/2023-09-17 | \n",
" 5946.000 | \n",
" 52.000 | \n",
" 0.867 | \n",
" 5998.000 | \n",
"
\n",
" \n",
" 95 | \n",
" prediction-online | \n",
" 2023-09-18/2023-09-24 | \n",
" 7435.000 | \n",
" 118.000 | \n",
" 1.562 | \n",
" 7553.000 | \n",
"
\n",
" \n",
" 96 | \n",
" prediction-online | \n",
" 2023-09-25/2023-10-01 | \n",
" 1552.000 | \n",
" 65.000 | \n",
" 4.020 | \n",
" 1617.000 | \n",
"
\n",
" \n",
" 97 | \n",
" prediction-online | \n",
" 2023-10-02/2023-10-08 | \n",
" 1091.000 | \n",
" 16.000 | \n",
" 1.445 | \n",
" 1107.000 | \n",
"
\n",
" \n",
" 98 | \n",
" prediction-online | \n",
" 2023-10-09/2023-10-15 | \n",
" 1140.000 | \n",
" 8.000 | \n",
" 0.697 | \n",
" 1148.000 | \n",
"
\n",
" \n",
" 99 | \n",
" prediction-online | \n",
" 2023-10-16/2023-10-22 | \n",
" 1062.000 | \n",
" 44.000 | \n",
" 3.978 | \n",
" 1106.000 | \n",
"
\n",
" \n",
" 100 | \n",
" prediction-online | \n",
" 2023-10-23/2023-10-29 | \n",
" 698.000 | \n",
" 24.000 | \n",
" 3.324 | \n",
" 722.000 | \n",
"
\n",
" \n",
" 101 | \n",
" prediction-online | \n",
" 2023-10-30/2023-11-05 | \n",
" 723.000 | \n",
" 17.000 | \n",
" 2.297 | \n",
" 740.000 | \n",
"
\n",
" \n",
" 102 | \n",
" prediction-online | \n",
" 2023-11-06/2023-11-12 | \n",
" 1848.000 | \n",
" 189.000 | \n",
" 9.278 | \n",
" 2037.000 | \n",
"
\n",
" \n",
" 103 | \n",
" prediction-online | \n",
" 2023-11-13/2023-11-19 | \n",
" 2327.000 | \n",
" 14.000 | \n",
" 0.598 | \n",
" 2341.000 | \n",
"
\n",
" \n",
" 104 | \n",
" prediction-online | \n",
" 2023-11-20/2023-11-26 | \n",
" 2086.000 | \n",
" 24.000 | \n",
" 1.137 | \n",
" 2110.000 | \n",
"
\n",
" \n",
" 105 | \n",
" prediction-online | \n",
" 2023-11-27/2023-12-03 | \n",
" 1193.000 | \n",
" 9.000 | \n",
" 0.749 | \n",
" 1202.000 | \n",
"
\n",
" \n",
" 106 | \n",
" prediction-online | \n",
" 2023-12-04/2023-12-10 | \n",
" 117.000 | \n",
" 2.000 | \n",
" 1.681 | \n",
" 119.000 | \n",
"
\n",
" \n",
" 107 | \n",
" prediction-online | \n",
" 2023-12-11/2023-12-17 | \n",
" 29.000 | \n",
" 0.000 | \n",
" 0.000 | \n",
" 29.000 | \n",
"
\n",
" \n",
" 108 | \n",
" prediction-online | \n",
" 2023-12-18/2023-12-24 | \n",
" 76.000 | \n",
" 0.000 | \n",
" 0.000 | \n",
" 76.000 | \n",
"
\n",
" \n",
" 109 | \n",
" prediction-online | \n",
" 2023-12-25/2023-12-31 | \n",
" 55.000 | \n",
" 2.000 | \n",
" 3.509 | \n",
" 57.000 | \n",
"
\n",
" \n",
" 110 | \n",
" prediction-online | \n",
" 2024-01-01/2024-01-07 | \n",
" 2.000 | \n",
" 0.000 | \n",
" 0.000 | \n",
" 2.000 | \n",
"
\n",
" \n",
" 111 | \n",
" prediction-online | \n",
" 2024-01-22/2024-01-28 | \n",
" 1.000 | \n",
" 0.000 | \n",
" 0.000 | \n",
" 1.000 | \n",
"
\n",
" \n",
" 112 | \n",
" prediction-online | \n",
" 2024-02-19/2024-02-25 | \n",
" 0.000 | \n",
" 16.000 | \n",
" 100.000 | \n",
" 16.000 | \n",
"
\n",
" \n",
" 113 | \n",
" prediction-online | \n",
" 2024-03-25/2024-03-31 | \n",
" 1.000 | \n",
" 0.000 | \n",
" 0.000 | \n",
" 1.000 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
"error tool request_month_year_week False True error_perc \\\n",
"85 prediction-online 2023-07-10/2023-07-16 12.000 29.000 70.732 \n",
"86 prediction-online 2023-07-17/2023-07-23 56.000 0.000 0.000 \n",
"87 prediction-online 2023-07-24/2023-07-30 43.000 5.000 10.417 \n",
"88 prediction-online 2023-07-31/2023-08-06 650.000 203.000 23.798 \n",
"89 prediction-online 2023-08-07/2023-08-13 300.000 9.000 2.913 \n",
"90 prediction-online 2023-08-14/2023-08-20 1416.000 102.000 6.719 \n",
"91 prediction-online 2023-08-21/2023-08-27 1187.000 153.000 11.418 \n",
"92 prediction-online 2023-08-28/2023-09-03 1577.000 7.000 0.442 \n",
"93 prediction-online 2023-09-04/2023-09-10 4446.000 327.000 6.851 \n",
"94 prediction-online 2023-09-11/2023-09-17 5946.000 52.000 0.867 \n",
"95 prediction-online 2023-09-18/2023-09-24 7435.000 118.000 1.562 \n",
"96 prediction-online 2023-09-25/2023-10-01 1552.000 65.000 4.020 \n",
"97 prediction-online 2023-10-02/2023-10-08 1091.000 16.000 1.445 \n",
"98 prediction-online 2023-10-09/2023-10-15 1140.000 8.000 0.697 \n",
"99 prediction-online 2023-10-16/2023-10-22 1062.000 44.000 3.978 \n",
"100 prediction-online 2023-10-23/2023-10-29 698.000 24.000 3.324 \n",
"101 prediction-online 2023-10-30/2023-11-05 723.000 17.000 2.297 \n",
"102 prediction-online 2023-11-06/2023-11-12 1848.000 189.000 9.278 \n",
"103 prediction-online 2023-11-13/2023-11-19 2327.000 14.000 0.598 \n",
"104 prediction-online 2023-11-20/2023-11-26 2086.000 24.000 1.137 \n",
"105 prediction-online 2023-11-27/2023-12-03 1193.000 9.000 0.749 \n",
"106 prediction-online 2023-12-04/2023-12-10 117.000 2.000 1.681 \n",
"107 prediction-online 2023-12-11/2023-12-17 29.000 0.000 0.000 \n",
"108 prediction-online 2023-12-18/2023-12-24 76.000 0.000 0.000 \n",
"109 prediction-online 2023-12-25/2023-12-31 55.000 2.000 3.509 \n",
"110 prediction-online 2024-01-01/2024-01-07 2.000 0.000 0.000 \n",
"111 prediction-online 2024-01-22/2024-01-28 1.000 0.000 0.000 \n",
"112 prediction-online 2024-02-19/2024-02-25 0.000 16.000 100.000 \n",
"113 prediction-online 2024-03-25/2024-03-31 1.000 0.000 0.000 \n",
"\n",
"error total_requests \n",
"85 41.000 \n",
"86 56.000 \n",
"87 48.000 \n",
"88 853.000 \n",
"89 309.000 \n",
"90 1518.000 \n",
"91 1340.000 \n",
"92 1584.000 \n",
"93 4773.000 \n",
"94 5998.000 \n",
"95 7553.000 \n",
"96 1617.000 \n",
"97 1107.000 \n",
"98 1148.000 \n",
"99 1106.000 \n",
"100 722.000 \n",
"101 740.000 \n",
"102 2037.000 \n",
"103 2341.000 \n",
"104 2110.000 \n",
"105 1202.000 \n",
"106 119.000 \n",
"107 29.000 \n",
"108 76.000 \n",
"109 57.000 \n",
"110 2.000 \n",
"111 1.000 \n",
"112 16.000 \n",
"113 1.000 "
]
},
"execution_count": 38,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# prediction-online\n",
"prediction_online = error[error['tool'] == 'prediction-online']\n",
"prediction_online = prediction_online.sort_values('request_month_year_week')\n",
"prediction_online"
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" error | \n",
" tool | \n",
" request_month_year_week | \n",
" False | \n",
" True | \n",
" error_perc | \n",
" total_requests | \n",
"
\n",
" \n",
" \n",
" \n",
" 68 | \n",
" prediction-offline-sme | \n",
" 2023-09-18/2023-09-24 | \n",
" 10.000 | \n",
" 0.000 | \n",
" 0.000 | \n",
" 10.000 | \n",
"
\n",
" \n",
" 69 | \n",
" prediction-offline-sme | \n",
" 2023-09-25/2023-10-01 | \n",
" 570.000 | \n",
" 5.000 | \n",
" 0.870 | \n",
" 575.000 | \n",
"
\n",
" \n",
" 70 | \n",
" prediction-offline-sme | \n",
" 2023-10-02/2023-10-08 | \n",
" 965.000 | \n",
" 9.000 | \n",
" 0.924 | \n",
" 974.000 | \n",
"
\n",
" \n",
" 71 | \n",
" prediction-offline-sme | \n",
" 2023-10-09/2023-10-15 | \n",
" 823.000 | \n",
" 3.000 | \n",
" 0.363 | \n",
" 826.000 | \n",
"
\n",
" \n",
" 72 | \n",
" prediction-offline-sme | \n",
" 2023-10-16/2023-10-22 | \n",
" 574.000 | \n",
" 35.000 | \n",
" 5.747 | \n",
" 609.000 | \n",
"
\n",
" \n",
" 73 | \n",
" prediction-offline-sme | \n",
" 2023-10-23/2023-10-29 | \n",
" 780.000 | \n",
" 62.000 | \n",
" 7.363 | \n",
" 842.000 | \n",
"
\n",
" \n",
" 74 | \n",
" prediction-offline-sme | \n",
" 2023-10-30/2023-11-05 | \n",
" 458.000 | \n",
" 3.000 | \n",
" 0.651 | \n",
" 461.000 | \n",
"
\n",
" \n",
" 75 | \n",
" prediction-offline-sme | \n",
" 2023-11-13/2023-11-19 | \n",
" 12.000 | \n",
" 0.000 | \n",
" 0.000 | \n",
" 12.000 | \n",
"
\n",
" \n",
" 76 | \n",
" prediction-offline-sme | \n",
" 2023-11-20/2023-11-26 | \n",
" 16.000 | \n",
" 0.000 | \n",
" 0.000 | \n",
" 16.000 | \n",
"
\n",
" \n",
" 77 | \n",
" prediction-offline-sme | \n",
" 2023-11-27/2023-12-03 | \n",
" 17.000 | \n",
" 0.000 | \n",
" 0.000 | \n",
" 17.000 | \n",
"
\n",
" \n",
" 78 | \n",
" prediction-offline-sme | \n",
" 2023-12-04/2023-12-10 | \n",
" 1.000 | \n",
" 0.000 | \n",
" 0.000 | \n",
" 1.000 | \n",
"
\n",
" \n",
" 79 | \n",
" prediction-offline-sme | \n",
" 2023-12-18/2023-12-24 | \n",
" 5.000 | \n",
" 0.000 | \n",
" 0.000 | \n",
" 5.000 | \n",
"
\n",
" \n",
" 80 | \n",
" prediction-offline-sme | \n",
" 2024-03-11/2024-03-17 | \n",
" 178.000 | \n",
" 0.000 | \n",
" 0.000 | \n",
" 178.000 | \n",
"
\n",
" \n",
" 81 | \n",
" prediction-offline-sme | \n",
" 2024-03-18/2024-03-24 | \n",
" 533.000 | \n",
" 1.000 | \n",
" 0.187 | \n",
" 534.000 | \n",
"
\n",
" \n",
" 82 | \n",
" prediction-offline-sme | \n",
" 2024-03-25/2024-03-31 | \n",
" 24.000 | \n",
" 5.000 | \n",
" 17.241 | \n",
" 29.000 | \n",
"
\n",
" \n",
" 83 | \n",
" prediction-offline-sme | \n",
" 2024-04-01/2024-04-07 | \n",
" 197.000 | \n",
" 1.000 | \n",
" 0.505 | \n",
" 198.000 | \n",
"
\n",
" \n",
" 84 | \n",
" prediction-offline-sme | \n",
" 2024-04-08/2024-04-14 | \n",
" 4.000 | \n",
" 0.000 | \n",
" 0.000 | \n",
" 4.000 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
"error tool request_month_year_week False True \\\n",
"68 prediction-offline-sme 2023-09-18/2023-09-24 10.000 0.000 \n",
"69 prediction-offline-sme 2023-09-25/2023-10-01 570.000 5.000 \n",
"70 prediction-offline-sme 2023-10-02/2023-10-08 965.000 9.000 \n",
"71 prediction-offline-sme 2023-10-09/2023-10-15 823.000 3.000 \n",
"72 prediction-offline-sme 2023-10-16/2023-10-22 574.000 35.000 \n",
"73 prediction-offline-sme 2023-10-23/2023-10-29 780.000 62.000 \n",
"74 prediction-offline-sme 2023-10-30/2023-11-05 458.000 3.000 \n",
"75 prediction-offline-sme 2023-11-13/2023-11-19 12.000 0.000 \n",
"76 prediction-offline-sme 2023-11-20/2023-11-26 16.000 0.000 \n",
"77 prediction-offline-sme 2023-11-27/2023-12-03 17.000 0.000 \n",
"78 prediction-offline-sme 2023-12-04/2023-12-10 1.000 0.000 \n",
"79 prediction-offline-sme 2023-12-18/2023-12-24 5.000 0.000 \n",
"80 prediction-offline-sme 2024-03-11/2024-03-17 178.000 0.000 \n",
"81 prediction-offline-sme 2024-03-18/2024-03-24 533.000 1.000 \n",
"82 prediction-offline-sme 2024-03-25/2024-03-31 24.000 5.000 \n",
"83 prediction-offline-sme 2024-04-01/2024-04-07 197.000 1.000 \n",
"84 prediction-offline-sme 2024-04-08/2024-04-14 4.000 0.000 \n",
"\n",
"error error_perc total_requests \n",
"68 0.000 10.000 \n",
"69 0.870 575.000 \n",
"70 0.924 974.000 \n",
"71 0.363 826.000 \n",
"72 5.747 609.000 \n",
"73 7.363 842.000 \n",
"74 0.651 461.000 \n",
"75 0.000 12.000 \n",
"76 0.000 16.000 \n",
"77 0.000 17.000 \n",
"78 0.000 1.000 \n",
"79 0.000 5.000 \n",
"80 0.000 178.000 \n",
"81 0.187 534.000 \n",
"82 17.241 29.000 \n",
"83 0.505 198.000 \n",
"84 0.000 4.000 "
]
},
"execution_count": 39,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# prediction-offline-sme\n",
"prediction_offline_sme = error[error['tool'] == 'prediction-offline-sme']\n",
"prediction_offline_sme = prediction_offline_sme.sort_values('request_month_year_week')\n",
"prediction_offline_sme"
]
},
{
"cell_type": "code",
"execution_count": 40,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" error | \n",
" tool | \n",
" request_month_year_week | \n",
" False | \n",
" True | \n",
" error_perc | \n",
" total_requests | \n",
"
\n",
" \n",
" \n",
" \n",
" 114 | \n",
" prediction-online-sme | \n",
" 2023-09-18/2023-09-24 | \n",
" 132.000 | \n",
" 3.000 | \n",
" 2.222 | \n",
" 135.000 | \n",
"
\n",
" \n",
" 115 | \n",
" prediction-online-sme | \n",
" 2023-09-25/2023-10-01 | \n",
" 603.000 | \n",
" 23.000 | \n",
" 3.674 | \n",
" 626.000 | \n",
"
\n",
" \n",
" 116 | \n",
" prediction-online-sme | \n",
" 2023-10-02/2023-10-08 | \n",
" 1074.000 | \n",
" 22.000 | \n",
" 2.007 | \n",
" 1096.000 | \n",
"
\n",
" \n",
" 117 | \n",
" prediction-online-sme | \n",
" 2023-10-09/2023-10-15 | \n",
" 825.000 | \n",
" 10.000 | \n",
" 1.198 | \n",
" 835.000 | \n",
"
\n",
" \n",
" 118 | \n",
" prediction-online-sme | \n",
" 2023-10-16/2023-10-22 | \n",
" 463.000 | \n",
" 19.000 | \n",
" 3.942 | \n",
" 482.000 | \n",
"
\n",
" \n",
" 119 | \n",
" prediction-online-sme | \n",
" 2023-10-23/2023-10-29 | \n",
" 415.000 | \n",
" 19.000 | \n",
" 4.378 | \n",
" 434.000 | \n",
"
\n",
" \n",
" 120 | \n",
" prediction-online-sme | \n",
" 2023-10-30/2023-11-05 | \n",
" 276.000 | \n",
" 6.000 | \n",
" 2.128 | \n",
" 282.000 | \n",
"
\n",
" \n",
" 121 | \n",
" prediction-online-sme | \n",
" 2023-11-06/2023-11-12 | \n",
" 1668.000 | \n",
" 162.000 | \n",
" 8.852 | \n",
" 1830.000 | \n",
"
\n",
" \n",
" 122 | \n",
" prediction-online-sme | \n",
" 2023-11-13/2023-11-19 | \n",
" 2211.000 | \n",
" 21.000 | \n",
" 0.941 | \n",
" 2232.000 | \n",
"
\n",
" \n",
" 123 | \n",
" prediction-online-sme | \n",
" 2023-11-20/2023-11-26 | \n",
" 1946.000 | \n",
" 19.000 | \n",
" 0.967 | \n",
" 1965.000 | \n",
"
\n",
" \n",
" 124 | \n",
" prediction-online-sme | \n",
" 2023-11-27/2023-12-03 | \n",
" 2680.000 | \n",
" 26.000 | \n",
" 0.961 | \n",
" 2706.000 | \n",
"
\n",
" \n",
" 125 | \n",
" prediction-online-sme | \n",
" 2023-12-04/2023-12-10 | \n",
" 4110.000 | \n",
" 19.000 | \n",
" 0.460 | \n",
" 4129.000 | \n",
"
\n",
" \n",
" 126 | \n",
" prediction-online-sme | \n",
" 2023-12-11/2023-12-17 | \n",
" 4193.000 | \n",
" 18.000 | \n",
" 0.427 | \n",
" 4211.000 | \n",
"
\n",
" \n",
" 127 | \n",
" prediction-online-sme | \n",
" 2023-12-18/2023-12-24 | \n",
" 2979.000 | \n",
" 9.000 | \n",
" 0.301 | \n",
" 2988.000 | \n",
"
\n",
" \n",
" 128 | \n",
" prediction-online-sme | \n",
" 2023-12-25/2023-12-31 | \n",
" 2643.000 | \n",
" 46.000 | \n",
" 1.711 | \n",
" 2689.000 | \n",
"
\n",
" \n",
" 129 | \n",
" prediction-online-sme | \n",
" 2024-01-01/2024-01-07 | \n",
" 3858.000 | \n",
" 12.000 | \n",
" 0.310 | \n",
" 3870.000 | \n",
"
\n",
" \n",
" 130 | \n",
" prediction-online-sme | \n",
" 2024-01-08/2024-01-14 | \n",
" 1805.000 | \n",
" 5.000 | \n",
" 0.276 | \n",
" 1810.000 | \n",
"
\n",
" \n",
" 131 | \n",
" prediction-online-sme | \n",
" 2024-01-15/2024-01-21 | \n",
" 3848.000 | \n",
" 17.000 | \n",
" 0.440 | \n",
" 3865.000 | \n",
"
\n",
" \n",
" 132 | \n",
" prediction-online-sme | \n",
" 2024-01-22/2024-01-28 | \n",
" 3890.000 | \n",
" 9.000 | \n",
" 0.231 | \n",
" 3899.000 | \n",
"
\n",
" \n",
" 133 | \n",
" prediction-online-sme | \n",
" 2024-01-29/2024-02-04 | \n",
" 4096.000 | \n",
" 46.000 | \n",
" 1.111 | \n",
" 4142.000 | \n",
"
\n",
" \n",
" 134 | \n",
" prediction-online-sme | \n",
" 2024-02-05/2024-02-11 | \n",
" 4331.000 | \n",
" 17.000 | \n",
" 0.391 | \n",
" 4348.000 | \n",
"
\n",
" \n",
" 135 | \n",
" prediction-online-sme | \n",
" 2024-02-12/2024-02-18 | \n",
" 4753.000 | \n",
" 1387.000 | \n",
" 22.590 | \n",
" 6140.000 | \n",
"
\n",
" \n",
" 136 | \n",
" prediction-online-sme | \n",
" 2024-02-19/2024-02-25 | \n",
" 3112.000 | \n",
" 2569.000 | \n",
" 45.221 | \n",
" 5681.000 | \n",
"
\n",
" \n",
" 137 | \n",
" prediction-online-sme | \n",
" 2024-02-26/2024-03-03 | \n",
" 4379.000 | \n",
" 133.000 | \n",
" 2.948 | \n",
" 4512.000 | \n",
"
\n",
" \n",
" 138 | \n",
" prediction-online-sme | \n",
" 2024-03-04/2024-03-10 | \n",
" 3473.000 | \n",
" 154.000 | \n",
" 4.246 | \n",
" 3627.000 | \n",
"
\n",
" \n",
" 139 | \n",
" prediction-online-sme | \n",
" 2024-03-11/2024-03-17 | \n",
" 3183.000 | \n",
" 102.000 | \n",
" 3.105 | \n",
" 3285.000 | \n",
"
\n",
" \n",
" 140 | \n",
" prediction-online-sme | \n",
" 2024-03-18/2024-03-24 | \n",
" 2755.000 | \n",
" 43.000 | \n",
" 1.537 | \n",
" 2798.000 | \n",
"
\n",
" \n",
" 141 | \n",
" prediction-online-sme | \n",
" 2024-03-25/2024-03-31 | \n",
" 1874.000 | \n",
" 785.000 | \n",
" 29.522 | \n",
" 2659.000 | \n",
"
\n",
" \n",
" 142 | \n",
" prediction-online-sme | \n",
" 2024-04-01/2024-04-07 | \n",
" 2025.000 | \n",
" 641.000 | \n",
" 24.044 | \n",
" 2666.000 | \n",
"
\n",
" \n",
" 143 | \n",
" prediction-online-sme | \n",
" 2024-04-08/2024-04-14 | \n",
" 1257.000 | \n",
" 912.000 | \n",
" 42.047 | \n",
" 2169.000 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
"error tool request_month_year_week False True \\\n",
"114 prediction-online-sme 2023-09-18/2023-09-24 132.000 3.000 \n",
"115 prediction-online-sme 2023-09-25/2023-10-01 603.000 23.000 \n",
"116 prediction-online-sme 2023-10-02/2023-10-08 1074.000 22.000 \n",
"117 prediction-online-sme 2023-10-09/2023-10-15 825.000 10.000 \n",
"118 prediction-online-sme 2023-10-16/2023-10-22 463.000 19.000 \n",
"119 prediction-online-sme 2023-10-23/2023-10-29 415.000 19.000 \n",
"120 prediction-online-sme 2023-10-30/2023-11-05 276.000 6.000 \n",
"121 prediction-online-sme 2023-11-06/2023-11-12 1668.000 162.000 \n",
"122 prediction-online-sme 2023-11-13/2023-11-19 2211.000 21.000 \n",
"123 prediction-online-sme 2023-11-20/2023-11-26 1946.000 19.000 \n",
"124 prediction-online-sme 2023-11-27/2023-12-03 2680.000 26.000 \n",
"125 prediction-online-sme 2023-12-04/2023-12-10 4110.000 19.000 \n",
"126 prediction-online-sme 2023-12-11/2023-12-17 4193.000 18.000 \n",
"127 prediction-online-sme 2023-12-18/2023-12-24 2979.000 9.000 \n",
"128 prediction-online-sme 2023-12-25/2023-12-31 2643.000 46.000 \n",
"129 prediction-online-sme 2024-01-01/2024-01-07 3858.000 12.000 \n",
"130 prediction-online-sme 2024-01-08/2024-01-14 1805.000 5.000 \n",
"131 prediction-online-sme 2024-01-15/2024-01-21 3848.000 17.000 \n",
"132 prediction-online-sme 2024-01-22/2024-01-28 3890.000 9.000 \n",
"133 prediction-online-sme 2024-01-29/2024-02-04 4096.000 46.000 \n",
"134 prediction-online-sme 2024-02-05/2024-02-11 4331.000 17.000 \n",
"135 prediction-online-sme 2024-02-12/2024-02-18 4753.000 1387.000 \n",
"136 prediction-online-sme 2024-02-19/2024-02-25 3112.000 2569.000 \n",
"137 prediction-online-sme 2024-02-26/2024-03-03 4379.000 133.000 \n",
"138 prediction-online-sme 2024-03-04/2024-03-10 3473.000 154.000 \n",
"139 prediction-online-sme 2024-03-11/2024-03-17 3183.000 102.000 \n",
"140 prediction-online-sme 2024-03-18/2024-03-24 2755.000 43.000 \n",
"141 prediction-online-sme 2024-03-25/2024-03-31 1874.000 785.000 \n",
"142 prediction-online-sme 2024-04-01/2024-04-07 2025.000 641.000 \n",
"143 prediction-online-sme 2024-04-08/2024-04-14 1257.000 912.000 \n",
"\n",
"error error_perc total_requests \n",
"114 2.222 135.000 \n",
"115 3.674 626.000 \n",
"116 2.007 1096.000 \n",
"117 1.198 835.000 \n",
"118 3.942 482.000 \n",
"119 4.378 434.000 \n",
"120 2.128 282.000 \n",
"121 8.852 1830.000 \n",
"122 0.941 2232.000 \n",
"123 0.967 1965.000 \n",
"124 0.961 2706.000 \n",
"125 0.460 4129.000 \n",
"126 0.427 4211.000 \n",
"127 0.301 2988.000 \n",
"128 1.711 2689.000 \n",
"129 0.310 3870.000 \n",
"130 0.276 1810.000 \n",
"131 0.440 3865.000 \n",
"132 0.231 3899.000 \n",
"133 1.111 4142.000 \n",
"134 0.391 4348.000 \n",
"135 22.590 6140.000 \n",
"136 45.221 5681.000 \n",
"137 2.948 4512.000 \n",
"138 4.246 3627.000 \n",
"139 3.105 3285.000 \n",
"140 1.537 2798.000 \n",
"141 29.522 2659.000 \n",
"142 24.044 2666.000 \n",
"143 42.047 2169.000 "
]
},
"execution_count": 40,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# prediction-online-sme\n",
"prediction_online_sme = error[error['tool'] == 'prediction-online-sme']\n",
"prediction_online_sme = prediction_online_sme.sort_values('request_month_year_week')\n",
"prediction_online_sme"
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" error | \n",
" tool | \n",
" request_month_year_week | \n",
" False | \n",
" True | \n",
" error_perc | \n",
" total_requests | \n",
"
\n",
" \n",
" \n",
" \n",
" 144 | \n",
" prediction-request-rag | \n",
" 2024-02-26/2024-03-03 | \n",
" 281.000 | \n",
" 181.000 | \n",
" 39.177 | \n",
" 462.000 | \n",
"
\n",
" \n",
" 145 | \n",
" prediction-request-rag | \n",
" 2024-03-04/2024-03-10 | \n",
" 4600.000 | \n",
" 118.000 | \n",
" 2.501 | \n",
" 4718.000 | \n",
"
\n",
" \n",
" 146 | \n",
" prediction-request-rag | \n",
" 2024-03-11/2024-03-17 | \n",
" 5823.000 | \n",
" 260.000 | \n",
" 4.274 | \n",
" 6083.000 | \n",
"
\n",
" \n",
" 147 | \n",
" prediction-request-rag | \n",
" 2024-03-18/2024-03-24 | \n",
" 5435.000 | \n",
" 8.000 | \n",
" 0.147 | \n",
" 5443.000 | \n",
"
\n",
" \n",
" 148 | \n",
" prediction-request-rag | \n",
" 2024-03-25/2024-03-31 | \n",
" 5048.000 | \n",
" 1861.000 | \n",
" 26.936 | \n",
" 6909.000 | \n",
"
\n",
" \n",
" 149 | \n",
" prediction-request-rag | \n",
" 2024-04-01/2024-04-07 | \n",
" 2390.000 | \n",
" 928.000 | \n",
" 27.969 | \n",
" 3318.000 | \n",
"
\n",
" \n",
" 150 | \n",
" prediction-request-rag | \n",
" 2024-04-08/2024-04-14 | \n",
" 2226.000 | \n",
" 875.000 | \n",
" 28.217 | \n",
" 3101.000 | \n",
"
\n",
" \n",
" 151 | \n",
" prediction-request-rag | \n",
" 2024-04-15/2024-04-21 | \n",
" 10.000 | \n",
" 0.000 | \n",
" 0.000 | \n",
" 10.000 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
"error tool request_month_year_week False True \\\n",
"144 prediction-request-rag 2024-02-26/2024-03-03 281.000 181.000 \n",
"145 prediction-request-rag 2024-03-04/2024-03-10 4600.000 118.000 \n",
"146 prediction-request-rag 2024-03-11/2024-03-17 5823.000 260.000 \n",
"147 prediction-request-rag 2024-03-18/2024-03-24 5435.000 8.000 \n",
"148 prediction-request-rag 2024-03-25/2024-03-31 5048.000 1861.000 \n",
"149 prediction-request-rag 2024-04-01/2024-04-07 2390.000 928.000 \n",
"150 prediction-request-rag 2024-04-08/2024-04-14 2226.000 875.000 \n",
"151 prediction-request-rag 2024-04-15/2024-04-21 10.000 0.000 \n",
"\n",
"error error_perc total_requests \n",
"144 39.177 462.000 \n",
"145 2.501 4718.000 \n",
"146 4.274 6083.000 \n",
"147 0.147 5443.000 \n",
"148 26.936 6909.000 \n",
"149 27.969 3318.000 \n",
"150 28.217 3101.000 \n",
"151 0.000 10.000 "
]
},
"execution_count": 41,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# prediction-request-rag\n",
"prediction_request_rag = error[error['tool'] == 'prediction-request-rag']\n",
"prediction_request_rag = prediction_request_rag.sort_values('request_month_year_week')\n",
"prediction_request_rag"
]
},
{
"cell_type": "code",
"execution_count": 42,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" error | \n",
" tool | \n",
" request_month_year_week | \n",
" False | \n",
" True | \n",
" error_perc | \n",
" total_requests | \n",
"
\n",
" \n",
" \n",
" \n",
" 160 | \n",
" prediction-request-reasoning-claude | \n",
" 2024-04-01/2024-04-07 | \n",
" 271.000 | \n",
" 238.000 | \n",
" 46.758 | \n",
" 509.000 | \n",
"
\n",
" \n",
" 161 | \n",
" prediction-request-reasoning-claude | \n",
" 2024-04-08/2024-04-14 | \n",
" 2120.000 | \n",
" 1138.000 | \n",
" 34.929 | \n",
" 3258.000 | \n",
"
\n",
" \n",
" 162 | \n",
" prediction-request-reasoning-claude | \n",
" 2024-04-15/2024-04-21 | \n",
" 7.000 | \n",
" 1.000 | \n",
" 12.500 | \n",
" 8.000 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
"error tool request_month_year_week False \\\n",
"160 prediction-request-reasoning-claude 2024-04-01/2024-04-07 271.000 \n",
"161 prediction-request-reasoning-claude 2024-04-08/2024-04-14 2120.000 \n",
"162 prediction-request-reasoning-claude 2024-04-15/2024-04-21 7.000 \n",
"\n",
"error True error_perc total_requests \n",
"160 238.000 46.758 509.000 \n",
"161 1138.000 34.929 3258.000 \n",
"162 1.000 12.500 8.000 "
]
},
"execution_count": 42,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# prediction-request-reasoning-claude\n",
"prediction_request_reasoning_claude = error[error['tool'] == 'prediction-request-reasoning-claude']\n",
"prediction_request_reasoning_claude = prediction_request_reasoning_claude.sort_values('request_month_year_week')\n",
"prediction_request_reasoning_claude"
]
},
{
"cell_type": "code",
"execution_count": 43,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" error | \n",
" tool | \n",
" request_month_year_week | \n",
" False | \n",
" True | \n",
" error_perc | \n",
" total_requests | \n",
"
\n",
" \n",
" \n",
" \n",
" 152 | \n",
" prediction-request-rag-claude | \n",
" 2024-04-01/2024-04-07 | \n",
" 78.000 | \n",
" 151.000 | \n",
" 65.939 | \n",
" 229.000 | \n",
"
\n",
" \n",
" 153 | \n",
" prediction-request-rag-claude | \n",
" 2024-04-08/2024-04-14 | \n",
" 857.000 | \n",
" 1212.000 | \n",
" 58.579 | \n",
" 2069.000 | \n",
"
\n",
" \n",
" 154 | \n",
" prediction-request-rag-claude | \n",
" 2024-04-15/2024-04-21 | \n",
" 1.000 | \n",
" 0.000 | \n",
" 0.000 | \n",
" 1.000 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
"error tool request_month_year_week False True \\\n",
"152 prediction-request-rag-claude 2024-04-01/2024-04-07 78.000 151.000 \n",
"153 prediction-request-rag-claude 2024-04-08/2024-04-14 857.000 1212.000 \n",
"154 prediction-request-rag-claude 2024-04-15/2024-04-21 1.000 0.000 \n",
"\n",
"error error_perc total_requests \n",
"152 65.939 229.000 \n",
"153 58.579 2069.000 \n",
"154 0.000 1.000 "
]
},
"execution_count": 43,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"prediction_request_rag_claude = error[error['tool'] == 'prediction-request-rag-claude']\n",
"prediction_request_rag_claude = prediction_request_rag_claude.sort_values('request_month_year_week')\n",
"prediction_request_rag_claude"
]
},
{
"cell_type": "code",
"execution_count": 44,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" error | \n",
" tool | \n",
" request_month_year_week | \n",
" False | \n",
" True | \n",
" error_perc | \n",
" total_requests | \n",
"
\n",
" \n",
" \n",
" \n",
" 163 | \n",
" prediction-url-cot-claude | \n",
" 2024-04-01/2024-04-07 | \n",
" 0.000 | \n",
" 126.000 | \n",
" 100.000 | \n",
" 126.000 | \n",
"
\n",
" \n",
" 164 | \n",
" prediction-url-cot-claude | \n",
" 2024-04-08/2024-04-14 | \n",
" 2262.000 | \n",
" 321.000 | \n",
" 12.427 | \n",
" 2583.000 | \n",
"
\n",
" \n",
" 165 | \n",
" prediction-url-cot-claude | \n",
" 2024-04-15/2024-04-21 | \n",
" 7.000 | \n",
" 1.000 | \n",
" 12.500 | \n",
" 8.000 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
"error tool request_month_year_week False True \\\n",
"163 prediction-url-cot-claude 2024-04-01/2024-04-07 0.000 126.000 \n",
"164 prediction-url-cot-claude 2024-04-08/2024-04-14 2262.000 321.000 \n",
"165 prediction-url-cot-claude 2024-04-15/2024-04-21 7.000 1.000 \n",
"\n",
"error error_perc total_requests \n",
"163 100.000 126.000 \n",
"164 12.427 2583.000 \n",
"165 12.500 8.000 "
]
},
"execution_count": 44,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"prediction_url_cot_claude = error[error['tool'] == 'prediction-url-cot-claude']\n",
"prediction_url_cot_claude = prediction_url_cot_claude.sort_values('request_month_year_week')\n",
"prediction_url_cot_claude"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 2. Win analysis"
]
},
{
"cell_type": "code",
"execution_count": 45,
"metadata": {},
"outputs": [],
"source": [
"# only include non error requests\n",
"tools_non_error = tools_inc[tools_inc['error'] != True]\n",
"tools_non_error['currentAnswer'].replace('no', 'No', inplace=True)\n",
"tools_non_error['currentAnswer'].replace('yes', 'Yes', inplace=True)\n",
"tools_non_error = tools_non_error[tools_non_error['currentAnswer'].isin(['Yes', 'No'])]\n",
"tools_non_error = tools_non_error[tools_non_error['vote'].isin(['Yes', 'No'])]"
]
},
{
"cell_type": "code",
"execution_count": 46,
"metadata": {},
"outputs": [],
"source": [
"tools_non_error['win'] = tools_non_error['currentAnswer'] == tools_non_error['vote']\n",
"tools_non_error['win'] = tools_non_error['win'].astype(int)"
]
},
{
"cell_type": "code",
"execution_count": 47,
"metadata": {},
"outputs": [],
"source": [
"wins = tools_non_error.groupby(['tool', 'request_month_year_week', 'win']).size().unstack().fillna(0)\n",
"wins['win_perc'] = (wins[1] / (wins[0] + wins[1]))*100\n",
"wins.reset_index(inplace=True)\n",
"wins['total_request'] = wins[0] + wins[1]"
]
},
{
"cell_type": "code",
"execution_count": 48,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array(['claude-prediction-offline', 'claude-prediction-online',\n",
" 'prediction-offline', 'prediction-offline-sme',\n",
" 'prediction-online', 'prediction-online-sme',\n",
" 'prediction-request-rag', 'prediction-request-rag-claude',\n",
" 'prediction-request-reasoning',\n",
" 'prediction-request-reasoning-claude', 'prediction-url-cot-claude'],\n",
" dtype=object)"
]
},
"execution_count": 48,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"wins['tool'].unique()"
]
},
{
"cell_type": "code",
"execution_count": 49,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" win | \n",
" 0 | \n",
" 1 | \n",
" win_perc | \n",
" total_request | \n",
"
\n",
" \n",
" request_month_year_week | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 2023-07-17/2023-07-23 | \n",
" 1.000 | \n",
" 1.000 | \n",
" 50.000 | \n",
" 2.000 | \n",
"
\n",
" \n",
" 2023-07-24/2023-07-30 | \n",
" 12.000 | \n",
" 12.000 | \n",
" 50.000 | \n",
" 24.000 | \n",
"
\n",
" \n",
" 2023-07-31/2023-08-06 | \n",
" 360.000 | \n",
" 229.000 | \n",
" 41.979 | \n",
" 589.000 | \n",
"
\n",
" \n",
" 2023-08-07/2023-08-13 | \n",
" 177.000 | \n",
" 110.000 | \n",
" 44.123 | \n",
" 287.000 | \n",
"
\n",
" \n",
" 2023-08-14/2023-08-20 | \n",
" 784.000 | \n",
" 559.000 | \n",
" 41.623 | \n",
" 1343.000 | \n",
"
\n",
" \n",
" 2023-08-21/2023-08-27 | \n",
" 596.000 | \n",
" 502.000 | \n",
" 45.719 | \n",
" 1098.000 | \n",
"
\n",
" \n",
" 2023-08-28/2023-09-03 | \n",
" 958.000 | \n",
" 502.000 | \n",
" 34.384 | \n",
" 1460.000 | \n",
"
\n",
" \n",
" 2023-09-04/2023-09-10 | \n",
" 1609.000 | \n",
" 1418.000 | \n",
" 46.845 | \n",
" 3027.000 | \n",
"
\n",
" \n",
" 2023-09-11/2023-09-17 | \n",
" 1171.000 | \n",
" 1380.000 | \n",
" 54.096 | \n",
" 2551.000 | \n",
"
\n",
" \n",
" 2023-09-18/2023-09-24 | \n",
" 2150.000 | \n",
" 2307.000 | \n",
" 60.968 | \n",
" 4457.000 | \n",
"
\n",
" \n",
" 2023-09-25/2023-10-01 | \n",
" 992.000 | \n",
" 817.000 | \n",
" 47.635 | \n",
" 1809.000 | \n",
"
\n",
" \n",
" 2023-10-02/2023-10-08 | \n",
" 1625.000 | \n",
" 1842.000 | \n",
" 54.240 | \n",
" 3467.000 | \n",
"
\n",
" \n",
" 2023-10-09/2023-10-15 | \n",
" 1594.000 | \n",
" 2096.000 | \n",
" 57.281 | \n",
" 3690.000 | \n",
"
\n",
" \n",
" 2023-10-16/2023-10-22 | \n",
" 1291.000 | \n",
" 1623.000 | \n",
" 55.496 | \n",
" 2914.000 | \n",
"
\n",
" \n",
" 2023-10-23/2023-10-29 | \n",
" 1018.000 | \n",
" 1084.000 | \n",
" 50.802 | \n",
" 2102.000 | \n",
"
\n",
" \n",
" 2023-10-30/2023-11-05 | \n",
" 541.000 | \n",
" 825.000 | \n",
" 64.848 | \n",
" 1366.000 | \n",
"
\n",
" \n",
" 2023-11-06/2023-11-12 | \n",
" 1545.000 | \n",
" 1776.000 | \n",
" 69.014 | \n",
" 3321.000 | \n",
"
\n",
" \n",
" 2023-11-13/2023-11-19 | \n",
" 1825.000 | \n",
" 2056.000 | \n",
" 55.202 | \n",
" 3881.000 | \n",
"
\n",
" \n",
" 2023-11-20/2023-11-26 | \n",
" 1567.000 | \n",
" 1874.000 | \n",
" 58.482 | \n",
" 3441.000 | \n",
"
\n",
" \n",
" 2023-11-27/2023-12-03 | \n",
" 1555.000 | \n",
" 1773.000 | \n",
" 67.721 | \n",
" 3328.000 | \n",
"
\n",
" \n",
" 2023-12-04/2023-12-10 | \n",
" 1245.000 | \n",
" 1470.000 | \n",
" 33.705 | \n",
" 2715.000 | \n",
"
\n",
" \n",
" 2023-12-11/2023-12-17 | \n",
" 1462.000 | \n",
" 1788.000 | \n",
" 52.404 | \n",
" 3250.000 | \n",
"
\n",
" \n",
" 2023-12-18/2023-12-24 | \n",
" 1332.000 | \n",
" 1557.000 | \n",
" 46.687 | \n",
" 2889.000 | \n",
"
\n",
" \n",
" 2023-12-25/2023-12-31 | \n",
" 1397.000 | \n",
" 1257.000 | \n",
" 48.222 | \n",
" 2654.000 | \n",
"
\n",
" \n",
" 2024-01-01/2024-01-07 | \n",
" 2159.000 | \n",
" 1713.000 | \n",
" 43.436 | \n",
" 3872.000 | \n",
"
\n",
" \n",
" 2024-01-08/2024-01-14 | \n",
" 1034.000 | \n",
" 890.000 | \n",
" 41.597 | \n",
" 1924.000 | \n",
"
\n",
" \n",
" 2024-01-15/2024-01-21 | \n",
" 2228.000 | \n",
" 1758.000 | \n",
" 40.827 | \n",
" 3986.000 | \n",
"
\n",
" \n",
" 2024-01-22/2024-01-28 | \n",
" 2036.000 | \n",
" 1970.000 | \n",
" 31.617 | \n",
" 4006.000 | \n",
"
\n",
" \n",
" 2024-01-29/2024-02-04 | \n",
" 2303.000 | \n",
" 1791.000 | \n",
" 37.106 | \n",
" 4094.000 | \n",
"
\n",
" \n",
" 2024-02-05/2024-02-11 | \n",
" 2149.000 | \n",
" 2189.000 | \n",
" 49.808 | \n",
" 4338.000 | \n",
"
\n",
" \n",
" 2024-02-12/2024-02-18 | \n",
" 1979.000 | \n",
" 1956.000 | \n",
" 55.949 | \n",
" 3935.000 | \n",
"
\n",
" \n",
" 2024-02-19/2024-02-25 | \n",
" 1788.000 | \n",
" 2002.000 | \n",
" 57.697 | \n",
" 3790.000 | \n",
"
\n",
" \n",
" 2024-02-26/2024-03-03 | \n",
" 2299.000 | \n",
" 2350.000 | \n",
" 42.051 | \n",
" 4649.000 | \n",
"
\n",
" \n",
" 2024-03-04/2024-03-10 | \n",
" 4523.000 | \n",
" 3500.000 | \n",
" 44.989 | \n",
" 8023.000 | \n",
"
\n",
" \n",
" 2024-03-11/2024-03-17 | \n",
" 4516.000 | \n",
" 4705.000 | \n",
" 56.713 | \n",
" 9221.000 | \n",
"
\n",
" \n",
" 2024-03-18/2024-03-24 | \n",
" 5561.000 | \n",
" 5581.000 | \n",
" 52.903 | \n",
" 11142.000 | \n",
"
\n",
" \n",
" 2024-03-25/2024-03-31 | \n",
" 5200.000 | \n",
" 6965.000 | \n",
" 54.644 | \n",
" 12165.000 | \n",
"
\n",
" \n",
" 2024-04-01/2024-04-07 | \n",
" 2923.000 | \n",
" 4258.000 | \n",
" 61.323 | \n",
" 7181.000 | \n",
"
\n",
" \n",
" 2024-04-08/2024-04-14 | \n",
" 1331.000 | \n",
" 3412.000 | \n",
" 69.522 | \n",
" 4743.000 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
"win 0 1 win_perc total_request\n",
"request_month_year_week \n",
"2023-07-17/2023-07-23 1.000 1.000 50.000 2.000\n",
"2023-07-24/2023-07-30 12.000 12.000 50.000 24.000\n",
"2023-07-31/2023-08-06 360.000 229.000 41.979 589.000\n",
"2023-08-07/2023-08-13 177.000 110.000 44.123 287.000\n",
"2023-08-14/2023-08-20 784.000 559.000 41.623 1343.000\n",
"2023-08-21/2023-08-27 596.000 502.000 45.719 1098.000\n",
"2023-08-28/2023-09-03 958.000 502.000 34.384 1460.000\n",
"2023-09-04/2023-09-10 1609.000 1418.000 46.845 3027.000\n",
"2023-09-11/2023-09-17 1171.000 1380.000 54.096 2551.000\n",
"2023-09-18/2023-09-24 2150.000 2307.000 60.968 4457.000\n",
"2023-09-25/2023-10-01 992.000 817.000 47.635 1809.000\n",
"2023-10-02/2023-10-08 1625.000 1842.000 54.240 3467.000\n",
"2023-10-09/2023-10-15 1594.000 2096.000 57.281 3690.000\n",
"2023-10-16/2023-10-22 1291.000 1623.000 55.496 2914.000\n",
"2023-10-23/2023-10-29 1018.000 1084.000 50.802 2102.000\n",
"2023-10-30/2023-11-05 541.000 825.000 64.848 1366.000\n",
"2023-11-06/2023-11-12 1545.000 1776.000 69.014 3321.000\n",
"2023-11-13/2023-11-19 1825.000 2056.000 55.202 3881.000\n",
"2023-11-20/2023-11-26 1567.000 1874.000 58.482 3441.000\n",
"2023-11-27/2023-12-03 1555.000 1773.000 67.721 3328.000\n",
"2023-12-04/2023-12-10 1245.000 1470.000 33.705 2715.000\n",
"2023-12-11/2023-12-17 1462.000 1788.000 52.404 3250.000\n",
"2023-12-18/2023-12-24 1332.000 1557.000 46.687 2889.000\n",
"2023-12-25/2023-12-31 1397.000 1257.000 48.222 2654.000\n",
"2024-01-01/2024-01-07 2159.000 1713.000 43.436 3872.000\n",
"2024-01-08/2024-01-14 1034.000 890.000 41.597 1924.000\n",
"2024-01-15/2024-01-21 2228.000 1758.000 40.827 3986.000\n",
"2024-01-22/2024-01-28 2036.000 1970.000 31.617 4006.000\n",
"2024-01-29/2024-02-04 2303.000 1791.000 37.106 4094.000\n",
"2024-02-05/2024-02-11 2149.000 2189.000 49.808 4338.000\n",
"2024-02-12/2024-02-18 1979.000 1956.000 55.949 3935.000\n",
"2024-02-19/2024-02-25 1788.000 2002.000 57.697 3790.000\n",
"2024-02-26/2024-03-03 2299.000 2350.000 42.051 4649.000\n",
"2024-03-04/2024-03-10 4523.000 3500.000 44.989 8023.000\n",
"2024-03-11/2024-03-17 4516.000 4705.000 56.713 9221.000\n",
"2024-03-18/2024-03-24 5561.000 5581.000 52.903 11142.000\n",
"2024-03-25/2024-03-31 5200.000 6965.000 54.644 12165.000\n",
"2024-04-01/2024-04-07 2923.000 4258.000 61.323 7181.000\n",
"2024-04-08/2024-04-14 1331.000 3412.000 69.522 4743.000"
]
},
"execution_count": 49,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"wins.groupby('request_month_year_week').agg({\n",
" 0: 'sum',\n",
" 1: 'sum',\n",
" 'win_perc': 'mean',\n",
" 'total_request': 'sum'\n",
"})"
]
},
{
"cell_type": "code",
"execution_count": 50,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" win | \n",
" request_month_year_week | \n",
" win_perc | \n",
" total_request | \n",
"
\n",
" \n",
" \n",
" \n",
" 11 | \n",
" 2023-09-18/2023-09-24 | \n",
" 100.000 | \n",
" 1.000 | \n",
"
\n",
" \n",
" 12 | \n",
" 2023-09-25/2023-10-01 | \n",
" 58.333 | \n",
" 48.000 | \n",
"
\n",
" \n",
" 13 | \n",
" 2023-10-02/2023-10-08 | \n",
" 61.783 | \n",
" 157.000 | \n",
"
\n",
" \n",
" 14 | \n",
" 2023-10-09/2023-10-15 | \n",
" 60.588 | \n",
" 680.000 | \n",
"
\n",
" \n",
" 15 | \n",
" 2023-10-16/2023-10-22 | \n",
" 58.791 | \n",
" 364.000 | \n",
"
\n",
" \n",
" 16 | \n",
" 2023-10-23/2023-10-29 | \n",
" 47.143 | \n",
" 70.000 | \n",
"
\n",
" \n",
" 17 | \n",
" 2023-10-30/2023-11-05 | \n",
" 67.647 | \n",
" 34.000 | \n",
"
\n",
" \n",
" 18 | \n",
" 2023-11-20/2023-11-26 | \n",
" 100.000 | \n",
" 1.000 | \n",
"
\n",
" \n",
" 19 | \n",
" 2023-11-27/2023-12-03 | \n",
" 57.143 | \n",
" 7.000 | \n",
"
\n",
" \n",
" 20 | \n",
" 2023-12-04/2023-12-10 | \n",
" 66.667 | \n",
" 6.000 | \n",
"
\n",
" \n",
" 21 | \n",
" 2023-12-11/2023-12-17 | \n",
" 50.000 | \n",
" 2.000 | \n",
"
\n",
" \n",
" 22 | \n",
" 2023-12-25/2023-12-31 | \n",
" 55.814 | \n",
" 43.000 | \n",
"
\n",
" \n",
" 23 | \n",
" 2024-01-01/2024-01-07 | \n",
" 28.400 | \n",
" 250.000 | \n",
"
\n",
" \n",
" 24 | \n",
" 2024-01-08/2024-01-14 | \n",
" 35.789 | \n",
" 190.000 | \n",
"
\n",
" \n",
" 25 | \n",
" 2024-01-15/2024-01-21 | \n",
" 36.986 | \n",
" 292.000 | \n",
"
\n",
" \n",
" 26 | \n",
" 2024-01-22/2024-01-28 | \n",
" 45.387 | \n",
" 271.000 | \n",
"
\n",
" \n",
" 27 | \n",
" 2024-01-29/2024-02-04 | \n",
" 29.555 | \n",
" 247.000 | \n",
"
\n",
" \n",
" 28 | \n",
" 2024-02-05/2024-02-11 | \n",
" 49.064 | \n",
" 267.000 | \n",
"
\n",
" \n",
" 29 | \n",
" 2024-02-12/2024-02-18 | \n",
" 63.300 | \n",
" 297.000 | \n",
"
\n",
" \n",
" 30 | \n",
" 2024-02-19/2024-02-25 | \n",
" 65.362 | \n",
" 690.000 | \n",
"
\n",
" \n",
" 31 | \n",
" 2024-03-18/2024-03-24 | \n",
" 71.575 | \n",
" 781.000 | \n",
"
\n",
" \n",
" 32 | \n",
" 2024-03-25/2024-03-31 | \n",
" 69.052 | \n",
" 3648.000 | \n",
"
\n",
" \n",
" 33 | \n",
" 2024-04-01/2024-04-07 | \n",
" 60.991 | \n",
" 2402.000 | \n",
"
\n",
" \n",
" 34 | \n",
" 2024-04-08/2024-04-14 | \n",
" 62.205 | \n",
" 635.000 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
"win request_month_year_week win_perc total_request\n",
"11 2023-09-18/2023-09-24 100.000 1.000\n",
"12 2023-09-25/2023-10-01 58.333 48.000\n",
"13 2023-10-02/2023-10-08 61.783 157.000\n",
"14 2023-10-09/2023-10-15 60.588 680.000\n",
"15 2023-10-16/2023-10-22 58.791 364.000\n",
"16 2023-10-23/2023-10-29 47.143 70.000\n",
"17 2023-10-30/2023-11-05 67.647 34.000\n",
"18 2023-11-20/2023-11-26 100.000 1.000\n",
"19 2023-11-27/2023-12-03 57.143 7.000\n",
"20 2023-12-04/2023-12-10 66.667 6.000\n",
"21 2023-12-11/2023-12-17 50.000 2.000\n",
"22 2023-12-25/2023-12-31 55.814 43.000\n",
"23 2024-01-01/2024-01-07 28.400 250.000\n",
"24 2024-01-08/2024-01-14 35.789 190.000\n",
"25 2024-01-15/2024-01-21 36.986 292.000\n",
"26 2024-01-22/2024-01-28 45.387 271.000\n",
"27 2024-01-29/2024-02-04 29.555 247.000\n",
"28 2024-02-05/2024-02-11 49.064 267.000\n",
"29 2024-02-12/2024-02-18 63.300 297.000\n",
"30 2024-02-19/2024-02-25 65.362 690.000\n",
"31 2024-03-18/2024-03-24 71.575 781.000\n",
"32 2024-03-25/2024-03-31 69.052 3648.000\n",
"33 2024-04-01/2024-04-07 60.991 2402.000\n",
"34 2024-04-08/2024-04-14 62.205 635.000"
]
},
"execution_count": 50,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# select only claude-prediction-online and plot request_month_year_week vs win_perc\n",
"claude_prediction_online = wins[wins['tool'] == 'claude-prediction-online']\n",
"claude_prediction_online = claude_prediction_online[['request_month_year_week', 'win_perc', 'total_request']]\n",
"claude_prediction_online = claude_prediction_online.sort_values(by='request_month_year_week')\n",
"\n",
"claude_prediction_online"
]
},
{
"cell_type": "code",
"execution_count": 51,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" win | \n",
" request_month_year_week | \n",
" win_perc | \n",
" total_request | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 2023-09-18/2023-09-24 | \n",
" 16.667 | \n",
" 6.000 | \n",
"
\n",
" \n",
" 1 | \n",
" 2023-09-25/2023-10-01 | \n",
" 53.205 | \n",
" 156.000 | \n",
"
\n",
" \n",
" 2 | \n",
" 2023-10-02/2023-10-08 | \n",
" 53.333 | \n",
" 285.000 | \n",
"
\n",
" \n",
" 3 | \n",
" 2023-10-09/2023-10-15 | \n",
" 60.477 | \n",
" 377.000 | \n",
"
\n",
" \n",
" 4 | \n",
" 2023-10-16/2023-10-22 | \n",
" 57.854 | \n",
" 522.000 | \n",
"
\n",
" \n",
" 5 | \n",
" 2023-10-23/2023-10-29 | \n",
" 56.383 | \n",
" 376.000 | \n",
"
\n",
" \n",
" 6 | \n",
" 2023-10-30/2023-11-05 | \n",
" 72.000 | \n",
" 75.000 | \n",
"
\n",
" \n",
" 7 | \n",
" 2023-11-06/2023-11-12 | \n",
" 100.000 | \n",
" 1.000 | \n",
"
\n",
" \n",
" 8 | \n",
" 2023-11-13/2023-11-19 | \n",
" 100.000 | \n",
" 2.000 | \n",
"
\n",
" \n",
" 9 | \n",
" 2023-12-18/2023-12-24 | \n",
" 20.000 | \n",
" 5.000 | \n",
"
\n",
" \n",
" 10 | \n",
" 2024-03-25/2024-03-31 | \n",
" 100.000 | \n",
" 2.000 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
"win request_month_year_week win_perc total_request\n",
"0 2023-09-18/2023-09-24 16.667 6.000\n",
"1 2023-09-25/2023-10-01 53.205 156.000\n",
"2 2023-10-02/2023-10-08 53.333 285.000\n",
"3 2023-10-09/2023-10-15 60.477 377.000\n",
"4 2023-10-16/2023-10-22 57.854 522.000\n",
"5 2023-10-23/2023-10-29 56.383 376.000\n",
"6 2023-10-30/2023-11-05 72.000 75.000\n",
"7 2023-11-06/2023-11-12 100.000 1.000\n",
"8 2023-11-13/2023-11-19 100.000 2.000\n",
"9 2023-12-18/2023-12-24 20.000 5.000\n",
"10 2024-03-25/2024-03-31 100.000 2.000"
]
},
"execution_count": 51,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# select only claude-prediction-offline and plot request_month_year_week vs win_perc\n",
"claude_prediction_offline = wins[wins['tool'] == 'claude-prediction-offline']\n",
"claude_prediction_offline = claude_prediction_offline[['request_month_year_week', 'win_perc', 'total_request']]\n",
"claude_prediction_offline = claude_prediction_offline.sort_values(by='request_month_year_week')\n",
"\n",
"claude_prediction_offline"
]
},
{
"cell_type": "code",
"execution_count": 52,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" win | \n",
" request_month_year_week | \n",
" win_perc | \n",
" total_request | \n",
"
\n",
" \n",
" \n",
" \n",
" 72 | \n",
" 2023-07-17/2023-07-23 | \n",
" 50.000 | \n",
" 2.000 | \n",
"
\n",
" \n",
" 73 | \n",
" 2023-07-24/2023-07-30 | \n",
" 50.000 | \n",
" 24.000 | \n",
"
\n",
" \n",
" 74 | \n",
" 2023-07-31/2023-08-06 | \n",
" 38.306 | \n",
" 543.000 | \n",
"
\n",
" \n",
" 75 | \n",
" 2023-08-07/2023-08-13 | \n",
" 38.246 | \n",
" 285.000 | \n",
"
\n",
" \n",
" 76 | \n",
" 2023-08-14/2023-08-20 | \n",
" 41.623 | \n",
" 1343.000 | \n",
"
\n",
" \n",
" 77 | \n",
" 2023-08-21/2023-08-27 | \n",
" 45.719 | \n",
" 1098.000 | \n",
"
\n",
" \n",
" 78 | \n",
" 2023-08-28/2023-09-03 | \n",
" 34.384 | \n",
" 1460.000 | \n",
"
\n",
" \n",
" 79 | \n",
" 2023-09-04/2023-09-10 | \n",
" 46.845 | \n",
" 3027.000 | \n",
"
\n",
" \n",
" 80 | \n",
" 2023-09-11/2023-09-17 | \n",
" 54.096 | \n",
" 2551.000 | \n",
"
\n",
" \n",
" 81 | \n",
" 2023-09-18/2023-09-24 | \n",
" 51.602 | \n",
" 4246.000 | \n",
"
\n",
" \n",
" 82 | \n",
" 2023-09-25/2023-10-01 | \n",
" 43.876 | \n",
" 743.000 | \n",
"
\n",
" \n",
" 83 | \n",
" 2023-10-02/2023-10-08 | \n",
" 50.538 | \n",
" 837.000 | \n",
"
\n",
" \n",
" 84 | \n",
" 2023-10-09/2023-10-15 | \n",
" 50.976 | \n",
" 973.000 | \n",
"
\n",
" \n",
" 85 | \n",
" 2023-10-16/2023-10-22 | \n",
" 56.146 | \n",
" 903.000 | \n",
"
\n",
" \n",
" 86 | \n",
" 2023-10-23/2023-10-29 | \n",
" 48.822 | \n",
" 594.000 | \n",
"
\n",
" \n",
" 87 | \n",
" 2023-10-30/2023-11-05 | \n",
" 60.392 | \n",
" 664.000 | \n",
"
\n",
" \n",
" 88 | \n",
" 2023-11-06/2023-11-12 | \n",
" 52.533 | \n",
" 1757.000 | \n",
"
\n",
" \n",
" 89 | \n",
" 2023-11-13/2023-11-19 | \n",
" 53.892 | \n",
" 2004.000 | \n",
"
\n",
" \n",
" 90 | \n",
" 2023-11-20/2023-11-26 | \n",
" 53.202 | \n",
" 1780.000 | \n",
"
\n",
" \n",
" 91 | \n",
" 2023-11-27/2023-12-03 | \n",
" 54.253 | \n",
" 1058.000 | \n",
"
\n",
" \n",
" 92 | \n",
" 2023-12-04/2023-12-10 | \n",
" 47.500 | \n",
" 80.000 | \n",
"
\n",
" \n",
" 93 | \n",
" 2023-12-11/2023-12-17 | \n",
" 52.174 | \n",
" 23.000 | \n",
"
\n",
" \n",
" 94 | \n",
" 2023-12-18/2023-12-24 | \n",
" 69.863 | \n",
" 73.000 | \n",
"
\n",
" \n",
" 95 | \n",
" 2023-12-25/2023-12-31 | \n",
" 41.509 | \n",
" 53.000 | \n",
"
\n",
" \n",
" 96 | \n",
" 2024-01-01/2024-01-07 | \n",
" 0.000 | \n",
" 2.000 | \n",
"
\n",
" \n",
" 97 | \n",
" 2024-01-22/2024-01-28 | \n",
" 0.000 | \n",
" 1.000 | \n",
"
\n",
" \n",
" 98 | \n",
" 2024-03-25/2024-03-31 | \n",
" 0.000 | \n",
" 1.000 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
"win request_month_year_week win_perc total_request\n",
"72 2023-07-17/2023-07-23 50.000 2.000\n",
"73 2023-07-24/2023-07-30 50.000 24.000\n",
"74 2023-07-31/2023-08-06 38.306 543.000\n",
"75 2023-08-07/2023-08-13 38.246 285.000\n",
"76 2023-08-14/2023-08-20 41.623 1343.000\n",
"77 2023-08-21/2023-08-27 45.719 1098.000\n",
"78 2023-08-28/2023-09-03 34.384 1460.000\n",
"79 2023-09-04/2023-09-10 46.845 3027.000\n",
"80 2023-09-11/2023-09-17 54.096 2551.000\n",
"81 2023-09-18/2023-09-24 51.602 4246.000\n",
"82 2023-09-25/2023-10-01 43.876 743.000\n",
"83 2023-10-02/2023-10-08 50.538 837.000\n",
"84 2023-10-09/2023-10-15 50.976 973.000\n",
"85 2023-10-16/2023-10-22 56.146 903.000\n",
"86 2023-10-23/2023-10-29 48.822 594.000\n",
"87 2023-10-30/2023-11-05 60.392 664.000\n",
"88 2023-11-06/2023-11-12 52.533 1757.000\n",
"89 2023-11-13/2023-11-19 53.892 2004.000\n",
"90 2023-11-20/2023-11-26 53.202 1780.000\n",
"91 2023-11-27/2023-12-03 54.253 1058.000\n",
"92 2023-12-04/2023-12-10 47.500 80.000\n",
"93 2023-12-11/2023-12-17 52.174 23.000\n",
"94 2023-12-18/2023-12-24 69.863 73.000\n",
"95 2023-12-25/2023-12-31 41.509 53.000\n",
"96 2024-01-01/2024-01-07 0.000 2.000\n",
"97 2024-01-22/2024-01-28 0.000 1.000\n",
"98 2024-03-25/2024-03-31 0.000 1.000"
]
},
"execution_count": 52,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# select only prediction-online and plot request_month_year_week vs win_perc\n",
"prediction_online = wins[wins['tool'] == 'prediction-online']\n",
"prediction_online = prediction_online[['request_month_year_week', 'win_perc', 'total_request']]\n",
"prediction_online = prediction_online.sort_values(by='request_month_year_week')\n",
"\n",
"prediction_online"
]
},
{
"cell_type": "code",
"execution_count": 53,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" win | \n",
" request_month_year_week | \n",
" win_perc | \n",
" total_request | \n",
"
\n",
" \n",
" \n",
" \n",
" 35 | \n",
" 2023-07-31/2023-08-06 | \n",
" 45.652 | \n",
" 46.000 | \n",
"
\n",
" \n",
" 36 | \n",
" 2023-08-07/2023-08-13 | \n",
" 50.000 | \n",
" 2.000 | \n",
"
\n",
" \n",
" 37 | \n",
" 2023-09-18/2023-09-24 | \n",
" 51.128 | \n",
" 133.000 | \n",
"
\n",
" \n",
" 38 | \n",
" 2023-09-25/2023-10-01 | \n",
" 36.864 | \n",
" 236.000 | \n",
"
\n",
" \n",
" 39 | \n",
" 2023-10-02/2023-10-08 | \n",
" 50.077 | \n",
" 651.000 | \n",
"
\n",
" \n",
" 40 | \n",
" 2023-10-09/2023-10-15 | \n",
" 52.392 | \n",
" 418.000 | \n",
"
\n",
" \n",
" 41 | \n",
" 2023-10-16/2023-10-22 | \n",
" 52.658 | \n",
" 395.000 | \n",
"
\n",
" \n",
" 42 | \n",
" 2023-10-23/2023-10-29 | \n",
" 45.503 | \n",
" 189.000 | \n",
"
\n",
" \n",
" 43 | \n",
" 2023-10-30/2023-11-05 | \n",
" 75.000 | \n",
" 40.000 | \n",
"
\n",
" \n",
" 44 | \n",
" 2023-11-13/2023-11-19 | \n",
" 50.000 | \n",
" 2.000 | \n",
"
\n",
" \n",
" 45 | \n",
" 2023-11-20/2023-11-26 | \n",
" 33.333 | \n",
" 3.000 | \n",
"
\n",
" \n",
" 46 | \n",
" 2023-11-27/2023-12-03 | \n",
" 88.235 | \n",
" 17.000 | \n",
"
\n",
" \n",
" 47 | \n",
" 2023-12-04/2023-12-10 | \n",
" 0.000 | \n",
" 1.000 | \n",
"
\n",
" \n",
" 48 | \n",
" 2023-12-18/2023-12-24 | \n",
" 50.000 | \n",
" 6.000 | \n",
"
\n",
" \n",
" 49 | \n",
" 2024-01-01/2024-01-07 | \n",
" 100.000 | \n",
" 1.000 | \n",
"
\n",
" \n",
" 50 | \n",
" 2024-03-11/2024-03-17 | \n",
" 62.808 | \n",
" 406.000 | \n",
"
\n",
" \n",
" 51 | \n",
" 2024-03-18/2024-03-24 | \n",
" 54.453 | \n",
" 2448.000 | \n",
"
\n",
" \n",
" 52 | \n",
" 2024-03-25/2024-03-31 | \n",
" 58.729 | \n",
" 2360.000 | \n",
"
\n",
" \n",
" 53 | \n",
" 2024-04-01/2024-04-07 | \n",
" 57.055 | \n",
" 652.000 | \n",
"
\n",
" \n",
" 54 | \n",
" 2024-04-08/2024-04-14 | \n",
" 75.641 | \n",
" 468.000 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
"win request_month_year_week win_perc total_request\n",
"35 2023-07-31/2023-08-06 45.652 46.000\n",
"36 2023-08-07/2023-08-13 50.000 2.000\n",
"37 2023-09-18/2023-09-24 51.128 133.000\n",
"38 2023-09-25/2023-10-01 36.864 236.000\n",
"39 2023-10-02/2023-10-08 50.077 651.000\n",
"40 2023-10-09/2023-10-15 52.392 418.000\n",
"41 2023-10-16/2023-10-22 52.658 395.000\n",
"42 2023-10-23/2023-10-29 45.503 189.000\n",
"43 2023-10-30/2023-11-05 75.000 40.000\n",
"44 2023-11-13/2023-11-19 50.000 2.000\n",
"45 2023-11-20/2023-11-26 33.333 3.000\n",
"46 2023-11-27/2023-12-03 88.235 17.000\n",
"47 2023-12-04/2023-12-10 0.000 1.000\n",
"48 2023-12-18/2023-12-24 50.000 6.000\n",
"49 2024-01-01/2024-01-07 100.000 1.000\n",
"50 2024-03-11/2024-03-17 62.808 406.000\n",
"51 2024-03-18/2024-03-24 54.453 2448.000\n",
"52 2024-03-25/2024-03-31 58.729 2360.000\n",
"53 2024-04-01/2024-04-07 57.055 652.000\n",
"54 2024-04-08/2024-04-14 75.641 468.000"
]
},
"execution_count": 53,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# select only prediction-offline and plot request_month_year_week vs win_perc\n",
"prediction_offline = wins[wins['tool'] == 'prediction-offline']\n",
"prediction_offline = prediction_offline[['request_month_year_week', 'win_perc', 'total_request']]\n",
"prediction_offline = prediction_offline.sort_values(by='request_month_year_week')\n",
"\n",
"prediction_offline"
]
},
{
"cell_type": "code",
"execution_count": 54,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" win | \n",
" request_month_year_week | \n",
" win_perc | \n",
" total_request | \n",
"
\n",
" \n",
" \n",
" \n",
" 55 | \n",
" 2023-09-18/2023-09-24 | \n",
" 83.333 | \n",
" 6.000 | \n",
"
\n",
" \n",
" 56 | \n",
" 2023-09-25/2023-10-01 | \n",
" 45.545 | \n",
" 303.000 | \n",
"
\n",
" \n",
" 57 | \n",
" 2023-10-02/2023-10-08 | \n",
" 54.208 | \n",
" 701.000 | \n",
"
\n",
" \n",
" 58 | \n",
" 2023-10-09/2023-10-15 | \n",
" 58.883 | \n",
" 591.000 | \n",
"
\n",
" \n",
" 59 | \n",
" 2023-10-16/2023-10-22 | \n",
" 54.407 | \n",
" 329.000 | \n",
"
\n",
" \n",
" 60 | \n",
" 2023-10-23/2023-10-29 | \n",
" 51.064 | \n",
" 517.000 | \n",
"
\n",
" \n",
" 61 | \n",
" 2023-10-30/2023-11-05 | \n",
" 60.265 | \n",
" 302.000 | \n",
"
\n",
" \n",
" 62 | \n",
" 2023-11-13/2023-11-19 | \n",
" 20.000 | \n",
" 10.000 | \n",
"
\n",
" \n",
" 63 | \n",
" 2023-11-20/2023-11-26 | \n",
" 50.000 | \n",
" 14.000 | \n",
"
\n",
" \n",
" 64 | \n",
" 2023-11-27/2023-12-03 | \n",
" 86.667 | \n",
" 15.000 | \n",
"
\n",
" \n",
" 65 | \n",
" 2023-12-04/2023-12-10 | \n",
" 0.000 | \n",
" 1.000 | \n",
"
\n",
" \n",
" 66 | \n",
" 2023-12-18/2023-12-24 | \n",
" 40.000 | \n",
" 5.000 | \n",
"
\n",
" \n",
" 67 | \n",
" 2024-03-11/2024-03-17 | \n",
" 60.947 | \n",
" 169.000 | \n",
"
\n",
" \n",
" 68 | \n",
" 2024-03-18/2024-03-24 | \n",
" 44.016 | \n",
" 493.000 | \n",
"
\n",
" \n",
" 69 | \n",
" 2024-03-25/2024-03-31 | \n",
" 60.000 | \n",
" 10.000 | \n",
"
\n",
" \n",
" 70 | \n",
" 2024-04-01/2024-04-07 | \n",
" 61.039 | \n",
" 77.000 | \n",
"
\n",
" \n",
" 71 | \n",
" 2024-04-08/2024-04-14 | \n",
" 50.000 | \n",
" 2.000 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
"win request_month_year_week win_perc total_request\n",
"55 2023-09-18/2023-09-24 83.333 6.000\n",
"56 2023-09-25/2023-10-01 45.545 303.000\n",
"57 2023-10-02/2023-10-08 54.208 701.000\n",
"58 2023-10-09/2023-10-15 58.883 591.000\n",
"59 2023-10-16/2023-10-22 54.407 329.000\n",
"60 2023-10-23/2023-10-29 51.064 517.000\n",
"61 2023-10-30/2023-11-05 60.265 302.000\n",
"62 2023-11-13/2023-11-19 20.000 10.000\n",
"63 2023-11-20/2023-11-26 50.000 14.000\n",
"64 2023-11-27/2023-12-03 86.667 15.000\n",
"65 2023-12-04/2023-12-10 0.000 1.000\n",
"66 2023-12-18/2023-12-24 40.000 5.000\n",
"67 2024-03-11/2024-03-17 60.947 169.000\n",
"68 2024-03-18/2024-03-24 44.016 493.000\n",
"69 2024-03-25/2024-03-31 60.000 10.000\n",
"70 2024-04-01/2024-04-07 61.039 77.000\n",
"71 2024-04-08/2024-04-14 50.000 2.000"
]
},
"execution_count": 54,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# select only prediction-offline-sme and plot request_month_year_week vs win_perc\n",
"prediction_offline_sme = wins[wins['tool'] == 'prediction-offline-sme']\n",
"prediction_offline_sme = prediction_offline_sme[['request_month_year_week', 'win_perc', 'total_request']]\n",
"prediction_offline_sme = prediction_offline_sme.sort_values(by='request_month_year_week')\n",
"\n",
"prediction_offline_sme"
]
},
{
"cell_type": "code",
"execution_count": 55,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" win | \n",
" request_month_year_week | \n",
" win_perc | \n",
" total_request | \n",
"
\n",
" \n",
" \n",
" \n",
" 99 | \n",
" 2023-09-18/2023-09-24 | \n",
" 63.077 | \n",
" 65.000 | \n",
"
\n",
" \n",
" 100 | \n",
" 2023-09-25/2023-10-01 | \n",
" 47.988 | \n",
" 323.000 | \n",
"
\n",
" \n",
" 101 | \n",
" 2023-10-02/2023-10-08 | \n",
" 55.502 | \n",
" 836.000 | \n",
"
\n",
" \n",
" 102 | \n",
" 2023-10-09/2023-10-15 | \n",
" 60.369 | \n",
" 651.000 | \n",
"
\n",
" \n",
" 103 | \n",
" 2023-10-16/2023-10-22 | \n",
" 53.117 | \n",
" 401.000 | \n",
"
\n",
" \n",
" 104 | \n",
" 2023-10-23/2023-10-29 | \n",
" 55.899 | \n",
" 356.000 | \n",
"
\n",
" \n",
" 105 | \n",
" 2023-10-30/2023-11-05 | \n",
" 53.785 | \n",
" 251.000 | \n",
"
\n",
" \n",
" 106 | \n",
" 2023-11-06/2023-11-12 | \n",
" 54.511 | \n",
" 1563.000 | \n",
"
\n",
" \n",
" 107 | \n",
" 2023-11-13/2023-11-19 | \n",
" 52.120 | \n",
" 1863.000 | \n",
"
\n",
" \n",
" 108 | \n",
" 2023-11-20/2023-11-26 | \n",
" 55.873 | \n",
" 1643.000 | \n",
"
\n",
" \n",
" 109 | \n",
" 2023-11-27/2023-12-03 | \n",
" 52.308 | \n",
" 2231.000 | \n",
"
\n",
" \n",
" 110 | \n",
" 2023-12-04/2023-12-10 | \n",
" 54.359 | \n",
" 2627.000 | \n",
"
\n",
" \n",
" 111 | \n",
" 2023-12-11/2023-12-17 | \n",
" 55.039 | \n",
" 3225.000 | \n",
"
\n",
" \n",
" 112 | \n",
" 2023-12-18/2023-12-24 | \n",
" 53.571 | \n",
" 2800.000 | \n",
"
\n",
" \n",
" 113 | \n",
" 2023-12-25/2023-12-31 | \n",
" 47.342 | \n",
" 2558.000 | \n",
"
\n",
" \n",
" 114 | \n",
" 2024-01-01/2024-01-07 | \n",
" 45.344 | \n",
" 3619.000 | \n",
"
\n",
" \n",
" 115 | \n",
" 2024-01-08/2024-01-14 | \n",
" 47.405 | \n",
" 1734.000 | \n",
"
\n",
" \n",
" 116 | \n",
" 2024-01-15/2024-01-21 | \n",
" 44.667 | \n",
" 3694.000 | \n",
"
\n",
" \n",
" 117 | \n",
" 2024-01-22/2024-01-28 | \n",
" 49.464 | \n",
" 3734.000 | \n",
"
\n",
" \n",
" 118 | \n",
" 2024-01-29/2024-02-04 | \n",
" 44.658 | \n",
" 3847.000 | \n",
"
\n",
" \n",
" 119 | \n",
" 2024-02-05/2024-02-11 | \n",
" 50.553 | \n",
" 4071.000 | \n",
"
\n",
" \n",
" 120 | \n",
" 2024-02-12/2024-02-18 | \n",
" 48.598 | \n",
" 3638.000 | \n",
"
\n",
" \n",
" 121 | \n",
" 2024-02-19/2024-02-25 | \n",
" 50.032 | \n",
" 3100.000 | \n",
"
\n",
" \n",
" 122 | \n",
" 2024-02-26/2024-03-03 | \n",
" 51.717 | \n",
" 4368.000 | \n",
"
\n",
" \n",
" 123 | \n",
" 2024-03-04/2024-03-10 | \n",
" 54.806 | \n",
" 3454.000 | \n",
"
\n",
" \n",
" 124 | \n",
" 2024-03-11/2024-03-17 | \n",
" 55.848 | \n",
" 3044.000 | \n",
"
\n",
" \n",
" 125 | \n",
" 2024-03-18/2024-03-24 | \n",
" 48.639 | \n",
" 2535.000 | \n",
"
\n",
" \n",
" 126 | \n",
" 2024-03-25/2024-03-31 | \n",
" 41.345 | \n",
" 1398.000 | \n",
"
\n",
" \n",
" 127 | \n",
" 2024-04-01/2024-04-07 | \n",
" 59.435 | \n",
" 1097.000 | \n",
"
\n",
" \n",
" 128 | \n",
" 2024-04-08/2024-04-14 | \n",
" 68.281 | \n",
" 413.000 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
"win request_month_year_week win_perc total_request\n",
"99 2023-09-18/2023-09-24 63.077 65.000\n",
"100 2023-09-25/2023-10-01 47.988 323.000\n",
"101 2023-10-02/2023-10-08 55.502 836.000\n",
"102 2023-10-09/2023-10-15 60.369 651.000\n",
"103 2023-10-16/2023-10-22 53.117 401.000\n",
"104 2023-10-23/2023-10-29 55.899 356.000\n",
"105 2023-10-30/2023-11-05 53.785 251.000\n",
"106 2023-11-06/2023-11-12 54.511 1563.000\n",
"107 2023-11-13/2023-11-19 52.120 1863.000\n",
"108 2023-11-20/2023-11-26 55.873 1643.000\n",
"109 2023-11-27/2023-12-03 52.308 2231.000\n",
"110 2023-12-04/2023-12-10 54.359 2627.000\n",
"111 2023-12-11/2023-12-17 55.039 3225.000\n",
"112 2023-12-18/2023-12-24 53.571 2800.000\n",
"113 2023-12-25/2023-12-31 47.342 2558.000\n",
"114 2024-01-01/2024-01-07 45.344 3619.000\n",
"115 2024-01-08/2024-01-14 47.405 1734.000\n",
"116 2024-01-15/2024-01-21 44.667 3694.000\n",
"117 2024-01-22/2024-01-28 49.464 3734.000\n",
"118 2024-01-29/2024-02-04 44.658 3847.000\n",
"119 2024-02-05/2024-02-11 50.553 4071.000\n",
"120 2024-02-12/2024-02-18 48.598 3638.000\n",
"121 2024-02-19/2024-02-25 50.032 3100.000\n",
"122 2024-02-26/2024-03-03 51.717 4368.000\n",
"123 2024-03-04/2024-03-10 54.806 3454.000\n",
"124 2024-03-11/2024-03-17 55.848 3044.000\n",
"125 2024-03-18/2024-03-24 48.639 2535.000\n",
"126 2024-03-25/2024-03-31 41.345 1398.000\n",
"127 2024-04-01/2024-04-07 59.435 1097.000\n",
"128 2024-04-08/2024-04-14 68.281 413.000"
]
},
"execution_count": 55,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# select only prediction-online-sme and plot request_month_year_week vs win_perc\n",
"prediction_online_sme = wins[wins['tool'] == 'prediction-online-sme']\n",
"prediction_online_sme = prediction_online_sme[['request_month_year_week', 'win_perc', 'total_request']]\n",
"prediction_online_sme = prediction_online_sme.sort_values(by='request_month_year_week')\n",
"\n",
"prediction_online_sme"
]
},
{
"cell_type": "code",
"execution_count": 56,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" win | \n",
" request_month_year_week | \n",
" win_perc | \n",
" total_request | \n",
"
\n",
" \n",
" \n",
" \n",
" 129 | \n",
" 2024-02-26/2024-03-03 | \n",
" 32.384 | \n",
" 281.000 | \n",
"
\n",
" \n",
" 130 | \n",
" 2024-03-04/2024-03-10 | \n",
" 35.172 | \n",
" 4569.000 | \n",
"
\n",
" \n",
" 131 | \n",
" 2024-03-11/2024-03-17 | \n",
" 47.251 | \n",
" 5602.000 | \n",
"
\n",
" \n",
" 132 | \n",
" 2024-03-18/2024-03-24 | \n",
" 45.834 | \n",
" 4885.000 | \n",
"
\n",
" \n",
" 133 | \n",
" 2024-03-25/2024-03-31 | \n",
" 51.273 | \n",
" 4006.000 | \n",
"
\n",
" \n",
" 134 | \n",
" 2024-04-01/2024-04-07 | \n",
" 57.021 | \n",
" 1289.000 | \n",
"
\n",
" \n",
" 135 | \n",
" 2024-04-08/2024-04-14 | \n",
" 70.376 | \n",
" 692.000 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
"win request_month_year_week win_perc total_request\n",
"129 2024-02-26/2024-03-03 32.384 281.000\n",
"130 2024-03-04/2024-03-10 35.172 4569.000\n",
"131 2024-03-11/2024-03-17 47.251 5602.000\n",
"132 2024-03-18/2024-03-24 45.834 4885.000\n",
"133 2024-03-25/2024-03-31 51.273 4006.000\n",
"134 2024-04-01/2024-04-07 57.021 1289.000\n",
"135 2024-04-08/2024-04-14 70.376 692.000"
]
},
"execution_count": 56,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# select only prediction-request-rag and plot request_month_year_week vs win_perc\n",
"prediction_request_rag = wins[wins['tool'] == 'prediction-request-rag']\n",
"prediction_request_rag = prediction_request_rag[['request_month_year_week', 'win_perc', 'total_request']]\n",
"prediction_request_rag = prediction_request_rag.sort_values(by='request_month_year_week')\n",
"\n",
"prediction_request_rag"
]
},
{
"cell_type": "code",
"execution_count": 57,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" win | \n",
" request_month_year_week | \n",
" win_perc | \n",
" total_request | \n",
"
\n",
" \n",
" \n",
" \n",
" 138 | \n",
" 2024-03-25/2024-03-31 | \n",
" 56.757 | \n",
" 740.000 | \n",
"
\n",
" \n",
" 139 | \n",
" 2024-04-01/2024-04-07 | \n",
" 58.025 | \n",
" 1458.000 | \n",
"
\n",
" \n",
" 140 | \n",
" 2024-04-08/2024-04-14 | \n",
" 73.679 | \n",
" 1003.000 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
"win request_month_year_week win_perc total_request\n",
"138 2024-03-25/2024-03-31 56.757 740.000\n",
"139 2024-04-01/2024-04-07 58.025 1458.000\n",
"140 2024-04-08/2024-04-14 73.679 1003.000"
]
},
"execution_count": 57,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"prediction_request_reasoning = wins[wins['tool'] == 'prediction-request-reasoning']\n",
"prediction_request_reasoning = prediction_request_reasoning[['request_month_year_week', 'win_perc', 'total_request']]\n",
"prediction_request_reasoning = prediction_request_reasoning.sort_values(by='request_month_year_week')\n",
"\n",
"prediction_request_reasoning"
]
},
{
"cell_type": "code",
"execution_count": 58,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" win | \n",
" request_month_year_week | \n",
" win_perc | \n",
" total_request | \n",
"
\n",
" \n",
" \n",
" \n",
" 141 | \n",
" 2024-04-01/2024-04-07 | \n",
" 68.387 | \n",
" 155.000 | \n",
"
\n",
" \n",
" 142 | \n",
" 2024-04-08/2024-04-14 | \n",
" 78.514 | \n",
" 619.000 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
"win request_month_year_week win_perc total_request\n",
"141 2024-04-01/2024-04-07 68.387 155.000\n",
"142 2024-04-08/2024-04-14 78.514 619.000"
]
},
"execution_count": 58,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"prediction_request_reasoning_claude = wins[wins['tool'] == 'prediction-request-reasoning-claude']\n",
"prediction_request_reasoning_claude = prediction_request_reasoning_claude[['request_month_year_week', 'win_perc', 'total_request']]\n",
"prediction_request_reasoning_claude = prediction_request_reasoning_claude.sort_values(by='request_month_year_week')\n",
"\n",
"prediction_request_reasoning_claude"
]
},
{
"cell_type": "code",
"execution_count": 59,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" win | \n",
" request_month_year_week | \n",
" win_perc | \n",
" total_request | \n",
"
\n",
" \n",
" \n",
" \n",
" 136 | \n",
" 2024-04-01/2024-04-07 | \n",
" 68.627 | \n",
" 51.000 | \n",
"
\n",
" \n",
" 137 | \n",
" 2024-04-08/2024-04-14 | \n",
" 74.184 | \n",
" 337.000 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
"win request_month_year_week win_perc total_request\n",
"136 2024-04-01/2024-04-07 68.627 51.000\n",
"137 2024-04-08/2024-04-14 74.184 337.000"
]
},
"execution_count": 59,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"prediction_request_rag_claude = wins[wins['tool'] == 'prediction-request-rag-claude']\n",
"prediction_request_rag_claude = prediction_request_rag_claude[['request_month_year_week', 'win_perc', 'total_request']]\n",
"prediction_request_rag_claude = prediction_request_rag_claude.sort_values(by='request_month_year_week')\n",
"\n",
"prediction_request_rag_claude"
]
},
{
"cell_type": "code",
"execution_count": 60,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" win | \n",
" request_month_year_week | \n",
" win_perc | \n",
" total_request | \n",
"
\n",
" \n",
" \n",
" \n",
" 143 | \n",
" 2024-04-08/2024-04-14 | \n",
" 72.822 | \n",
" 574.000 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
"win request_month_year_week win_perc total_request\n",
"143 2024-04-08/2024-04-14 72.822 574.000"
]
},
"execution_count": 60,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"prediction_url_cot_claude = wins[wins['tool'] == 'prediction-url-cot-claude']\n",
"prediction_url_cot_claude = prediction_url_cot_claude[['request_month_year_week', 'win_perc', 'total_request']]\n",
"prediction_url_cot_claude = prediction_url_cot_claude.sort_values(by='request_month_year_week')\n",
"\n",
"prediction_url_cot_claude"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 3. Profitability analysis"
]
},
{
"cell_type": "code",
"execution_count": 61,
"metadata": {},
"outputs": [],
"source": [
"all_trades['creation_timestamp'] = pd.to_datetime(all_trades['creation_timestamp'])\n",
"all_trades = all_trades[all_trades['current_answer'].isin([0., 1., -1.])].reset_index(drop=True)"
]
},
{
"cell_type": "code",
"execution_count": 62,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Number of traders: 200\n",
"Number of trades: 72,724\n"
]
}
],
"source": [
"print(f\"Number of traders: {len(summary_traders):,}\")\n",
"print(f\"Number of trades: {all_trades['trade_id'].nunique():,}\")"
]
},
{
"cell_type": "code",
"execution_count": 63,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Text(0, 0.5, 'Number of trades')"
]
},
"execution_count": 63,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA1sAAAJICAYAAACXCf6EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydeZxcVZn+n1tr793prAQCCYvsiIACijJKFAEVR0RQlEUGGAbEZRRBRQGVzQ1BxMENdEAd3H6KDKs4UUB2BCEQtiQsSTpJd9J7rff3R9U599xz91tLd1c/38+HT5Nabp26td3nPu/7vIZpmiYIIYQQQgghhNSVxFQvgBBCCCGEEEJaEYotQgghhBBCCGkAFFuEEEIIIYQQ0gAotgghhBBCCCGkAVBsEUIIIYQQQkgDoNgihBBCCCGEkAZAsUUIIYQQQgghDYBiixBCCCGEEEIaAMUWIYQQQgghhDQAii1CCJnl/OUvf4FhGPj1r3891UsJxYYNG/DBD34Qc+fOhWEYuPLKK6d6STZOPvlkLF26dKqXMeNYunQpTj755KleBiGE1BWKLUIIaQLXX389DMNAW1sbXn31Vcf1//Iv/4K99tprClY28/j0pz+N22+/Heeffz5+/vOf493vfrfr7cbHx3HhhRfiL3/5S3MXSDy57777cOGFF2LLli1TvRRCCGkKqaleACGEzCZyuRwuu+wyXH311VO9lBnLn//8Zxx99NH47Gc/63u78fFxXHTRRQAqYpZMPffddx8uuuginHzyyejr67Nd9+yzzyKR4DlgQkhrwW81QghpIvvuuy9++MMf4rXXXpvqpTSdsbGxumxnYGDAcaBeD+q1vtlO3P2YzWaRTqfrvBpCCJlaKLYIIaSJfOELX0CpVMJll13me7vVq1fDMAxcf/31jusMw8CFF14o/33hhRfCMAysWrUKH/3oR9Hb24v58+fjggsugGmaePnll3H00Uejp6cHixYtwre+9S3XxyyVSvjCF76ARYsWobOzE+973/vw8ssvO273wAMP4N3vfjd6e3vR0dGBQw89FPfee6/tNmJNTz/9ND7ykY9gzpw5OOSQQ3yf84svvohjjz0W/f396OjowEEHHYQ//elP8npRimmaJq655hoYhgHDMDz33/z58wEAF110kbyt2G8nn3wyurq68MILL+DII49Ed3c3TjjhBADAX//6Vxx77LHYfvvtkc1msWTJEnz605/GxMSE43F+//vfY6+99kJbWxv22msv/O53v3NdT7lcxpVXXok999wTbW1tWLhwIc444wwMDQ3Zbvfwww/j8MMPx7x589De3o5ly5bh4x//uO9+E3z/+9/HnnvuiWw2i8WLF+Oss86yleudffbZ6Orqwvj4uOO+H/7wh7Fo0SKUSiV52f/+7//irW99Kzo7O9Hd3Y2jjjoKTz31lO1+fvtR58ILL8TnPvc5AMCyZcvka7J69WoAzp4t8Xr/7W9/wznnnIP58+ejr68PZ5xxBvL5PLZs2YITTzwRc+bMwZw5c3DuuefCNE3bY4bd74QQ0ihYRkgIIU1k2bJlOPHEE/HDH/4Q5513HhYvXly3bR933HHYfffdcdlll+FPf/oTvva1r6G/vx//9V//hXe84x24/PLLceONN+Kzn/0s3vjGN+Jtb3ub7f5f//rXYRgGPv/5z2NgYABXXnklli9fjscffxzt7e0AKiV8RxxxBPbff3985StfQSKRwE9/+lO84x3vwF//+le86U1vsm3z2GOPxS677IJLLrnEcSCssmHDBrz5zW/G+Pg4zjnnHMydOxc33HAD3ve+9+HXv/41/vVf/xVve9vb8POf/xwf+9jH8M53vhMnnnii5/bmz5+Pa6+9FmeeeSb+9V//FR/4wAcAAPvss4+8TbFYxOGHH45DDjkE3/zmN9HR0QEAuPnmmzE+Po4zzzwTc+fOxYMPPoirr74ar7zyCm6++WZ5/zvuuAPHHHMM9thjD1x66aXYvHkzTjnlFGy33XaO9Zxxxhm4/vrrccopp+Ccc87BSy+9hO9973t47LHHcO+99yKdTmNgYADvete7MH/+fJx33nno6+vD6tWr8dvf/tbzeQouvPBCXHTRRVi+fDnOPPNMPPvss7j22mvx0EMPye0fd9xxuOaaa/CnP/0Jxx57rLzv+Pg4/vjHP+Lkk09GMpkEAPz85z/HSSedhMMPPxyXX345xsfHce211+KQQw7BY489ZgsA8dqPOh/4wAewatUq/OIXv8B3vvMdzJs3T75WfnziE5/AokWLcNFFF+Hvf/87rrvuOvT19eG+++7D9ttvj0suuQS33norvvGNb2CvvfayvS/C7HdCCGkoJiGEkIbz05/+1ARgPvTQQ+YLL7xgplIp85xzzpHXH3rooeaee+4p//3SSy+ZAMyf/vSnjm0BML/yla/If3/lK18xAZinn366vKxYLJrbbbedaRiGedlll8nLh4aGzPb2dvOkk06Sl91zzz0mAHPbbbc1h4eH5eX/8z//YwIwv/vd75qmaZrlctncZZddzMMPP9wsl8vyduPj4+ayZcvMd77znY41ffjDHw61fz71qU+ZAMy//vWv8rKRkRFz2bJl5tKlS81SqWR7/meddVbgNjdu3OjYV4KTTjrJBGCed955juvGx8cdl1166aWmYRjmmjVr5GX77ruvuc0225hbtmyRl91xxx0mAHOHHXaQl/31r381AZg33nijbZu33Xab7fLf/e538j0ShYGBATOTyZjvete7bPvpe9/7ngnA/MlPfmKaZuX123bbbc1jjjnGdn/xOq9YscI0zcp+7+vrM0877TTb7davX2/29vbaLvfbj2584xvfMAGYL730kuO6HXbYwfa+FJ8Z/f128MEHm4ZhmP/+7/8uLxPv90MPPVReFna/E0JII2EZISGENJkdd9wRH/vYx3Dddddh3bp1ddvuv/3bv8n/TyaTOOCAA2CaJk499VR5eV9fH3bddVe8+OKLjvufeOKJ6O7ulv/+4Ac/iG222Qa33norAODxxx/Hc889h4985CPYvHkzNm3ahE2bNmFsbAyHHXYYVqxYgXK5bNvmv//7v4da+6233oo3velNtlLDrq4unH766Vi9ejWefvrpcDshImeeeabjMuHiAZX+o02bNuHNb34zTNPEY489BgBYt24dHn/8cZx00kno7e2Vt3/nO9+JPfbYw7a9m2++Gb29vXjnO98p99mmTZuw//77o6urC/fccw8AyD60W265BYVCIfRzuOuuu5DP5/GpT33KFjBx2mmnoaenR5ZiGoaBY489FrfeeitGR0fl7X71q19h2223lfv+zjvvxJYtW/DhD3/Ytt5kMokDDzxQrjdoP9aLU0891VYueuCBBzre1+L9rr6vw+53QghpJBRbhBAyBXzpS19CsVgM7N2Kwvbbb2/7d29vL9ra2mS5lnq5W8/KLrvsYvu3YRjYeeedZU/Nc889BwA46aSTMH/+fNt/P/rRj5DL5bB161bbNpYtWxZq7WvWrMGuu+7quHz33XeX19ebVCrlWvK3du1anHzyyejv70dXVxfmz5+PQw89FADk8xPr0fcZAMfzeO6557B161YsWLDAsd9GR0cxMDAAADj00ENxzDHH4KKLLsK8efNw9NFH46c//SlyuZzv8xBr0R83k8lgxx13tO274447DhMTE/jDH/4AABgdHcWtt96KY489Vgoa8Tq/4x3vcKz3jjvukOsN2o/1wu19DQBLlixxXK6+r8Pud0IIaSTs2SKEkClgxx13xEc/+lFcd911OO+88xzXewU/qAEGOqLfJugyAL79U14I1+ob3/gG9t13X9fbdHV12f6tukTTjWw264gaL5VKeOc734nBwUF8/vOfx2677YbOzk68+uqrOPnkkx3OXRjK5TIWLFiAG2+80fV60bMkBkv//e9/xx//+Efcfvvt+PjHP45vfetb+Pvf/+7Yt3E46KCDsHTpUvzP//wPPvKRj+CPf/wjJiYmcNxxx9nWC1T6thYtWuTYRiplP3Rw24/1xOs97Ha5+r4Ou98JIaSRUGwRQsgU8aUvfQn//d//jcsvv9xx3Zw5cwDAMfy1EQ6PQDgaAtM08fzzz8tQiZ122gkA0NPTg+XLl9f1sXfYYQc8++yzjsufeeYZeX1UvASrH08++SRWrVqFG264wRa0cOedd9puJ9aj7zMAjuex00474a677sJb3vKWUOLzoIMOwkEHHYSvf/3ruOmmm3DCCSfgl7/8pa1M1G0tzz77LHbccUd5eT6fx0svveR4rT70oQ/hu9/9LoaHh/GrX/0KS5cuxUEHHWRbLwAsWLCg7q9znNckLlH3OyGENAKWERJCyBSx00474aMf/Sj+67/+C+vXr7dd19PTg3nz5mHFihW2y7///e83bD0/+9nPMDIyIv/961//GuvWrcMRRxwBANh///2x00474Zvf/Kat50ewcePG2I995JFH4sEHH8T9998vLxsbG8N1112HpUuXOvqgwiBS8XTB6odwS1SHxDRNfPe737XdbptttsG+++6LG264wVY6eeeddzr6yz70oQ+hVCrhq1/9quPxisWiXN/Q0JDDcRQOol8p4fLly5HJZHDVVVfZ7v/jH/8YW7duxVFHHWW7/XHHHYdcLocbbrgBt912Gz70oQ/Zrj/88MPR09ODSy65xLV3rJbXubOzE0C01yQuYfc7IYQ0EjpbhBAyhXzxi1/Ez3/+czz77LPYc889bdf927/9Gy677DL827/9Gw444ACsWLECq1atatha+vv7ccghh+CUU07Bhg0bcOWVV2LnnXfGaaedBgBIJBL40Y9+hCOOOAJ77rknTjnlFGy77bZ49dVXcc8996Cnpwd//OMfYz32eeedh1/84hc44ogjcM4556C/vx833HADXnrpJfzmN7+JVabW3t6OPfbYA7/61a/wute9Dv39/dhrr72w1157ed5nt912w0477YTPfvazePXVV9HT04Pf/OY3rj1ul156KY466igccsgh+PjHP47BwUFcffXV2HPPPW1i9NBDD8UZZ5yBSy+9FI8//jje9a53IZ1O47nnnsPNN9+M7373u/jgBz+IG264Ad///vfxr//6r9hpp50wMjKCH/7wh+jp6cGRRx7pueb58+fj/PPPx0UXXYR3v/vdeN/73odnn30W3//+9/HGN74RH/3oR22332+//bDzzjvji1/8InK5nK2EEKgI/WuvvRYf+9jHsN9+++H444/H/PnzsXbtWvzpT3/CW97yFnzve98L+zLY2H///QFU3vfHH3880uk03vve90oRVk/C7ndCCGkoUxWDSAghswk1+l1HxGer0e+mWYkgP/XUU83e3l6zu7vb/NCHPmQODAx4Rr9v3LjRsd3Ozk7H4+kx8yL6/Re/+IV5/vnnmwsWLDDb29vNo446yhZ1LnjsscfMD3zgA+bcuXPNbDZr7rDDDuaHPvQh8+677w5ckx8vvPCC+cEPftDs6+sz29razDe96U3mLbfc4rgdQka/m6Zp3nfffeb+++9vZjIZ237z2jemaZpPP/20uXz5crOrq8ucN2+eedppp5n/+Mc/XKP4f/Ob35i77767mc1mzT322MP87W9/a5500km26HfBddddZ+6///5me3u72d3dbe69997mueeea7722mumaZrmo48+an74wx82t99+ezObzZoLFiww3/Oe95gPP/xwqOf6ve99z9xtt93MdDptLly40DzzzDPNoaEh19t+8YtfNAGYO++8s+f27rnnHvPwww83e3t7zba2NnOnnXYyTz75ZNt6/PajF1/96lfNbbfd1kwkErYYeK/od/0zE/X9HrTfCSGkkRimGaNLmhBCCCGEEEKIL+zZIoQQQgghhJAGQLFFCCGEEEIIIQ2AYosQQgghhBBCGgDFFiGEEEIIIYQ0AIotQgghhBBCCGkAFFuEEEIIIYQQ0gA41DgE5XIZr732Grq7u2EYxlQvhxBCCCGEEDJFmKaJkZERLF68GImEv3dFsRWC1157DUuWLJnqZRBCCCGEEEKmCS+//DK2224739tQbIWgu7sbQGWH9vT0TPFqCCGEEEIIIVPF8PAwlixZIjWCHxRbIRClgz09PRRbhBBCCCGEkFDtRQzIIIQQQgghhJAGQLFFCCGEEEIIIQ2AYosQQgghhBBCGgDFFiGEEEIIIYQ0AIotQgghhBBCCGkAFFuEEEIIIYQQ0gAotgghhBBCCCGkAVBsEUIIIYQQQkgDoNgihBBCCCGEkAZAsUUIIYQQQgghDYBiixBCCCGEEEIaAMUWIYQQQgghhDQAii1CCCGEEEIIaQAUW4QQQgghhBDSACi2CCGEEEIIIaQBUGwRQgghhBBCSAOg2CKEEEIIIYSQBkCxRQghhBBCZg1/emIdDv3GPfjnq1uneilkFkCxRQghhBBCZg13rdyANZvHcd8Lm6Z6KWQWQLFFCCGEEEJmDaWyCQCo/iGkoVBsEUIIIYSQWUPZrKisEtUWaQIUW4QQQgghZNZQ1VooU2yRJkCxRQghhBBCZg3C2aLWIs2AYosQQgghhMwaZBmhSbVFGg/FFiGEEEIImTUIR8uk2CJNgGKLEEIIIYTMGkwGZJAmQrFFCCGEEEJmDYx+J82EYosQQgghhMwahMgqs4yQNAGKLUIIIYQQMmvgnC3STCi2CCGEEELIrMGks0WaCMUWIYQQQgiZNcg5W3S2SBOg2CKEEEIIIbMGDjUmzYRiixBCCCGEzBqEyOJQY9IMKLYIIYQQQsisQZQPsoyQNAOKLUIIIYQQMmuwyggptkjjodgihBBCCCGzBllGWJ7adZDZAcUWIYQQQgiZNZhVR8uks0WaAMUWIYQQQgiZNTAggzQTii1CCCGEEDJrYPQ7aSYUW4QQQgghZNYgRBbTCEkzoNgihBBCCCGzBiGyShRbpAlQbBFCCCGEkFkDo99JM6HYIoQQQgghswaKLdJMplRsrVixAu9973uxePFiGIaB3//+97brTdPEl7/8ZWyzzTZob2/H8uXL8dxzz9luMzg4iBNOOAE9PT3o6+vDqaeeitHRUdttnnjiCbz1rW9FW1sblixZgiuuuKLRT40QQgghhExDhMZiFSFpBlMqtsbGxvD6178e11xzjev1V1xxBa666ir84Ac/wAMPPIDOzk4cfvjhmJyclLc54YQT8NRTT+HOO+/ELbfcghUrVuD000+X1w8PD+Nd73oXdthhBzzyyCP4xje+gQsvvBDXXXddw58fIYQQQgiZXghHiz1bpBmkpvLBjzjiCBxxxBGu15mmiSuvvBJf+tKXcPTRRwMAfvazn2HhwoX4/e9/j+OPPx4rV67EbbfdhoceeggHHHAAAODqq6/GkUceiW9+85tYvHgxbrzxRuTzefzkJz9BJpPBnnvuiccffxzf/va3baKMEEIIIYS0PjKNkGWEpAlM256tl156CevXr8fy5cvlZb29vTjwwANx//33AwDuv/9+9PX1SaEFAMuXL0cikcADDzwgb/O2t70NmUxG3ubwww/Hs88+i6GhIdfHzuVyGB4etv1HCCGEEEJmPuzZIs1k2oqt9evXAwAWLlxou3zhwoXyuvXr12PBggW261OpFPr7+223cduG+hg6l156KXp7e+V/S5Ysqf0JEUIIIYSQKYfR76SZTFuxNZWcf/752Lp1q/zv5ZdfnuolEUIIIYSQOlBmQAZpItNWbC1atAgAsGHDBtvlGzZskNctWrQIAwMDtuuLxSIGBwdtt3HbhvoYOtlsFj09Pbb/CCGEEELIzEeWEVJtkSYwbcXWsmXLsGjRItx9993ysuHhYTzwwAM4+OCDAQAHH3wwtmzZgkceeUTe5s9//jPK5TIOPPBAeZsVK1agUCjI29x5553YddddMWfOnCY9G0IIIYQQMh1gQAZpJlMqtkZHR/H444/j8ccfB1AJxXj88cexdu1aGIaBT33qU/ja176GP/zhD3jyySdx4oknYvHixXj/+98PANh9993x7ne/G6eddhoefPBB3HvvvTj77LNx/PHHY/HixQCAj3zkI8hkMjj11FPx1FNP4Ve/+hW++93v4jOf+cwUPWtCCCGEEDJVmCL6nVqLNIEpjX5/+OGH8fa3v13+Wwigk046Cddffz3OPfdcjI2N4fTTT8eWLVtwyCGH4LbbbkNbW5u8z4033oizzz4bhx12GBKJBI455hhcddVV8vre3l7ccccdOOuss7D//vtj3rx5+PKXv8zYd0IIIYSQWYhwtEw6W6QJGCbfaYEMDw+jt7cXW7duZf8WIYQQQsgM5vUX3YGtEwXsubgHfzrnrVO9HDIDiaINpm3PFiGEEEIIIfWG0e+kmVBsEUIIIYSQWYNVRjjFCyGzAootQgghhBAyaxCGVolqizQBii1CCCGEEDJrkHO2KLZIE6DYIoQQQgghswahsTjUmDQDii1CCCGEEDJrsJytKV4ImRVQbBFCCCGEkFmDEFtMIyTNgGKLEEIIIYTMCkzTlI4We7ZIM6DYIoQQQgghswJVX1FskWZAsUUIIYQQQmYFqsAqladwIWTWQLFFCCGEEEJmBWqblklnizQBii1CCCGEEDIrsDlbFFukCVBsEUIIIYSQWYGtZ4tphKQJUGwRQgghhJBZgepsUWuRZkCxRQghhBBCZgUlW0AG1RZpPBRbhBBCCCFkVmAqCYSMfifNgGKLEEIIIYTMCuxlhBRbpPFQbBFCCCGEkFkBe7ZIs6HYIoQQQgghswJVYLFnizQDii1CCCGEEDIr0AcZc7AxaTQUW4QQQgghZFagm1l0t0ijodgihBBCCCGzgpLmZOn/JqTeUGwRQgghhJBZQbmslxFO0ULIrIFiixBCCCGEzAp0ccUyQtJoKLYIIYQQQsisQJ+txVlbpNFQbBFCCCGEkFmBQ2yVp2ghZNZAsUUIIYQQQmYFetUgnS3SaCi2CCGEEELIrECfq8U0QtJoKLYIIYQQQsisQBdXejohIfWGYosQQgghhMwK9B4tai3SaCi2CCGEEELIrEDv0WIZIWk0FFuEEEIIIaRlME0Tf/zHa1izeczlOvu/WUZIGg3FFiGEEEIIaRkeWTOET/ziMXzhd086ruOcLdJsKLYIIYQQQkjLsHksDwDYMJxzXOcUW01ZEpnFUGwRQgghhJCWIV+spGCM54qO63RxVaLaIg2GYosQQgghhLQMhVJFbI3lS47rWEZImg3FFiGEEEIIaRmk2MoVHUOM9UAMii3SaCi2CCGEEEJITYzmihieLEz1MgAA+VJFQBXLJvIl+2AtlhGSZkOxRQghhBBCYlMslXH4d1bgnd/+PxQ1cTMVFIrWGsZz9lJC3emisUUaDcUWIYQQQgiJzZrBcby6ZQIbhnMYyzn7pJpNQRF8Y3l7SAadLdJsKLYIIYQQQkhsntswKv+/UJ4GzpYitsa1kAwGZJBmQ7FFCCGEEEJi8/zAiPz/YmnqxUteKSMcy+nOFsUWaS4UW4QQQgghLYRpmjj9Zw/jwj881ZTHe37AcraK08DZyiuCL8jZmgYtZqTFodgihBBCCGkh1m2dxB1Pb8B//31NUx7vOVVsTQNny9azpTtbmriis0UaDcUWIYQQQkgLIUIfimXTkb5Xb8plEy9snF7OVqSeLQZkkAZDsUUIIYQQ0kKoCXuN1hKvbpnAZMESN4Xp5mwFpBFSa5FGQ7FFCCGEENJClBT3ptFO03NKOAYwPcoI80WlZytgzlaJZYSkwVBsEUIIIYS0EGppXKPnSKmx78D0KyMMdLZobZEGQ7FFCCGEENJC2J2tBoutAV1sTb14YfQ7mU5QbBFCCCGEtBBqKV+pwWV9z2tiqzANstTtzlZQ9DvFFmksFFuEEEIIIS1EuUnOlmmaUmxlU5VDymnRs6WmEQY6W01ZEpnFUGwRQgghhLQQpSb1bK0fnsRorohkwsCyeZ0ApmPPluZscc4WaTIUW4QQQgghLUS5SWmEwtVaOrcD7Zlk5fGmgbOlxs+POwIy2LNFmgvFFiGEEEJIC6G2TTXS2RJJhLss6EY6US0jnAZ1eTZnyxH9br8te7ZIo6HYIoQQQghpIVQB0Ujxs3ZwHACwbH4nUkkDwPQIyFDTCOlskamGYosQQgghpIVQBUQjnRsRRNGWSiKVnJ4BGbqz5Zyz1YwVkdkMxRYhhBBCSAthc7YaKH7MqqhLGEAqYTgee6pQ3TXd2Srp0e90tkiDodgihBBCCGkhVAHRyDI54QolEoYUW4VpYBUVitZz1tMITW1/6P8mpN5QbBFCCCGEtBDlJvVslaWzZSA9jcoIVWcrXyzb/l3W9sc0aDEjLQ7FFiGEEEJIC2Gfs9U4NSEeJmFgegVkaGsYV/q2HD1bdLZIg6HYIoQQQghpIWxztprSs2UgWS0jnG7R7wAwpvRtMY2QNBuKLUIIIYSQFqJYjp5GODxZwHm/eQL3Pr8p9OMIoWIYkHO2pkdAhn0NakgG52yRZkOxRQghhBDSQsSZs/XXVZvwy4dexhW3PRP6cawyQmPalBGWyqZ8/u3pJAB7/LvT2Wre2sjshGKLEEIIIaSFiDNna6JQESTPrB9BMaRgKinR79MlIEMVe3M60gDsZYR61LsemEFIvaHYIoQQQghpIVStFNbZEgIrVyzjpU1joe4je7amUfS7Go7R15EBYA/I0MsI2bNFGg3FFiGEEEJIC1GOkUZYUO7z9LrhkI9T+ZswDCSrZYSlqXa2itbz7W13OluO6HeKLdJgKLYIIYQQQloIVUBEdbaACGJLnbNVDciY6jRCEY6RThrozKYAAON57+h3ai3SaKa12CqVSrjggguwbNkytLe3Y6eddsJXv/pV27Rv0zTx5S9/Gdtssw3a29uxfPlyPPfcc7btDA4O4oQTTkBPTw/6+vpw6qmnYnR0tNlPhxBCCCGk4ZRipBGqvU5PvxZWbFX+Tqc5W+Lx08kEOrMiIMM7+p1phKTRTGuxdfnll+Paa6/F9773PaxcuRKXX345rrjiClx99dXyNldccQWuuuoq/OAHP8ADDzyAzs5OHH744ZicnJS3OeGEE/DUU0/hzjvvxC233IIVK1bg9NNPn4qnRAghhJAZzu8eewXX3PP8VC/DkzhzttS49JXrRkLdR52zNV0CMvKK2OrIOJ0tsw5i69n1I5hQtkmIH9NabN133304+uijcdRRR2Hp0qX44Ac/iHe961148MEHAVQ+MFdeeSW+9KUv4eijj8Y+++yDn/3sZ3jttdfw+9//HgCwcuVK3HbbbfjRj36EAw88EIcccgiuvvpq/PKXv8Rrr702hc+OEEIIITMN0zTxxd/9E9+4/Vm8PDg+1ctxJY6zpYqkTaM5DIxM+ty6gjpna9oEZBQVZytTdbZsQ43tt9fFl85kwS6qHl07hMOvXIHP/fofdVgtmQ1Ma7H15je/GXfffTdWrVoFAPjHP/6Bv/3tbzjiiCMAAC+99BLWr1+P5cuXy/v09vbiwAMPxP333w8AuP/++9HX14cDDjhA3mb58uVIJBJ44IEHXB83l8theHjY9h8hhBBCyNaJgnRKwgiSZrBy3TA2j+bkv+PM2SpqIilMKaE6ZytZFVtTXZYnygizqQQ6RM+Wz5wtv4CMB18axN4X3o7v/8VyMe9/YTMA4OWhibqtmbQ201psnXfeeTj++OOx2267IZ1O4w1veAM+9alP4YQTTgAArF+/HgCwcOFC2/0WLlwor1u/fj0WLFhguz6VSqG/v1/eRufSSy9Fb2+v/G/JkiX1fmqEEEIImYEMjFiiZnCsMIUrqfDy4DiOvOqvOP3nj8jL7HO2QqYRauV/YUoJZUBGYvrN2UonDcvZyvnM2fJZ7hOvbEGhZOK2f1rHi8+sr+yXXIFlhCQc01ps/c///A9uvPFG3HTTTXj00Udxww034Jvf/CZuuOGGhj7u+eefj61bt8r/Xn755YY+HiGEEEJmBgPDqtjK+dyyOawdHIdpAuu2WE5LLXO20tWgizCJhGoa4XQJyMgXRRqh5WypZYSOOVs++ydXLUl8Zt2IfF7PVPdLfoqfJ5k5pKZ6AX587nOfk+4WAOy9995Ys2YNLr30Upx00klYtGgRAGDDhg3YZptt5P02bNiAfffdFwCwaNEiDAwM2LZbLBYxODgo76+TzWaRzWYb8IwIIYQQMpPZOGqVDm4ey0/hSiqMTFaEhOrY2J2tsGWEldvttqgHT766FU+/tjXwPsI0M6ZV9LvVs9VVTSO0Rb+XdWfLe72i/ytfKmPVhhHsNL8LL1YHPueLFFskHNPa2RofH0ciYV9iMplEufrpXrZsGRYtWoS7775bXj88PIwHHngABx98MADg4IMPxpYtW/DII5a9/uc//xnlchkHHnhgE54FIYQQQloF1dkamhZiq1LKaOvTKkXv2RIiZZ/tegEAL20aC0zcE0IlqfRsTbWzJcVWykojtEe/22/vt9ycIqj++epWPD8wKvczxRYJy7R2tt773vfi61//OrbffnvsueeeeOyxx/Dtb38bH//4xwFUzqR86lOfwte+9jXssssuWLZsGS644AIsXrwY73//+wEAu+++O9797nfjtNNOww9+8AMUCgWcffbZOP7447F48eIpfHaEEEIImWmoPVvTytlSEwhjOFtCpCzua8e8rgw2jebx7IYR7Lukz/M+4mHUOVvTJSAjkzTQ6RL9rjtZYZwtAPjnq8NIGIZ1HcsISUimtdi6+uqrccEFF+A//uM/MDAwgMWLF+OMM87Al7/8ZXmbc889F2NjYzj99NOxZcsWHHLIIbjtttvQ1tYmb3PjjTfi7LPPxmGHHYZEIoFjjjkGV1111VQ8JUIIIYTMYFSxNR2crdGqa6M6WGUPl8sPcbtUwsB2czqwaTSPgWH/tEUr+n36zNnKKdHvHVln9Lse9e4ntnJFS6Q9+epWZFJWtRWdLRKWaS22uru7ceWVV+LKK6/0vI1hGLj44otx8cUXe96mv78fN910UwNWSAghhJDZhCpABqeB2BJlhGVPZytkGmHZCpYQoiLIvbECMiBdn6mesyVSFTOphOVs2aLf7bf3c+JUQbVy3bBNbOUotkhIpnXPFiGEEELIdGLjNCsjDHS2PMSE6toA9jTCbFVU5ApBYqvyNzGNnC01IKPDZaixEKJiCLNf1aMqqHLFMh5ePWhtp2xOeckkmRlQbBFCCCGEhGS6lREOV3u2vBII3QTBfS9swt5fuQM/u3+1vEw4QqlkQoqtIGfLVOZsiYCM6ZJGmEkm0FmNfp8slOV+EGsWPWZ+0e96qaB+U5YSkjBQbBFCCCGEhGA8X5ROEgCM5UuYnOLhtqOTTmdLLSN0Ez9PvrIV+VIZj6wZUm5XEQ6phIFsquIIBYmJktKzJcRLccrnbFkOnXC2gMprB1hx9SKqPkzPVm97Wl62dG6H47EI8YNiixBCCCEkBCL2vT2dlGVoQ+NT626Jni3TtFyacoCzJUSSGtMuyv/Uni291FBHCBdbGeGUO1vW88imEtJxE4mEZc3ZKvmlEVb3z37b98nL9ty2FyKUMFeaWqFNZgYUW4QQQgghIRAlhAt6spjTmQEAbB6dWrGlOm1CONidLaf7UpazoqzbCeGVUnq2gpwbNSAjNQ3nbBmGgU7Rt5UT5ZaV26Wq4jBMGeH+O8yRl+2xTQ8yyXD7hxCAYosQQgghJBQDI5UkwgXdWcytiq2pTiQUc7YAy8VS9Y6b9hH6QhVGUmwlVGcrqGer8jdpGEglpkdAhhBAQhCJvq2xaiKhGSMgY9dFPbIkcbdF3VaACMUWCcG0jn4nhBBCCJkuiDLCBd1tSCcrImuqywhHXcSWvYzQKQjE7WxlhDL6PbqzZevZmvIyQqtnC4AjkTBSGWH1+benk/jEO3bBw6sH8Zad5yGTSgIo0tkioaDYIoQQQggJgSgjnN+dBap9O1NZRlgumxhVYs2F0AkKyCi79GwVXHu2wpcRpqXYmuKADJFGmLI7WyIgQxhvwonThxyriOefTSdw5r/sBGCnyr9DilFCAIotQgghhJBQyDLCnqwUGlPpbI3li1C1QlmWEfoHZIi155WSv6KtZ6viBoUtI0wkpk8ZoTpnC6i4UoBVRljWygjDDDUWJYmCsEOfCQEotgghhBBCQiEGGi/obpMH4lM52Fjt1wIUZytgqLHQCIWiWxlhhDRCNSAjOU0CMorW81D/Oudsieh3722J559Na2KLARkkAhRbhBBCCCEhsHq2srIsbXAKywjVJELAEj9qGWHJxWlyLyNU52yF7dmq/DWUgAw/p6gZqEONAeewZTlnK8RQ41yAsxUkRgkBKLYIIYQQQkKxcdSKfh+uzrcanMIyQjFjS1B0Cchwd7ZMx3Xuc7YChhqXhbNlD8gwTROGGEbVZPJaQIZMHRT7Ri8jDNWzlbRdzp4tEgVGvxNCCCGEBJAvlmXM+4LuNvR3TH30u15GKFysUkAaoezZspUROnu2gsSEqQZkJKxDyqlMJBRrTlcFUUJ3trSADK+lmqYZ2LPF6HcSBootQgghhJAANlVdrXTSQF97Gv1dFbE1VIPY2jpRcJQCRsEhtky7ewN4pBG6RL8LYWGfsxXUs1X5qzpbwNSGZOgBGbqDZWrR715lhGr4haNni84WiQDFFiGEEEJIACL2fV5XFomEgf7qUOOh8bxv348X4/ki3vHNv+DgS+7G9fe+FKvXSRdqwsUKSiMsufRs1TJnK2EYsjcKAApTGP8uIuyzmrNVqj7XkiMgw0NsKc/d4WwlmUZIwkOxRQghhBASwMBwNfa9OwsAmFMtIyybwJaJguf9vHhs7RZsHstjJFfEhX98Gkdf8zes3TweaRt6z5Y49leNJfc5W5W/BVv0uyVCws/ZqvxNJCwnCXAP5WgWeQ9ny1lG6B/9rj53IdwEdLZIFCi2CCGEEEICsAYatwGoHMz3tFVyxuL0bT20ehAAsMuCLnS3pfDPV4dx44NrIm1j1BH9Xjn4Lwc4W+J61ZkRblQUZ8vUnC2RiSG2dc09z+Osmx5takKhXkaYrC6qrJcRVsWWVz6G2q+lh32wZ4tEgWKLEEIIISQA0bM1v+psAZClhHHE1sOrhwAAJ755KU46eCkAYDIfLUp8WBNbonoveM6WVUZomiZKZVOKjnQiIcVWsLNlBWSI+wKWS3bdihfxpyfW4YWNoxGeVW0UtDRCR/S7aZ/D5ZVGKJMIU85D5bABIoQAFFuEEEIIIYGIA+s2JSwhrtgqlsp4bG1FbL1x6RxbbHoUnEON7X1JgFcaYeWvaVaEl9q7FSWNUJ2zJe4LWGJrslARjxMRRWQtiKHGoq9KD8IQu0Nc7uW6SWfLVWyxjJCEh2KLEEIIISQAcVCeUoIg+jsrLldUsfXM+hGM5UvobkvhdQu6pcsSNcVvNGfv2RKujW3Ols9QY6DSt6WKPPucrYA0QmXOFmC5SIVyxTET7pAQXc1A9myJgAzD3dlKyjJCL2ersmY3Z0v2bDEgg4SAQ40JIYQQQgIoKAESgv7ONABgcCwXaVsPV/u19t9hDhIJwyZSouBwtsScLZuz5V1GCFQEgyo4Uok4aYSVf8vSvLJpK0GcbKIDJOdsaQEZQhiq5ZKAdxmhn7Ml0wjpbJEQUGwRQgghhAQgyvHcna1oaYQPramUEB6wwxzbNqMGSTij392GGgc5W2Xbv5MJI3oaoSgjFKKxVLaLrSY6W6IkUggifahxyTFny307Vs9W0nEdAzJIFCi2CCGEEEICEAfr6jypubJnK7yzZZqmdLYOWNoPQIknj1hG6DXUOCggQxdb0u1JGjAMq2erWDZRLptSsHhtR1yvlkOqJYhTIrZSdgFY0soIpeMVx9kKWWZJCMCeLUIIIYSQQIQQSiedARmbI/RsvTI0gQ3DOaSTBl6/XR8AqzSxGLOMUE/cCxxqrFxWKJrWjK1qaZ0qMPz6kkzpbKH6PMQ6ysgVrPup/99oCtrrlExYpY2AMmcrYKixX88WAzJIFCi2CCGEEEICcHW2uqpiazS82Hp4TcXV2nNxL9ozFQcpvrNVKV/sa6/0jpU196aybu80QqAiptQZW4BdYPgJJatnS4tZL9l7tprpAOlDjYU2LsqeLXsZYdBQYz9ni2KLhIFiixBCCCEkALeerXldlZ4tMYMrDI+ssSLfBZazFV5s5YtWX1RvR9p2/8CerbK9jFB37VLKgOJcyVsoCbElbivnbJX1MsLmiBLTNJ1DjRN2B0vO2ZKXu2/Lb86WDMhgGiEJAcUWIYQQQkgABZfodyG2BsfyNgHjx1OvDQMA9qmWEAKWoxSljFANx+h1OFvW7VyHGms9W0KgCLen0rdV7UvydbYqfxPanK1CqWwTWM3q2Soqw5mFIErq0e/VZSXr0LNFZ4uEgWKLEEIIISSAUtX9Sbr0bBXLJoYngxMJy2UTz64fAQDsvk2PvFxGv0coIxyt9mt1ZJJSWLg6W65ztqz/V+dsiZ4tINi9UePiLbHlEZDRpDJCdThzOmUXgHqJZTp0GaEzjZA9WyQKFFuEEEIIIQEI1ymtOFuZVAI9bZVg500h+rbWDo5jPF9CNpXA0rkd8vKUFuIQBiHuurIpS1CETSN0lBHae7YAIJuuiAwvZ0t9DBmQkVACMmzR780RJYWitSYZ/e4x1FgIQw9jSwopv6HGjH4nYaDYIoQQQggJwC0gAwDmdYfv23pmfaWE8HULu23Dka2AjOhlhN1tKdmXJHqvyhGGGhdKZeleqWsKcrbUzRranK1i2bSJtGaVEYq1Gob1Ojmj3+F6uY5w5tzKCEU0Pp0tEgaKLUIIIYSQAMRBeSqpia3qYOMwiYRPrxMlhN22y63I9PDOloh972pLQyzJfc6WWxqhe0CG2o+WTYueLXehVDadzpb3nK0mOVtKOIahJSR6zdkqBfRs+TlbDMggYeBQY0IIIYTMaCbyJZRNE53Zxh3WyBCJhP3gW8a/hxhs/My6irO126Ie2+UpzZkKw2iuUkbYozhbuqCo/H+lv0qID/36fNEEUvYEPyBMz5b1/9JFUgIy1GfS7J6tjPI8dLEl1m2VEcaIfk+yZ4uEh84WIYQQQmYspbKJw69cgXd9Z0Wknqc4jwPY3R/AElubRoLF1spqGeFuns5W+IN36WxlU45ZUvp+8Pt3JY3Q6doF9WyV3QIy1Oh3xRHzcsfqTcGl98zL2QoKyLCcLWdABnu2SBTobBFCCCFkxrJ5LIe1g+MAgLF8ET1t6YY8jkzsS9rPU8tZW2P+ZYQjkwW8PDgBANhdc7bSNZQRdrelMJariBkRfKFvp1g2oWoG1UArlMpSLKnOVjawZ8vaiOEIyDCnJCBDPGbaxdnSAzKSAXO2QpURNnFYM5m50NkihBBCyIxF7ZVyizmvF259TQAwt0v0bPk7WyLyfVFPG+ZUI+MFesBFGCxnK42ELigCnC1T79kqOx0h2bPlISjUTepztoolPY2wWc6WfTgz4JynJczDtBYJryOet99QYzpbJAwUW4QQQgiZsahiK4ozFBXPNMKqcAoKyFhZFVt6CSFgj0wPi+jZ6m5LyfsL4aCHPuj7RRVf+ZJplRG6zdnyEBRuc7ZsARmFqZuzpfZZOYYam/bn6jnU2GVbAiFE86WyZ88XIQKKLUIIIYTMWNRgisb2bIl4dHdnKyj6XYRjqMOMBZYjFK+M0FEqp+kj356totecLX/3xu5sVZ+HGM5chzlbf39xMz70g/vx3IaR0PcpFJ0BGSnZm1Wurtsumr3SCEWvmpuzlU1WajJNs7ECn7QGkcXWo48+iieffFL++//9v/+H97///fjCF76AfD449pQQQgghpF6ojlKhgVHcRRf3BwDmdYV0tmQSoZuzZQVLhMUmtgxtqLHD2bLvF/XqSkCGM2kxyNlSBZvhKCPUe7aiO1s3PbAWD64exLX/90Lo+wg3Kp3yC8ioXG6VEfpvyzWNULmMiYQkiMhi64wzzsCqVasAAC+++CKOP/54dHR04Oabb8a5555b9wUSQgghhHjRLGfLq4xQOFsjuaKnqCiXTdmz5eZspZVep7CMVsVWZzaFpOaMBaYRaj1bbmmEQYl7onxO3R22NMIa52ytH54EAPz5mYHQ+8W1Z8vQo9/tQSdeZYSWs+WdRghQbJFgIoutVatWYd999wUA3HzzzXjb296Gm266Cddffz1+85vf1Ht9hBBCCCGeNK1ny6XUDqjMuRKXbfZIJHx1ywTG8iVkkgnsOK/Tcb1eBhgG0QfVkUlagsI0XQMf9PLEstazZQVkKGmEVZERVEaoik81IEMVWF4hG34MVMXWlvECHlo9FOo+6lBjgaezFVRG6DKzS92m2C4HG5MgIost0zRRrn4o77rrLhx55JEAgCVLlmDTpk31XR0hhBBCiA+b1DTCKXC2DMPA3E7/RMIt45Uwi/7OjCM6HlCCJSKsX3VeLEFRdhUP+n4pezlbCTdnyyuNsHIfdViy+jzU+3nN6vLCNE3pbAHAHU+vD3W/vEvPltecLWuosftgYxHwIXrXdGQiYZNi7cnMJbLYOuCAA/C1r30NP//5z/F///d/OOqoowAAL730EhYuXFj3BRJCCCGEeKGWEUZJ84uKNdTYeeg0r9u/b6tkugs1gSoIwqbbqdHkqjOmCisvx8xWRlgsS+crnVKdLf+erbJrGWE1IKNUtomQfKkcSQgPTxZtztidT28ItV/yfkONZfS787VwW1rex9kC1ERCztoi/kQWW1deeSUeffRRnH322fjiF7+InXfeGQDw61//Gm9+85vrvkBCCCGEEC82N8nZkiESSadgEs6WVyJhycMVE6QVARfW3coVLWdLjX5XXSshFBzOlqKfbHO2XJ0tr56tyt+E4mylFNGo3y9KKeGGqqvVmUmiLZ3AK0MTWLkuOJXQr4xQCEo9IKNymZuzVd2/aWfPFjB9Zm2ZpomXB8cZQT+NSUW9wz777GNLIxR84xvfQDLp/oYkhBBCyNTxf6s2Ytu+duy8oGuql1J31NK9RvZsWc6Wi9iqJhJu8nC29LhxnaRy4F8smfA4vrchHKdsOmEbaqwKq0wqgYlCyeH4qeLCNmfLpWcr2NlSe7Yq9y+UTIe4miyU0WGf5eyJEFvbzmnH9v2duGvlBtz59AbssdgZLqIio99TwWWE6mtRKjv3eZCzlQlw/prFT+5dja/e8jS+dezrccz+203pWog7seZsbdmyBT/60Y9w/vnnY3BwEADw9NNPY2BgoK6LI4QQQkhtrNk8hpN+8iDOuvHRqV5K3ZnIlzCWtw7qm9Gz5dZzNb/Lv2dLuCoeWssm4MKWQuaU/iSbs6XcXQgCv3TCYsmas+WWRugttip/DbWMUAnI0B2fKPHv67dWxNbCnja8a89Ki0qYvi0hGm1ztqquoSwjNJ2Jhe7OVkDP1jQRW88PVBy/5wZGp3QdxJvIztYTTzyBww47DH19fVi9ejVOO+009Pf347e//S3Wrl2Ln/3sZ41YJyGEEEJi8MrQBABgcLz1ZmGq/VpAtKHAUSmGcLa80ghlKINLvxdgP/AP+xxkz1Za69lyKSPUHT9nQIYoI3T2bAUFZKjOVlqJftfFVRSxNTBSeV0X9rThX3adDwB46rVhTBZKaPOx/fKuZYSVv3oaYarGni05h2yK0wiFqI0zy4w0h8jO1mc+8xmccsopeO6559DW1iYvP/LII7FixYq6Lo4QQgghtTFUFVlukeAzHT2QolHOlmmavn1XYXu2Eh7WlnpxmFLIUtkq/cumkrahxqoz5uVsqf8slEwUpGsXwdkqO926pBqQ4XC2wosS4Wwt6mmT+xYAxvP+gqLgOtTYvg9MF2dL3z+mafWceTlbopdrqtMIxftgImDfkKkjsth66KGHcMYZZzgu33bbbbF+fbhoTkIIIYQ0h6Fq7LjXPKGZjMPZalAaoSqA0i7uVFDPlpVG6L59wzCswcYhnoMqgLKphG2osbh7MmFI90Z3y1RxkVfKCO1ztvwDIMQmbM5WUgnI0ETIZIyAjIU9WSQThhR+4/mi7/3EfvEbaiydLUVY6uESxbIpA0CyHnkE2WnibOWr+3WCzta0JbLYymazGB4edly+atUqzJ8/vy6LIoQQQkh92DLWus6WLm4aVUZoi1N3SSOcF9CzJePGDY+mLThT8/xQS/uyqYRtqLEUdobhCIfQ1wNU0whd5myFjn63DTV2BmSIpxylzM0SW5UKqo5MRfAEuTcFl9I/Pf7eKyBDRRWY071nSzw+xdb0JbLYet/73oeLL74YhULlTJlhGFi7di0+//nP45hjjqn7AgkhhBASH+FstaDWcpQRNiqNUN2uW8+WEFuDY3lXURtURgjY+52CEGIgmTCQSiZsokqW9yWUwAqfNMJCqayUETrTCL2dLe85W8WyVUbYna3EA0Qpt9swXBGti3qrYqtashdcRugsERT7oFydYSaeetIwpBDUd7kqoKZ7GqFw1lhGOH2JLLa+9a1vYXR0FAsWLMDExAQOPfRQ7Lzzzuju7sbXv/71RqyREEIIITHZUu3ZamRS31ShO0mNeo5FpVTMTWz1d1bKCItlE1snCo7rS2GcLSXJLwg5A6p6wO821LjibHmkEdqGGpvyMTMRerbc5mwJkVMsWT1PvR1pAOGdrVLZxMZRKyADANoz4cSWDLVQot/F+opl0yaqEoYhr9PTCIUrl04angJZztma8jLC2pyt+57fJHvkSGOInEbY29uLO++8E3/729/wxBNPYHR0FPvttx+WL1/eiPURQgghpAZEQEZr9mzpzlbje7bcAjIyqQR62lIYnixi81gOczrtA6VKAXO2ACupMJyzVU0irIoKNfq9pJT3pbQSOoG6m/KlssecrehphOL5TRZKUuD1tqfxMiZC92xtHs2hVDaRMCzHsCNTOVydKPj3bBVcera8Bj4nDANJw0AJpkOM5ovOckSd6eNsxQ/IWLluGB/50QM4aMd+/PL0g+u9NFIlstgSHHLIITjkkEPquRZCCCGE1BlRRqiHALQCevpfo5wtdaCx4eFO9XdmMDxZlPvb7f5+YiuthFwEkdOG9yYVoVZWHsuzZ0srIxQiVXXt4szZEs9hNGeJor72ivAMm0a4vtqvNb87K9cf1tmSaYRJpwAsamLLSEApI3Tv2cr6xMwHidFmka8h+l1E7K/eNF7XNRE7ocTWVVddFXqD55xzTuzFEEIIIaS+tHYZYeW5pRIGimWzYT1b4iDe15lSSuh03EIZdJJKv1MQUgxU+6qEAaM6W0nD29kqec3ZitWzpQRkVEXfmJIa2NNeOdQMKwZkv1aPNV6oI7TYqg41VsoIpeBU+rXEupPS9bJvZ0Y5WzWkEZaqT3yoBWfwTSdCia3vfOc7tn9v3LgR4+Pj6OvrAwBs2bIFHR0dWLBgAcUWIYQQMo1QAzJM0/R0ZmYiIvp9fncW67ZONsXZ8iLp0f9TuX/lb8Jn36c9BhC7oZcRqs6WGsZhOVuWIDA10VEomUoZYW1ztsT9x3KV9WWSCbSnqwEZIUWJcLYWuIitoFK5nFv0uxoeojzxZLWMEPDu2fJKIgSmkdgqxe/ZEu/LXLGMiXxJOoikvoQKyHjppZfkf1//+tex7777YuXKlRgcHMTg4CBWrlyJ/fbbD1/96lcbvV5CCCGEhKRUNjE8aZW1tZK5ZZqmdLbEgXmj0whTPk5HwqNkr3JZsDMWLfrdPnBXOlumMmfLcJ+z5Za8JwIyUgm3nq3wc7bE/UUZYTaVQFt1jWGdrYFha6CxQAi28GWE7mJLfW0Mwyoj1PsZczPK2YqfRqiK8C0TdLcaReQ0wgsuuABXX301dt11V3nZrrvuiu985zv40pe+VNfFEUIIISQ+WycKNhfDzXWZqQxPFKUIWtBdCVIoNSgZzm0OlY44LncLIhHL8g/IiFBGWNDLCK0SRjWMwy2NUBeDlZ4tEZnu4myVyq79fuK9ZLg4W3lFDLZV+55C92xttQYaCyxnKyAgw6VnS33NVNGplhHqz0/viXNj+gw1rjx+rliOPEtPPTkxNObsNST1IbLYWrduHYpF55u9VCphw4YNdVkUIYQQQmpH78Vopb6tTdUSwu5sCp3Vg/HGOVvBzpSMEXdztpQ+Ki9SkQIytDJCdaixMmdLCEB1v+iCuxCQRlh5PKegcOtDS2sDn7OpZGRna8OIPfYdiNKz5XSk1Oj2giKMEob1mul6SYpFH7ElhFiU+WGNoKC8X6KWEqrfB1vYt9UwIoutww47DGeccQYeffRRedkjjzyCM888k/HvhBBCyDRCP4BqJWdLlBDO7cp4zpOqF0WXYbk61swm53VqQqAX0aLf3edsqX1JqURCbtPf2bLmbLk5W4C7e+M2Z0stQxTra5NBGyHFlnS2lDJCIbYCxETeJSBDdbYKZbuz5VX6GcrZqj6v6eJsAbWJLbcUTVIfIoutn/zkJ1i0aBEOOOAAZLNZZLNZvOlNb8LChQvxox/9qBFrJIQQQkgM9NKgFjK25EDjuV1Zz9S9elEMIZa8YtbVy7wG5AJq9HucNELr+QthmDDc16QL7rytjNA6LFTdITf3xiojVMSW5mxlUgnZVxa2jHDDSLVnqzd6QIbbnC1VDBYUYWIYVriHY59o+9eN6dCzZZqmTexF7duylRHS2WoYkedszZ8/H7feeitWrVqFZ555BgCw22674XWve13dF0cIIYSQ+LR2GWHV2erMRCrBi0OtaYSy5M4nCDIZQTDmNefFbXBvUhlqbBNbmjYoKtHv6vMzDAOZVAL5YtnVvbECMqzLdGerLZ1UeraChcBkoYQtVYdlYbfqbImAjLA9W+7OligHrYRjeKcR6vvXjUxAgEgz0F+XqLO2WEbYHGIPNX7d615HgUUIIYRMY7ZopUFRG+inM27OVilEuEQcZFqfj1oSOsNN0BZDOVuijDCMs6VHv1tCTbpoSgCEKuD0AI+yablOeplktiq2ci4H8a5zthw9W1YZYRghsLHar9WWTsj5XADQkQ7Xs+VW/qe6kfmivXdOvB76S6bvXzcy0yAgQ3fVopYRFllG2BRiia1XXnkFf/jDH7B27Vrk83Yl/O1vf7suCyOEEEJIbTicrRbq2RIH5vO6MnKuU+PLCL0PvuWAXNc0wjBphhECMkQaYdoutmxDjROGFD+qCHVbn0j5cxNLI/Dq2XLO2UrrPVvpZKQyQiGmOjMpW3li2DJCIejalPlYhmEgYVQElXC+hEC0AjLiO1v5kL1ojaCgvVeilhGq6Z0sI2wckcXW3Xffjfe9733Ycccd8cwzz2CvvfbC6tWrYZom9ttvv0askRBCCCEx0M9Wt1JAxtrBcQDAkjkdeH7jKIDGlUmWZE9TcBqh2xoaF5Ch92yVbY/l5my5uZsieMIZcFENt3ARSuI43a9nqzJnq+pshRAlXr1t7SHTCC2xZe+1SiUSyCvlkmLJQdHvYXq2prSMsEZnS9VqugtO6kfkgIzzzz8fn/3sZ/Hkk0+ira0Nv/nNb/Dyyy/j0EMPxbHHHtuINRJCCCEkBo40wqkNTqsrQmxtP7cjUr9THMRBeqjod5cllFxK7nSsAcTxywjLJmxlhK5phKbTZRNaQxeT6qwtnbKLs+UrtkI4W2WPiPyOas9WkJiYrIoPXWwJDZnXnC051NjD2fIrI8xOg4AM/bGj92zR2WoGkcXWypUrceKJJwIAUqkUJiYm0NXVhYsvvhiXX3553RdICCGEkHi0ahlhoVTGK0MTAIClcztdgyDqSZQyQDfnKJSzlQwvGH2dLTPA2TKt9erPJ+XSswW4O1umW8+WizPWJrcR3tnS95M1Z8s7IKNcNqX4aNNEUkoZ+lxZc+VydT6ZSqierekgtkr2fRrk/Omo7ws6W40jstjq7OyUfVrbbLMNXnjhBXndpk2b6rcyQgghhNREqwZkvLZlAqWyiWwqgQXdWZvYaARFKbaC52y5CdowzpYMyIjTsyUHKlvlfUnDK43QWoseiJFOeDlbbgEZlb9qyZ/ubLWlE5HSCOV+0nZzmDJCtZzP4WxVl6X3bFllhPZthenZyvq4fs1CL2GMXEaovNfobDWOyGLroIMOwt/+9jcAwJFHHon//M//xNe//nV8/OMfx0EHHVT3Bb766qv46Ec/irlz56K9vR177703Hn74YXm9aZr48pe/jG222Qbt7e1Yvnw5nnvuOds2BgcHccIJJ6Cnpwd9fX049dRTMTo6Wve1EkIIIdMJ/QCqVXq2Vm+ulBDuMLcDCY+I83oiRJxfGqHQLX5phGHmdIVztrzSCMs2weIWuqG6R3rZoFsaIeDu3riVEToCMlJK9HsIB0g6gI4ywuCADFXMOXq2qs9LBEqIzRsefXb60Gg3MsnqUONpVEYYOSBD+T7YOlFoqdEQ04nIYuvb3/42DjzwQADARRddhMMOOwy/+tWvsHTpUvz4xz+u6+KGhobwlre8Bel0Gv/7v/+Lp59+Gt/61rcwZ84ceZsrrrgCV111FX7wgx/ggQceQGdnJw4//HBMTk7K25xwwgl46qmncOedd+KWW27BihUrcPrpp9d1rYQQQsh0wjRNR0BGqxxMrd08BgDYvr8TgJUS2Kg5W2K7YcSS65ytEGWIUYYaO+ZsJS3RoJYsukXiqyJJd27chhID7iEQ1pwtn4CMdEImA4ZytjwCMjrSlZ6tolIqqCMCONJJw/E6iX/rvXdCW9YyZ2sqxZaeRljLnC3TBIYnWErYCCKlEZZKJbzyyivYZ599AFRKCn/wgx80ZGEAcPnll2PJkiX46U9/Ki9btmyZ/H/TNHHllVfiS1/6Eo4++mgAwM9+9jMsXLgQv//973H88cdj5cqVuO222/DQQw/hgAMOAABcffXVOPLII/HNb34Tixcvbtj6CSGEkKliolCSB4LppIFCyWw5Z2vp3A4AaIKzFaGM0GUNQj/5zdmK5mxpPVvKY9vnbDkTDqXYSriUETqcraTt8VTce7a8AzLCpPaVPAIyRBkhUHFv3ESQCOBoc0kQFNvzin7XPxezJY1Qf68NjecxpzNT87qInUjOVjKZxLve9S4MDQ01aj02/vCHP+CAAw7AscceiwULFuANb3gDfvjDH8rrX3rpJaxfvx7Lly+Xl/X29uLAAw/E/fffDwC4//770dfXJ4UWACxfvhyJRAIPPPBAU54HIYQQ0myEq5VOGujKVs6ttoixhTVKGSEQTajEoRjCmfKNfvcQESpW9HuNQ42VtEHV8RKoPV26uNKfnxjc6+5s2UvyKv9vd5WyqaRcY6lsSrHjhXjqujOVSSXk2sYL7iEZwtXJpl3EluZsGbrY0pblNhxZZ1qkEWq9dBP5aGvR36scbNwYIpcR7rXXXnjxxRcbsRYHL774Iq699lrssssuuP3223HmmWfinHPOwQ033AAAWL9+PQBg4cKFtvstXLhQXrd+/XosWLDAdn0qlUJ/f7+8jU4ul8Pw8LDtP0IIIWQmMTRW6dfq68jIg81WKSNcUy0j3GFupYzQSvJrzIGvGP7q37PlHrYAeJfHqaRc+qu80HuKbEONg+Zs2Zwt93I7gQjgcO3ZEm6dJiBTNrGVsPVPBZW5+QWJBIVkuA00FojnldfSCMXfmtIIS2XHnK5mUfOcLe37QB8VQepDZLH1ta99DZ/97Gdxyy23YN26dQ0VJeVyGfvttx8uueQSvOENb8Dpp5+O0047raGliwBw6aWXore3V/63ZMmShj4eIYQQUm9EEuGcjrSv6zLTKJdNOWNrB1lG2OCerSjOlsuBtwzI8HO2ks6SPy+sNEI9+t1eRuhWXmldby8bTCcN24BiQHW2nAfxJZeAjMp2rG22pZM2wRI0a8svIj8oJENs200g6TPM9DRCPaUzSs8WMHWJhLrjWEvPFkBnq1FEFltHHnkk/vGPf+B973sftttuO8yZMwdz5sxBX1+fLbiiHmyzzTbYY489bJftvvvuWLt2LQBg0aJFAIANGzbYbrNhwwZ53aJFizAwMGC7vlgsYnBwUN5G5/zzz8fWrVvlfy+//HJdng8hhBDSLEQSoepstULL1oaRSeSKZaQSBrbtawfQvJ6tpE/Pll8aoQzI8HHGogRkeA81NkPM2bKEnyoY3PrR/Jwtt54twP4cs6kEDMOQ6wx0tnwcQDHY2NPZKgpny1lGmNDKCC1ny30QdaieLUVUTlUpoR6Q4TeHzA3dCaaz1RgiBWQAwD333NOIdbjylre8Bc8++6ztslWrVmGHHXYAUAnLWLRoEe6++27su+++AIDh4WE88MADOPPMMwEABx98MLZs2YJHHnkE+++/PwDgz3/+M8rlskxV1Mlms8hmsw16VoQQQkjjEQdOczrSeHXI23WZaYh+rW3ntEs3qNE9W0IE6GV3Kn5DjcPM2YoXkOHSs6UIFvc0QsjrVRfKTQiKeHPfNEJ9MLJaRlgVa23pJHLFsqtDpmIFZDiva0/7DzbOFbzFVkqKLdFnZu/Z0j8XoZytaSC2nGWEtfZsUWw1gshia9myZViyZInDajZNs+4O0Kc//Wm8+c1vxiWXXIIPfehDePDBB3HdddfhuuuuA1D5sHzqU5/C1772Neyyyy5YtmwZLrjgAixevBjvf//7AVScsHe/+92y/LBQKODss8/G8ccfzyRCQgghLcuQLCPMyCGxrVBGqPdrAXANgqgnemS4G35lhFZ5nPdjRBpqrIkBUZ5omsocLTWN0GXOVmWosfV8Mi6L8+3Z8igjVB0y4Qy1pRPYOtGcMkK/ni1n9LvYb9F7tkTPW6FkTlkiYb66zoRREb+TEedsifdFJpVAvlhmGWGDiFxGuGzZMmzcuNFx+eDgoC2WvR688Y1vxO9+9zv84he/wF577YWvfvWruPLKK3HCCSfI25x77rn4xCc+gdNPPx1vfOMbMTo6ittuuw1tbW3yNjfeeCN22203HHbYYTjyyCNxyCGHSMFGCCGEtCK2MkKPiOuZiEwi7O+Ql6lDfRuBEChheraa4myJ5L2qmFEFjjjwt8/ZcikjDOVsefdsuc3Z0rcjxIocbBwyIEM/oQ9ECMhwi373KCMUD6OLdNGD5edsAdb+nzJnq7rOnvY0gBgBGdX9Pb+rUs3FMsLGENnZMk3T9UMwOjpqEzj14j3veQ/e8573eF5vGAYuvvhiXHzxxZ636e/vx0033VT3tRFCCCHTFVtAhk+J20xDj30HGt+zJcrPUj7WlNU35byu5OPYCFIRBKM4yJZlhIrAUWdJufZsKQEZqptVr54tVcBJsZUSYsv/uamunI5wtsY9BMWkTxlhUisjdARk6D1bPmEbKplUAshNXUCGeF1629PYMl6InUY4ryuDV7dMYGiMzlYjCC22PvOZzwCoiJsLLrgAHR3Wl1ypVMIDDzwg+6YIIYQQMrUMyZ6tjG+J20xjzaCzjNBteG89ET1PcdMII4mtgDJC07TK1oQYUsVJXjpb7uWVqsumpxHq+M7ZKjvnbFUe17pACB9R2hfkbKmum44IyJjw6Nma1PaJbU3VRYp9I9bs5UbqYtYLsX+mumerVzhbUcsIq897btXZYs9WYwgtth577DEAlQ/5k08+iUzGmjCdyWTw+te/Hp/97Gfrv0JCCCGERMI0TTz9WmUcy3b97VYZ4dTNX60LpmlizabmO1vFEGJJ6BbXMsIwYktGv/u/SIWSKVMlRRmbul21L8mtvFIdHJxW0wjderZ8Bvd6lhG6BGSIiPrJoIAMMbvLZT+Fn7Pl7WyJ/ZAICMiwnC3vNELAKjOcsp6tqjAXYity9HvJcrYAyw0n9SW02BIphKeccgq++93voqenp2GLIoQQQkh8Xtg4ioGRHLKpBPbbfo5VRjjDna2h8QJGchVnY3u3nq1GzdkKUUaY8BF8aty6F1b0u/9zUPun9DRCwBJGnnO2bM6WdT83106IDfc0wuA5W1ZARrgyQhmQ4bKbOtIhAzL8eraKehmh/bkAwjmsPEZQz1bGR4w2A/G4tfZszRM9WxN0thpB5J6tn/70p41YByGEEELqxL3PbwYAHLB0DtrSSWsG1AwXW69tmQBQOThUHYxmOVt+ZYTJEGWEbo6NvH/IUkhV+AixpW5WuB0VZ8u5TSmSEvaerbSLkPQTE2WPni23gIzQc7Z8ywjDOls+aYTl4DLCfKksXTvhpnnhFyDSDPKlyuP2KmLLK1vBjZJWRjhZKGOyUHJ1B0l8IqcREkIIIWR6c+/zmwAAb95pHgD/pLyZxMaRHABgQbd9Fmbj0wirPVux52xVbxPG2Qp4DmrsuzioNpQwjHxRLSMU63cGZCQNw/Z83J5bNuUtJsQm9QP7tC36PWIaYdldwAFAe8BQ45zPUGN9zpbYV5bja912Mm/t//YA0eEXINIM9J4t04xW0ihEeG97Wu4j9m3VH4otQgghpIUolU38/cWKs/WWne1ia6bP2RoYmQQALOixi62UFCoNLiP0caYMH2fLb36UIGwppIx915woKbZEz1bQnC0t+j3tkkYYxtnSDbGkrWerWkYYsrfJPyCjWkZY8AjICDNnq+jRs6W8b8ar208nDVe3T0VcX2hQ+WoQutgCooVkiJMI6aSBvo7KNphIWH8otgghhJAW4qnXtmJ4sojubAp7La70V/vFks8kBobdna2Ui6ioJ1ZAhk/0u+G9j4Vb5Z9GGK2MUE/dS0lnqyQfy33OlrVeWxlhKlrPltCUUeZs5YLSCH3KLYXLVEtAhj5nSyxV7dkSYiVMKV1YN7JRCJHXnk7K1zJK35Ya3NLXIUIy6GzVm1Bia7/99sPQ0BAA4OKLL8b4+HhDF0UIIYSQeIh+rQN3nCsDHRIuB5UzkQFZRmif65l0ERX1RGzXLR7dWkPlr1sZoZoA6IUVkOF/4C7cDD0pT483T3ilEXpEv7vN2epuq5TubR5zHoBb0e/uc7bUocky+j3A2fIrt6zHUGPh+hmas2UTW9XtBJUQAtZznaoyQiGC08mE3MexxJZhYI5wtphIWHdCia2VK1dibKwy1+Kiiy7C6OhoQxdFCCGEkHjc90KlX+stO8+Vl7GMsDbUOHUv/NIISx5hEipuA4jdkM6WlpQnBhvLviQljVDdpFVGiMA5W69b2I2EUemVGxietF1nRb/b7yMeU11f2J4tv3JLWUYYkEboOmdLcz7F5q3XTN1OVWwFhGMA4d3IRiHEYyaVkOuNUkaojjSYU3W2BsdydV4lCZVGuO++++KUU07BIYccAtM08c1vfhNdXV2ut/3yl79c1wUSQgghJBy5YgkPrR4EYPVrAWoZ4UwXW15lhOKguVEBGfVJI/R3tsKVQnrFkkd1tipzttTod6dIac8ksfOCLqzaMIonX92Kw3raHNvxKiOMI7b8RKnlbLn3bIULyLD3bCVdnC3hnIVztvzdyJseWIv+zgzevdeiwG3FIa+8FypDn3ORZm3J93XSkImEbi4mqY1QYuv666/HV77yFdxyyy0wDAP/+7//i1TKeVfDMCi2CCGEkCniiVe2YrJQxryuLHZZYJ0UbRmxVe3Zmu8oI2ysw1CQYsunZ8snjdArTMLt/oFphNLB0coIXQIyxHpLioBTRZLas+WVtLjX4l6s2jCKf746jMN2XygvNz3mbInHVMscrej3gDLCsvd+6qimEQbO2XIRSUJc6WIr4VL6KbYfxtmSZYQuAnnzaA5f+N2TSCcNPHLBO9HTlnbcplaEsM4kE/J5x+vZSsjBxptHKbbqTSixteuuu+KXv/wlACCRSODuu+/GggULGrowQgghhERjU9X52XFep62XRiblTU1rSV0wTdMz+r3Rc7bCRL9baYTO66zytTDR7zHLCB3R7+6lieI9oPdseSXv7bVtL3772Kt48tWttsuFC6X3bElnK92YMsJxj21MCmfLZRCxHv3umLOl7PIoPVspH2dLOGSFkom/rtqEo/bZJnB7URHPJ5tKoL26v7162txQHdv+TlFGSLFVbyKnEZbLZQotQlqIoGZsQsjMQRxotWX08ITK35k8Z2vrREG6NvM952w1NvrdN7rdJ4REXObvjEUrI/QSW9K9SVhztOxphEoZoS0gw/257b1dLwDgn5rYsnq23OdsqevLhox+9y0jDEgjzPk5W9q+kXO2XEo/J6MEZPg4qgXlt/XuZzYEbssPr9/pvBKQIZy4KGWEYt0Jwyoj3DTKnq16Eyv6/YUXXsAnPvEJLF++HMuXL8c555yDF154od5rI4Q0mFUbRvD6i+7Ad+96bqqXQgipA+KsfIdHidlMLiMU/Vo9bSnHAXWjna1ijWWEaiiFF6mwZYRBzpZtzpZThMp4dcMeipHycLb22KYHhgGsH56UziKgliNqz6O6TfU1chN9boRxtvLFsut2/KLfPXu2qpebLtHvocoIU3Y3UUXd5395dmPs9+bm0RzedMnd+Pyvn3BcZwvISEcPyFB7tuZVnS32bNWfyGLr9ttvxx577IEHH3wQ++yzD/bZZx888MAD2HPPPXHnnXc2Yo2EkAbx+MtbMJYvyQGohJCZjdeBot/A3ZmCLCHsaXNcp0a/mw14jkWl3MqLMGmEbpHmgtABGWKosR79rg3u9ZqzpbpHashGxqNEsjObwo7zOgEA/3zNcrfEbtaFkVsaYdg0TD9nS/RsAe4hGZbY8hlq7FFGaB9qHKGMUDpbTrGlOluDY3k8/vKWwO258dzAKAbH8vi/VRsd18merVS8ni11/lt/F8sIG0Woni2V8847D5/+9Kdx2WWXOS7//Oc/j3e+8511WxwhpLGIH21RlkIImdlMeMRWy9S1GVxGKGPftRJCwO44lcqmb29VHML0bLkl2wn8HBt5/5ClkMLN0J2tlOZsJQyvNELr8WxlhD7pHXtt24sXNo7hqVe34u27LrA9J2fPljMgQ4rhACEs9InbfmpLJ2AYFZE3kS+hWwucEDO8wg01FmWEcKxrMlJAhujZcj4v/bI/P7MB++8wJ3CbOmI/D43nYZqmbX/nlICM9hhiS7wtUgkDczuz8nGKpbLv+4FEI/KeXLlyJU499VTH5R//+Mfx9NNP12VRhJDmIL6og+roCSEzA6/Y6kYP/W0GIonQTWwlFRHUiL4tceDsV0YYas5WHYYa5zzmSQkBIb7PU0kljdC1jFAXW95r23vbSt+WGpLhOWfLJfpdzvsKKiM0vUWpYRiefVuFklVa6DbU2FlGCNvjqBow1lBjl9dMd7vuXjkQuD03xPs5Vyw7hJQa/S57tiLN2bLE55yOtBSzHGxcXyKLrfnz5+Pxxx93XP74448zOIOQGYYou3CrNyeEzDzEZ7pDOysvDvJnsNayZmy5lBGq5X0NEVthnCmfNMKSMmjY8/6RhxprfWtJbc6WR8+W1T9m2Hq20j5Ccq9tRUjGsLzMa86WDMhIO8sIg55bqey+TYFMJNQEhRoK4TbUOKGVEYrtGy5lhF7usBspn9JP8VjzujJIGMAz60fw6paJwG3qqGvTRZA9jTB+9HsqaSCVTKCvveIWspSwvkQuIzzttNNw+umn48UXX8Sb3/xmAMC9996Lyy+/HJ/5zGfqvkBCSOMQc0nobBHSGoheFr2USmiEVgjIcC8jtA7OSwE9T3EQB6VpH/fHbWaTvL+PYyOQPVuBYssjjVAMNS45e7ZMs7KuRMKw3CMDoeZsAcAei3sAAK9umcDgWB79nRnPOVviObqVEQa9//zmbAGWAJoo2Hu2xG+ZYTj3C+B0tgwZkAHHuiINNfYJNSlKsZXF0rmdeHjNEP78zAA+dtAOgdu1bUcVW2N5bNvXLv8tXms1jTBaz5a9F3FuVxZD4wVsHs0B6I60TuJNZLF1wQUXoLu7G9/61rdw/vnnAwAWL16MCy+8EOecc07dF0gIaRyT7NkipKWYqB506s5WMmRAwXRmYLjSs6XHvgN2EROU5hcHPTLcjYRPz5ZfL5JAD/nQe6EEQWmEMrjCMBzllRlFbCUMA2llG15ztgCgpy2NZfM68dKmMfzz1a142+vmS5dUX+fcatDC3Gq6nf7c/CgHBIl0pCuHrV7OVjaVcN1v+lBj8VQTLr2MkxGcLbH/8kUXZ0vp83vD9n14eM0Q1mwaC9ymjt3ZytsuF9epaYRx5myJsQNzOzN4HsAmOlt1JbLYMgwDn/70p/HpT38aIyMjAIDubqpfQmYiYggknS1CWoOJqrOln5VvhTJCa6Cxs4zQqJbMqQeg9cQa/hoc/e72+H69SAK1jK9YNj1dNKtny70vT5BQnC11XXKoccg5W4Kd5lfE1stD45XteJQRHrPfdsimEli++0LH2gLTCJUSRzfaPcoIxQlDt3AMQOkZ02aDuc3ZEomeXtty266fs5VKJGSS4mSME5teZYRq+b+tZytGGaEQt0IoD3LWVl2JLLZUKLIImdmIH232bBHSGgSmEbZCGWGP09kCIMVWI3q2RG9M3DTCoF4kfdvFkgmvY30hLDJJd2fL+reb45e0uUeqwApKnxPCTLhAXmWEndkUjnvj9va1hHRWA50tUSrncLaqSYQu4RiAU7zpc7bUZU149D264RfXX5QlfoYVy56P/lurCrkhxXGyia2kEv0eKSCjur+r7z2RSMhZW/WFuY6EzGImmUZISEvh1W8iTJOZWkY4ni9iNFdx7dx6toDGDjaW0e9x52xFiH4H/EshZRmhFgShu24Jw3BE4gNKGmECtjlbfv1o6vqKcjvVxwlwxNTbBEe/+ztbQQEZbjO2AOfrZs3ZqvxVywgnovRs+aQRFhQ3tL26rtqdLUVsKY+ZThq1BWQk7M7WplGKrXpCsUXILEb8QJXKZmDcMCFk+iMOFNUBsED4obLTFRH73p5OoivrXpQTNs0vDjJIwMf98U0jDDEUWS3p8xtsnPfo2dIFSjJh2Fwn8RzU8j/1Mf16tsT2AEW0+Qwg1gkrhIN629ozomfLPSDDq/TPUWIpyghdgjuiRL+nfOL6xWWppBErll1gE1tjTrGVSSZssfiibzMI0zQdJwHmdlWdLZYR1hWKLUJmMWptN90tQmY+VhmhV3jCDBVbSgmhV3CEdUBf/+8yq/+mtjRCPxfITRi54Rn9rostw4ChlArqzlZSi34P6tlyii3nur3wc/1UggMyvMoIqwEZocWW+CvWZV0nPkNtUYYauzwv8Z5JqyV+EVwnQVDPlnAnowo6dcnS2aqGmjD6vb5EEluFQgGHHXYYnnvuuUathxDSRFSBRbFFyMzHKoHycLZmrNiqJhF2uZcQAlaiWiOcrTBlgH5phFLg+LhAhmEoB+9+ZYTu0e+6wyQEjqP8TwmJyERxtrT3kBnB2ZL9bPUKyNBEiyjPa3OJfQecQlL2bBnOkxCirypMz5Yo03Trey4opae1iK2iVxmhJraiPob6HktoYos9W/UlkthKp9N44oknGrUWQkiTySlfygzJIGTmI8WWPtTY5Qz+TGJjQDgGoCTDNWDOVlGJ8fbCL3HPcrb8HycZ4jl492w5nS31cjF/zKuM0O+5qdeL7QhRGUJrWfsmqGdLmQHmRlBAhpez5QjIqP5brN2eRuie6OmG32w01dkS25oMWeKn4tmzVbTKCNX1hhVb6nZTWhnhJpYR1pXIZYQf/ehH8eMf/7gRayGENBn1i5+ztgiZ+XglqYlj6hlfRugS+y4IGy8elXLZlG6Qb/S7h7NVLpu22Vd+pEO4czL6PaW/xprYSurOVlmup3I5bHO2/J4b4HRH9Rh1P0LP2QpwEPs60gCALeN250UGZIR2ttzXZZpmpJ6ttE/PVsGtZ6vWMsIxpYywVE2lrD5nLyEaZrtJzdkamSzyBGwdiRz9XiwW8ZOf/AR33XUX9t9/f3R2dtqu//a3v123xRFCGouajMQyQkJmNvliWR6k60EBYXtmpisiIMNtoLEgFaIELw5Fl4NSN7z2seqa+N0f8A9cEMjod4+hxvLfwtmqKm23YAu1ZysojdDR++UR/e5GveZseUWTW2mEHs6WXmKpRb+LlyhfKksRGaZnKyXTCF2cLSWNUETSR4llF3g7W8I5qzwHIegmCiXfodhu2xVCu7c9LUcoDI7lsajX++QGCU9ksfXPf/4T++23HwBg1apVtuuCXlhCyPTCFpARo7yBEDJ9UMuHHNHvLdKz5RX7DoQrwYuDKt78BInbzCbA3UHw3kYIZ8sjjdBRRujRs2UbapxQywgDnC0vsRVCbYV2tgICMryiycU+8Yx+1143cbxqGPZ1TSpzsGp1ttQ5WyKwJk70u/peGM+XMFkooS2dtNIIq0JOCM1S2UShZCKT8n9d1O3KwJCEgf7ODDaO5LBpNNdQsVUum1gzOI6lcztaXj9EFlv33HNPI9ZBCJkCVDdLlCQQQmYm4qx5KmE4XY+QAQXTFeFs+R38CeFQb/cutLPlEa9fjuBsWQfv0dMIPQf3Gu4iKWkYSCQqaYXFsol0kOvmSDWsXB7mQDnsUOMgZ2ueR09RkLOVdMwgs69L7JPxQqVfK500AgNDKrfzFsfqIOw4A4cFelnqlvECFvUmnWmEynOfyJcc3wE6auiL+hrOrYqtRicSfvfu5/Ddu5/DtSfshyP23qahjzXVxI5+f/7553H77bdjYmICwMytAydkNkNni5DWwa/XJOHhuswUNlSdrYU9wT1b9U4jLCnCx6+vSRzAO8oIbQ5CuHh13zTCgnsaYVhnSy//E4IhHXBw7uVsBfWhqWsIDsiA7zaF2Bocy9tOHASKLY8yQjnUuLouIYa8tqMj9rlbf5MMVUlY0e+5Ylmue+NIDl/+f//EynXDvo+hC29RSijnrVVfv0wqIdcTJiSjqIgtFeEebh5rbEjGms1jAIAXNo429HGmA5HF1ubNm3HYYYfhda97HY488kisW7cOAHDqqafiP//zP+u+QEJIYzBNUwvIoNgiZCYjBr3qSYSAIgRm4InRyUIJW6rzhRb6BGTItLw6iy0R4W0Y/s6U1ywzVTcFO1vBZYSifExPI3QONa78tfZLufrX7h4JNy1ozlbKIdqqjxuiAkyK/YCfmaCAjP5qgEOpbGLrhBUWIYcaewhGzzlb2kmIKOEYgPp6uZURWj1V6vbEb+0f/vEafnb/Gvzwry/6PoY+N06KrZKzd09G42tDn90Q+1p/3WVf3GhjnS3xPoqT0DjTiCy2Pv3pTyOdTmPt2rXo6OiQlx933HG47bbb6ro4Qkjj0MUV0wgJmdlMFtxj34GZXUYoSgizqQR62r27HxrmbHkclOp49cXZAjLCOlseZYSiHwcIHmqsh0AUS+6OlDhYDztnS9w/ypytVAjHDgguI8ykEuhpq7wHVOcl8lDjhHC2tJ4tjzRPL6TYcnm9rDLChM0pE4JOiMUtyqBiN/T3s0gkLFQDMmxiKy3EVgRnS3v9+ps0a0u8j+IkNM40Ivds3XHHHbj99tux3Xbb2S7fZZddsGbNmrotjBDSWJxiq/XPLhHSyoznw5QR+guRvzw7gJHJIt77+sX1X2BM1BJCv/4gq6eozmmE4qA5IBrdCoHQ7q84Y0FhEkGiRC1XCxpqLNbj1Wsl1vLe1y/GQ6sHsfOCLt+16eEdUeZsWQOf4ZuUVwpRmjivK4vhySI2juSx84LKZZMyIMNdJHkLUdiey3jUMsKqK5h3C8io7uh0wkCy2keZL5al2BrPVdynkUl/saWLd+Fs5ZQADkGHkkgYhPicJLXwkHmijLDBs7bE5ypOaMhMI7LYGhsbszlagsHBQWSz3ilBhJDpRU77MqbYImRm4zXQGPAWAiqmaeITNz2G0XwRb1rW79sf1Uw2DAux5X+M0ShnqxjS2Up6CFohbsL0Nvk5JYC9AiGoZ8sSFNXgkOq6Spoj9ZX37hm4rsp2Kn/LjjLC8D1b4n5eoY7qDDAv5nVl8eKmMVdnyyuN0LOMUHPr/D5DbmRCOltApcQxXyzLxxir/h2e8C/5K+k9W2P2nq2M4nC2ZyqH9VGcLUcZYVdzyggtZ6v1jz0ilxG+9a1vxc9+9jP5b8MwUC6XccUVV+Dtb397XRdHCGkc+hccxRYhMxuvgcaAMwjAjXypjJFcEaYJPD8wfZrWN1TLCIPEX6pBaYReDoCOVxqhFDcRItK9BKP4nk4Yzqh2x5wtzdmSjlQIQeO+NndnK8Dwc6zN7/XRhaAbMsBBEQPWUOOQZYQyIMP+mkXt2fKb7VZUhhoDcAw2Fn1VQc6Wo4ywWnYoxZbyQlqDjYN7tkoe/XHNKiMsaqWbrUxkZ+uKK67AYYcdhocffhj5fB7nnnsunnrqKQwODuLee+9txBoJIQ1At+51p4sQMrOY8CsjDBG9PZ6zvgNe2jSGt+w8r84rjMfAcHASIdDIOVvRygj1vriyR2+MG35zmwArNVbv11IfX/+3dDW1nq0wjpR9e5W/ZV1sRXS2/N6DYtvhxJblbIn94h39bt+eofWziSVF7dkS74lCyXSUR4r3jRhJID6X4jHGqp+3kckAZ0sOKk9gslB2pBGqPVsdmfA9WyWP9+W8JqURWn1yrX+iN7Kztddee2HVqlU45JBDcPTRR2NsbAwf+MAH8Nhjj2GnnXZqxBoJIQ1AP5tEZ4uQmY3s2co4z6N6lbjZ7q98J6zeNFbn1cUnbBmh3ptUL6yerSBnq/JX38deDoIbwc6WCIJwHr55lRHqzpbQotHFluZsxZizVXn8YGfLb1+J+PeNirMl9kv0MsLKXyHyovZsqa6S/poVNGdLztrSnK3RfNE3uEbsk/nVgd56GmG21oAMzbHt66iIrS1j/o5brYjPxWwI54rsbAFAb28vvvjFL9Z7LYSQJqKLK7c5IYSQmYNVAuU84NR7U9wQDfsAsHrzdBJb4coIG92zFSSWvNIIi9KtCX4svyhxQB1o7PIaaw+Q0p0tRxlhRLFVvbl4fvq8Lt/7hi0j1MI73LB6itSerWjOll5GKHu2YpYRAhVRrt6tqPdsSWerstax6ufNNCuCq6ct7foYwpGc15XFy4MTsoywoETLC6wywvDOlu7YRgnZqAU9AbKViSW2hoaG8OMf/xgrV64EAOyxxx445ZRT0N/fX9fFEUIaB50tQloLcYDV4eJs6QNp3VDPhr80nZytahrhAp8ZW4B//0wtFF1S39ywygjtl4sDeb3Hym8b3gEZ3mWEXkON9f0SRSTZtlddvzj4F5oyylBjIFwZoW8aoUtP0WSQs6UPNdaj30UZYcSADFVs5UtltMO6n5pGCFgCToiYMeXzNjLpLbaEWBeOnjMgQ52zFT4gw8tx7Uin5OPmi2Xb9usJywh9WLFiBZYuXYqrrroKQ0NDGBoawlVXXYVly5ZhxYoVjVgjIaQBOAMyWv/sEiGtzETBuwTKmpHkff8xpan+5cGJupfjxWXD1rBphP5JfnEJ62xJB8mjjDDcPCr/ocayjDCEs5WQzpY9OCRolpUXSc25s6Lfg7ejPlSogAyfo1N3Z0vsl7DOlv1yIfImfGbVuZFWFqr32TnSCKtCUAg61UkenvAu2RMBLVJsieh3GZBhrVX2bBXCB2ToIl197mEcsriUTDpbnpx11lk47rjjcO211yJZfYFLpRL+4z/+A2eddRaefPLJui+SEFJ/6GwR0lqMS2fLLTyh8tevN0QNyMiXynhtywSW9DtHvTST0VxROgALAsoI0yHcuziI7QUN/fVMI4yQ/hcYkCGcrRA9W0mPni19qHFYUpowieKQGYaBhFER+36lrKGcrWqAwyZbGmHAnK2kLraqzpbWy+g3q86NRHWGVqlsOgSydLb0NMKiu7PlhTh3ML/6vEcmiyiUyr4BGWFEUtHjJEAmlUAqYaBYNjFeKKIX7o5brUhnaxac6I3sbD3//PP4z//8Tym0ACCZTOIzn/kMnn/++boujhDSONizRUhrIeKe3Q4UDY9+IpVx7QTMdCglFOEYXdkUurL+54cb1bMlgg7COluAXdRGETeBARkFZ9y3QD9oFqaLo2dLBGREdLYSDtHm/rheBLl2QLiADOFsjeaK8qRh4Jwtfd9oARlxo98BS4Tqv6EFbRi2DMgQzpbiJPvFvwtnq78zIwdIbxkvyEHK9jLCKGmE9gAPlSjbiQvLCH3Yb7/9ZK+WysqVK/H617++LosihDQeOluEtBZ+JVBJD9dFRS1rAqZHSIYQWwsCSggB66CxVOeeLa9yKx1bqZwiaqOU7QUNNS7I/rH4zlaUska37QvxaEaYs6Xezjd5L8S+6mlLSbdo81gepmnK36/I0e/Vv+LlmoxYRggog411Z0ufs6X0bOWLZSnGAH9nS7wX0qkEetsrLtPQeB4FN2crHcHZKnkL2ygOWVyk2GrgY0wXQpURPvHEE/L/zznnHHzyk5/E888/j4MOOggA8Pe//x3XXHMNLrvsssaskhBSdxxiaxbUTRPSyviVQIkDKh9jy3EWezo4WwPVJMJFASWEQOPTCIMCLlSBUHYRW/WIfrdK05xrSXoMObbmbNkDMqIONZbOVsnubIXp2QLCCf4woRuGYWBuZxbrhyexeTSHudXADCB6GqHu+PrNqvMi5VH6KedsuUS/j2tDh/2cLRmwkjAwpyODLeMFDI3lLWfLlkYoAjKCe7bU7epUtpNrjrM1C8oIQ4mtfffdF4ZhyLMYAHDuuec6bveRj3wExx13XP1WRwhpGOJMoKjNprNFyMzGbyBruDTCygGa+E6YDrO2NoQcaAxY5VqNmrMVWEaoCATVXIsitoJ6tqzQBee2vBL36u1sCWESdTteASIqYffVvO4M1g9PYtNoDtsrfYVtHsl5gQEZevR7BGdLiPC8V0CGNtQ4Vyjb+rUAYNjP2ZL7JIE5HWm8BGBovOCRRhh9zpbb62fN6woWbXERr3WhZKJUNiOPIphJhBJbL730UqPXQQhpMuLArKc9jcGxPHu2CJnhyIGsbmJL9Kb4HOiKA8BdFnZj5brhaeFsiRlbYcoIG+dsWSemwjw+oJUR1rFnq6gdwKt4lRHqaYRWsEXEni3NmYoaIa/3jrlRCrm2uZ2V98Om0bzs+UklDE/30cvZ0oNj4jhbGY/ST0cZoVKap5fsDvv2bFlOZH/Vxds4mrPElksaYZgZWbI81kW4N6WMUPmMTBZK6AzoyZzJhHpmO+ywQ6PXQQhpMsLJ6mlLYXAsz+h3QmY44gCrwyf63fQRW+LAas/FPVi5bhgvD02gUCoHpvA1EjFja2HAjC1AcV4alEYYWEaoCAR1DcLlCnPm3gqRcD/5pSfc2R7fa86WHmwRYT32tdn3b5Q5W+rjhZqzFbC2udVkvs2jeSUcw1sgOcRWwqOMME5Ahsd8N6uMsPKairj+iULJ4WyF6dlKJhJYNq8TAPD8hhHkagzIULer04yADFWcUmy58Nprr+Fvf/sbBgYGUNbeXOecc05dFkYIaSziB0o03LKMkJCZzYTPQNYwZYRj1bPty+Z1oi2dwGShjFeGJuQB3lQwEKGMMGggcFwsNyleGmFYtwZQywi9AjK8hZ++PuneJO2vfZT1qDhTDSt/Q/dsRXC2gvT9PGXWVtBAY8DpBMoyQjF/rvrzF6uMUKYR2p+XCDMR18vo90JJftYE/tHv1vtv9216AAAr1494RL9XDuvDOFIln54tWUbYwF5uta9xssWPPyKLreuvvx5nnHEGMpkM5s6da/uQGYZBsUXIDEEtIwQotgiZ6Uz49WzJM/je9xcHVl3ZFJbO7cQz60ewetPYlIotUUYYNNAYUJ2X+n6XhR1q7J1GGC46vnIb/3h0UZqWdtlWaGcrYvmfvr3YZYQhAjLC9oFZs7ZysozQa6Cx+tgCOWdLDvsWZYSVbUURWzJBUne2SnZnS00jdIqtMGWEBnZbVBFbz6wbxvzubHX7akBG+F4rv30tttPIpED1fdDqg40ji60LLrgAX/7yl3H++ecjETbvkxAy7RA/UJaz1dpfdoS0OrJnyzWNsPLXf6hxdU5XJinF1kubxvD2+i81FKZpYn0kZ6vyJAsN6tlyK91TMQwDhlEpr7OnEYr11R6QUfTps3E6W/bHFdsMW6qno4st8RTDzuuS7mqYocZBZYTVnq3NY/nAGVuA5e7JtRhiTdXHlWLLe1adF15x/UVtjpXY5mSh5CjPG57wFltS7BsGdlrQiVTCwPBkUQZyZNUywnT0gAxXZ0umGlJs1YPIaml8fBzHH388hRYhMxzd2WJABiEzl1LZlJ9hUUqkop/Bd0P0kXRmUlhadbOmctbW1gkrcU2cxfdDztlqUBmhW2+Ljl6WBtQ3+l2WpgUMNU4mDFl5pPdayTLCuGLLrC0gw3fOVtiADOlshezZ0rZnaM5WqVwR97X0bAWlEbZJsVXGWFXUdVf7lHzLCIUzmjSQTSWx84IuuR3APSAjVywH9i6KUQC6EFW3M15oYBqhLSCjtY8/IiumU089FTfffHMj1kIIaSJWQAbLCAmZ6ajpY35ztvwOwESfR0cmiSX97QCA17ZM1nOZkRAlhH0dad8DaUGj0gjFPnMr3dNxc2/kXKtQPVv+Q41laZrLWlSHQn2stBZNLoRg7T1blcuj9mz5vT5hwztsPVsF/4HGbtuz0git4Jh8qSyfU6wyQo80Qtc5W7nKZ21hb8Wx9Rdblb/i9d1tUbftereeLfE4fojlus/ZakIaobK/Wn3OZ+QywksvvRTvec97cNttt2HvvfdGOp22Xf/tb3+7bosjhDQOR0BGi59ZIqSVUQ+K3MqpwjlblQO+jkxSKdPK1XOZkRgcywOw4q6DaFTPViFKz5XhdG9kb0yI09t6f5XXWtycLdWhUB9LFwNRxJ9t+549WyHFlsu+0bECMkKKrbG87E/yD8jwKCNU0ggn89b7Joy4F6Q90ggLsuSz2rOlCBjxWVvU04bnB0YDerbs77/dt+nB7x9/TV6viq22dEKWso7ni+jySfjz6yVsRhqhzdlq8TaGWGLr9ttvx6677goAjoAMQsjMQKT/sGeLkJmPOh/I7bdYn5Hkt42OTEoegG0ezdd7qaERB6+ZkNHzQUIlLiWfQcI6bg5iOaSAUG/jGf0ecqix3dmq/L8oQYwi/ty2L8WWDFgIef8IQ42DBJwQ4KWyic/8zz8AAG0+ARl6yaT4t5w/VzZlyVw6aUQadyDKBPVSfD3MRIhBtWdrUdXZGsuXUCyVXUW02rMFALtVEwkFqtgyDAPt6STG86VAV0rfrooYH9FIZ6to69lq7ZO9kcXWt771LfzkJz/BySef3IDlEEKaRU72bFW+BsomPL/sCSHTG78kQkAtl/LehkhI68gm0dVW+V7YPDp1zpae5hZEMmkf3lu3dcgggeB1uA2PFs8jXPR7UBmhOID3j35XxYWjjLBu0e+ItJ2gUlbV8QoSpplUArss6MJzA6MAKuLr/W/Y1vc+qYQhX0tnGaElLKK4WoCaRqjOVjPl/klpaYRq9PsiJfhlNFdEX4fTxdWHD++ulRHqwS0dmYrYCnKl/E4idMiAjMb1bJVtYqu1T/ZGFlvZbBZvectbGrEWQkgT0Xu2xGUUW4TMPKxSKvcDRTcR4NyGFZDRka1sZ6x6hjxKD0u9sMIgwh3MN8rZKkYoIxQix23OVtCcLvUxvJytQtn7AFkVWEkXsWWVETpvEwa95ypyGWGA2FLfm2FKHP/njIPx0uYxLJ3bGarUNJEw5JN3lBGWzcATFl64JUgWlNdPTyNUo98r/YiVmXYjk/5iSwS0zO/OYm5nBpurZbbZpH29XiWAxVIZt/5zPd60tB+Lett8SzabMtR4FjlbkY+qPvnJT+Lqq69uxFoIIU1E79kCGJJByEwl6EAxaKhxvliWBz/tmSS6sylZvjdVfVtiPW4ujhthQkBqWUcosSR746zLokStBw01tkIX/J2tUGWEEZ0tsf2yaRdtYcsRg0pZ1cvDbHNOZwb7bT8nck+fupaE8pwmYyQRApZzlVdeM/X1E+/fbHW7ZRPYUo1678ik0F094Tns0bdV0t5/hmFgt20sd0stIwSAjrT7YON7nt2Ic37xGL5+60ptu86dLQMyGuQ46X17jXqc6UJkZ+vBBx/En//8Z9xyyy3Yc889HQEZv/3tb+u2OEJI45hUDs7SSQOFksm+LUJmKLJny6uM0PAvI1TLhToylb6vuV0ZrNs6ic2jeWw3p6O+Cw7BtHG2ZLlViDJCF8EXNs4cCDPU2Fv4qc6WWxlhQQvIiDrUWGxTCD4zorOlizUd9fKorlsYkraMgcpf8TBl0/SdU+eHm7Olii3d2QKsXsjObBLdbSlsHMl5JhLqpY8AsPuiHtz7/GYATrHV7jHYWJQEbxrJeW7XuY3GHBPo72+WEWr09fXhAx/4QCPWQghpImpcbjaVRKFUZCIhITOUoPlAQa6POKjKJBPy4FyKralytiKIHEB9jvX9HtOdBd81uKQ+xnK2AssIwztbKSm2ahxqrLl2UUVbIkAM25ytBgSu2dIaRc+W8pyCTlh4kXYRyLYywurzTicNJBMGSmVTCh/V2fISW2X5mlvrFyEZyYTheB29XCnx3slrDqdfz1ajAjJ0wc3od42f/vSnjVgHIaSJmKYpo1azqUTlzFjOOZSREDIzGA84UBTHrl49W+IsuOjVAmDFv09RIqEQHGHmWwFWOZRXCV6t64ibRmil/wXfP+g56LOb3B5b/39HGWGNARlif0SesxVQRqjqy0Y4W35lhKWyidGcNfog0nbFUOOi09lKKcOlRVLgaK6ITdV+q85MEj3VMJrhCfcywqKLON69WkbYlvIuAdRdqUJ1faKCxRrW7eJspRtbRuhwtlq8hSGy2CKEzHwKJVOWE2XTSWSrX9h0tgiZmUyGTCP0mnE0lrPCMQRzuyq9MKIRv9kUIkSuAw3s2fIp3dMR7S+2NMIozljQnC25Fpc5W7YyQuvyjEdARlyxJURR1IAM8Tp6lRFGDciIirpOYQz2tKXR15HGlvECrlvxIoDoPVtWGqESkOFRAtuWTmA0ZwmzjmxKhlR5zdpyc1b32KYHp7xlKZa4lPe2yyRBLSCjuj7x2GWf4JYOj1LEeqF/RllGqLFs2TLfsxgvvvhiTQsihDQedYBgWzphiS32bBEyIwnqN3Erb3O7v+qMycGx1ZKnQqmMH/71Rbxtl/nYa9ve+izch6I8YI02Z6tQb7GlpcH54Ta4N8oQYbf+H/tavF029aBZFWMpPfo9ZhlhSne2Is7ZEmLHy7WzB2Q01tkSx7GZVAJfOHJ3nPvrJ/DM+hEAtfRsOQW2Hu6ib7szU+nZArzLCMX+Thj29X/lvXu63t6akWXfnhDqQmy5bVcgvgcmC2WUy2bdXw+KrQA+9alP2f5dKBTw2GOP4bbbbsPnPve5eq2LENJAxBebYVTOemarwyCZRkjIzMQaSBwvjVCcwe7MqGWEVWerWkZ498oNuOK2Z3H/C5vx81MPrM/CfbAOWEM6W8nG9my5le7pJLS+psr9q9fVwdmyZo+5BGQoB83qQ3mVEUad8mEl91VK0ePO2QoKyGhECSGgBYgoaz52/+3wx3+8hr8+twlALWmEahmhuyjWt92RTVliK+fVsyUeJ9x+8Qq3EK+/+J3360VUv0cmCiV0ZutbCOcUW6197BF5733yk590vfyaa67Bww8/XPOCCCGNR5QLZlMJGIYh04zyFFuEzEiCAjLcRICKm7M1t+psif6S56sDZL3OwNebQsSADOm81LlnSxykRpmzVYrtbPn3bMnyNNehxtZl6lodZYTVtYXttbK2b92+VDbl8wq7GSv63f16OU+qASWEgN6zZV1uGAYu+de9cfiVKzCeL8WYs+V8zbzeu+7Oln8ZYZQ5b4BPz1bJXkYoe7ZcRFxbylrneL4ZYqu1na26TS894ogj8Jvf/KZemyOENBBRLii++FlGSMjMxkpScz8oCi4jFM6WS89WtYxwzeZxANZBW6Mp+IRBuCHERr17tmpNI4wSkBE01Ljo47Kp+kt1bhxphKZ9rWFR118yrb7fsCJA7D+vkBZrP0VaVmi8nC0AWNLfgYuP3gudmSQO3mlupO2mXV4zr3AXh7OVsZyt4QnnSYxy2XIQ3QS2GzKN0DHUuLIh6Wz59GwlEoYVklHdjmmanj2fUdHfAwzICMmvf/1r9Pf312tzhJAGImPfq2evsmkhtlr7C4+QVkU6U17OlghuCAjI6FDOYM/T0giF2Kq3c+RF0cfFcSOVdLpKdVmHT9y6jpuzZfV8BT+WFf3un0YYxdkS29Qjv+P2bIltRA3IkAEmHmI9igMYB3vPlvP6D+6/HT7whm0j9yfJMsJiCGdLcc0yyUoScI/PUOM4oSEyIENzi/Kas2W9D9zfmB2ZJCYKJYwXiiiXTbz/+/ciYRj43X+8ObIrqlMq0dny5Q1veAP2228/+d8b3vAGbLPNNvjCF76AL3zhC41Yo+Syyy6DYRi2vrHJyUmcddZZmDt3Lrq6unDMMcdgw4YNtvutXbsWRx11FDo6OrBgwQJ87nOfQ7HYnDIIQqYj4outrSqyZM9Wi9dNE9KqBKURJgKcLVGG2JFWywhFGmEOpmlizeAYAPsMoUZizZSKdjBf/6HG4cu4xLG1epAs5ySFEI1B0e9+CY3q5u1iS08jjFb+J7dvuIut0GWE0tlyvz6KAxgHVVR4CcQ4j+02G82rZ0uNahdjFvwCMlTR7lbu54blbNm3J17/fKkM0zStkwAem1V7vzaO5vDEK1vx+Mtb6jLoWHe2OGdL4/3vf7/t34lEAvPnz8e//Mu/YLfddqvXuhw89NBD+K//+i/ss88+tss//elP409/+hNuvvlm9Pb24uyzz8YHPvAB3HvvvQCAUqmEo446CosWLcJ9992HdevW4cQTT0Q6ncYll1zSsPUSMp1RBxoDShkh52wRMiMRZYBxhxqP5ZxztvqrARmFkomBkRw2DFuphM3AmikVrWerYc5WlDJCdc5WBAcouIzQe5+kPMRE2lFGWC9ny/lYYe7vVYrW6ICMpIcYrRW3ni2vNEK1J1KU7Pr1bKnv5TDvP8C7Z0t9T+WKZekuJT0+X2o5ojprL1cso2p6x0YPsWFAhsZXvvKVRqzDl9HRUZxwwgn44Q9/iK997Wvy8q1bt+LHP/4xbrrpJrzjHe8AUBm6vPvuu+Pvf/87DjroINxxxx14+umncdddd2HhwoXYd9998dWvfhWf//znceGFFyKTyTT9+RAy1Yiz4EJkZeScrdY+u0RIqyIDMgKdLff7j7ukGbalk+jOpjCSK+KxtUPy8jhlhFvG8/jszU8AAH544v6hypAKEeZbAcFCJS7FCEEdhuEUfOVIZYRBQ42990nQUGNHGWHMOVuA3T0MK7Zk9LvHm1Bo+EaVEarOVj0fIqXtX8B7zpZ6MkR81vycrTj72WsgsVrmmC+VfXu2APu8rrKZk5fXo7dbP18z2eL94g1qQ6wvZ511Fo466igsX77cdvkjjzyCQqFgu3y33XbD9ttvj/vvvx8AcP/992PvvffGwoUL5W0OP/xwDA8P46mnnnJ9vFwuh+HhYdt/hLQSojcr6wjIqP0g5ed/X4ML//AUTI9yJUJI/ZkI6NlSD5TdnAXhjHVoARuilPCRNZbYKkQUW+u3TuK4//o77lq5AXet3ICNo7ngO0GdKRXW2ZoGARkJp6iNF5DhUUbos09sYsvF2SqWTFtke9S+G8MwZIqf6m6GNYnEkj2HGje6jFDZbNSBzn5Y+1ctIwxOIxT9kb49W7Gcrcp2HQEZqrNVKAf27nUoos3mbNXBhdJPiLR6z1ZoZyuRSAR+MA3DqHsv1C9/+Us8+uijeOihhxzXrV+/HplMBn19fbbLFy5ciPXr18vbqEJLXC+uc+PSSy/FRRddVIfVEzI9sXq2hNiq35ytb9z2DIYnizj5zUuxdF5nzdsjhAQzEdizZf1/yTSRgP33fMxjTtfcrixWbx63ia0oztGrWyZw3H/dj1eGJuRlk/lw95czpSI7W/UuIxShFDHTCOs51NhnzpYt2lw5xlfLCFWdE6eULpkwUC6ZKCguSVjRlgwQw40PyAju2YqDW6iJVxqhKrbETLue9sqh+GShjEKpbCsRFfvKMMKL0KA5W0DF2SoGOJxq75fqutXjOEH/CtGFYasRWmz97ne/87zu/vvvx1VXXYVyna37l19+GZ/85Cdx5513oq2tra7b9uP888/HZz7zGfnv4eFhLFmypGmPT0ijEZa9aNatV/S7aZryoC1MWYBpmjWnGhFC3NMEVdQDNTdnQRzsdOrOVrVv65+vWhUehQgHWz+7bzVeGZrA0rkd2DSax2iuiPFCuJOyceds6UlntWKlEQZ/V7mlPkZJ/wt0tmQZoXOfqALCrYywWDZt240japIJA4WSaSuZi+pseZcRNrpnS41+r992xWuhzqn0CjKxlxFWPmtdymd2ZLIoeyWBaK6qtV0vsaWUERbLsm/K632tirbBMbVnq3ZhJMRowqi4wIx+r3L00Uc7Lnv22Wdx3nnn4Y9//CNOOOEEXHzxxXVd3COPPIKBgQHst99+8rJSqYQVK1bge9/7Hm6//Xbk83ls2bLF5m5t2LABixYtAgAsWrQIDz74oG27Iq1Q3EYnm80im62x+4+QaYxoRhVlhPUaalwomfLHIaiv40d/fRHXrXgRvzz9IOw4v6umxyVktjM8USlB6mnzn7MFOM8qA+4BGYA12NjWjxLBOVq3dRIA8NGDdsD1963GaK4Y+iy2FQYRzdmqd1qiHP4aIk3QKiOMJ7ZkSZpX9LvPPlEPyNW1qmJVPVA2YjSSJGXflSq2Qr4+LuEhKjJIpEENLur+r+dJPrfXzCvIpD1j/buz+llLJRPoyCQxni9hZLJgE1uWKIkutvQ0QtXZyhVLge9LIQzHXQIyakV8PjozlZ7QfLGMctlsWAnpVBPrLf3aa6/htNNOw957741isYjHH38cN9xwA3bYYYe6Lu6www7Dk08+iccff1z+d8ABB+CEE06Q/59Op3H33XfL+zz77LNYu3YtDj74YADAwQcfjCeffBIDAwPyNnfeeSd6enqwxx571HW9hMwUcg5nqz5lhGpDblBi2V0rN2BgJGcrTyKERKdUNjFSFUs97WnX29hiu92cLY8yxHldzhAprxI3N8QZ8f7OjGfjvhd+YRBuNGrOlthemHLGhFtARoTyODVR0a3v1S+sQz1QVbVYxia2yspt4jlbAGxlhGGdKCv63aOMMGZwR1ga5Wy5lX56hbu0uThbANBb/dxuGbf3bcVxtqRIKpRs76Giw9ny37YtjXBMCcioR89WdS3qyZ1WnvMZKY1w69atuOSSS3D11Vdj3333xd133423vvWtjVoburu7sddee9ku6+zsxNy5c+Xlp556Kj7zmc+gv78fPT09+MQnPoGDDz4YBx10EADgXe96F/bYYw987GMfwxVXXIH169fjS1/6Es466yy6V2TW4oh+F0ONa/wSnbSJLf8DHrGGVi8fIKTRjOasM9jdHs6W6ha4iRHpbHmUEaqUzco2whxkb1bFlnLwFgYr0S3ceeFG9WwJpyxKGaBbGWGYs/ZqeWCxbDocLLlPPLaVShgoaq+Nug2b2IrZswXY3cOw2igo+l3upyaIrXqWKsqhxiWnsPELyOhUTmzM68pi3dZJbByxh8fEKa0UnzPTrLze4jHzNmfL6tny2t9qGuHmOpcRlhRnC6g858lCyTNNdaYTWmxdccUVuPzyy7Fo0SL84he/cC0rnAq+853vIJFI4JhjjkEul8Phhx+O73//+/L6ZDKJW265BWeeeSYOPvhgdHZ24qSTTqp7ySMhM4mcY6hxfXq2VLEVdPZb3JZx84TUhighzKYS0qXWUd0CN8fELfodsMoIAau/Aqgc9CcTwQdGg9Uz4nM7s9GdLeEohSwjFELFNFHXkiTpAITp2aruZ3UXy0jzMGJLeYxiyYQeLmntE3cBmqyKLa/+LfU7Oo6oEeWJat9e6Oj3ADFslRE2w9lqQECGmkboUe7Z7pJGCAALuiufswEPsRX2hANgP2Eyni9JsaWuz+ZsebyvpbNVKNrKCOsxE0s8diaVkCcIWjn+PbTYOu+889De3o6dd94ZN9xwA2644QbX2/32t7+t2+Lc+Mtf/mL7d1tbG6655hpcc801nvfZYYcdcOuttzZ0XYTMJLzSCGvt2VIPovJhxRadLUJqQkRGe5UQAvYDTTdnyxJb7tHvALB9fwdWbx4HEM49Mk3TKiPsqsHZCtnEYxMqZROZOh20F31CKXRkGaGitqKUEdpnWZUBWAfnpmkGHiCL++v9SZlkAvlS2Va9EGf3uIVcRO3Z8kwjbPScLUPdJ/XbrlvPlleQiSq2upQSugU9QmxN2m4f5D65kUwYyKQSyBfLGM8XbcPJBfliObAXUQ3a2Dxa7zlblmPXnk5iJFds6cHGocXWiSeeyNQwQloEGZChDzWuVWzlVWcrXBkhnS1CamN4otqv5VFCCNgDAdx6ZsScrc6s3rNlOVs7ze+yxFaIvq2RXFEe4M1VerbCztQpeiS6eZEKEJRxKUYqI3Q+fjFCKZjqWOnfoerBctrjAFk8hu4OpZMG8iX7gXKcUjqZvBcjjVCWEXrN2Wq0s6W8j+rpbInnpZ6sLHoMNfbq2ZrfXUnc9iojjNKzVdl2Evli2fabrAdkiNfBe6hxZa1D4wWZMly5b/2crVTCQFaKrdY9Fggttq6//voGLoMQ0kxkQIZjqHFtX3ZRAjJEyQB7tgipjZEQzhZQObiuBC/YL88Xy/JAviPt3bO14/xO3P1M9T4hxNZgtfSoI5NEWzppSzcLg1eimxd+rlAtRCkjdEsjLEcQW+pNdPdQTQAMdLY0MVEpQyvJk1yGES+RT2g8VQiG3U5QGaG1nyIvKxSphpURCmdLLSMUoSrBaYRAcBlhVGHckU5iCwq2z5q639WeLc+hxlWx9crguO3yepwgVfsYRTtDK4utBr2lCSHTGT36PVsnZ8sWkBFwZlmccWvlL1hCmsFwdeBod1uA2PIo41LPfusN6n0dGSkAdpjbKZPtgpxrABgcr4itOR0Z27bD9mx5Jbp5oZZs1dPZ8pttpeOWRhglIEOU/AFOQas6W15iK+VSRghYgkCcUIsrNsQ+ECfTomiAwOj3RqcRGqrYqt920y6fiUJEZ8tLbEWZ8abiNti4oAVkBEe/V9b3ypYJ2+X1drbapOPduideKbYImYU4hhqn69SzlVeib322VS6b8gu7HjGyhMxmgmZsCdwG7gLAWLWEMJ00ZEmxIJkwZM/HDnM75EFfKLFVdbZE31f0gIxozpafK1QLUUq5XNMII/RsAfA806+WbnqVEQoRpYspEdQgvnfjChqxCyyxFaGXKCCav5kBGfVsixGfCVUci8+H/t61pxGqZYQVsbVx2N6zFVeACiE3oQwQ16Pfg8pjhbOlHxfURWyJ19pQnK0WDsig2CJkFiJ+xOVQ42R9nC31IKroM1hUfZxW/oIlpBmECcgArANjvWfGKxxD8LGDluKgHftxwA79Vn9KmDJCJfYdQOSAjKg9W4Zh2OZU1QvxXRYljdC9jDDc43ntJ7Xsy0uQWM6W/fK09h0fd3Cw7NmS24kgtgIDMmbmnC03t1dE4+sC3Z5GqAZkVHu2RnO2tNC4ZYRuzlZeSyMUP9FBc7Z06hmQkUoaaBNzPlu4yiXSnC1CSGsgfnAtZ6v+PVt5nzPf6hlbOluE1MbIpAjICFdGqB/rynAMj4OrTy7fBZ/ELgCsMB2/kymCzTWKrahphIAVfV5PZytOGqH68FET5Tqqs4d0ZytoxhZgiR9nGWHV2SrUVkao911FKiMMGGrcTGervnO2xD5xOlt6ZHu7l7NVDaIplEwMjRfkZyZ2z5aL2Co65mz5O1teM6/q8ZutzlRjGSEhpCVxDDUWPVs1ftnlQs7ZUt0sOluE1IYoI/QaaCxIeLg+4oAszEBRIThClRHKGVtxywijzdmqrK/6HEOsLwymaUZKE3RLI5SpbyGfR5vHfvIqTVMRz99ZRihKtWorIxTbL8YoI3TrZ1MRFzfH2apnGqHoYzOlKyX2j/7etfdsWf+fSSUwp6NyskSNf4/iqqp0uJzY0KPfg4Scl9Nd/54tBmQQQlqQnMecrXpGv/ulEaq3o7NFSG2ELyOs/HWWEYrY9+BiF3HQF5Q2CqjOVuWsvRRbkcsIozlbgFXGVSuqLggj+mQaoVtARsgD/Pbqwaee2hjmwFs8vu5+yTJC4WzFdHbE/UTlQhTRItbtFf0eJbUxDvaerfptN6PG9VefQ6Hs7oZmUwn0daSRTSWkeyVYUI1/Hxi2QjLi9myJcAvvgIySFb4RsoxQnMyp95ytbMSREDMRlhESMguxhhpXywhT9jr8uNij3/3KCIN7tl4eHEciYWDbvvaa1kRIqxNmzhbgHt4AAGO5qrOVDna2xEG73+dbIHq25uplhKHTCIPL5nSEMKtXz5Z6gBouut1ZKhe1FEzsJ2cZYXA5o9+cLUDp2YopNnRnK4oGEPvGyxWNktoYh0ZFv9uGaZdMpJPec7YSCQM3/tuBmCyUHSc3FvRk8eyGEVsiYa1lhBN5KyCjoPVsWdt2fz+1ad8H2/a145n1I3UNyEgmrJ6tiRY+8Upni5BZiPiyFP0X6pwt0+OsYxjCztlSBZabszVZKOGoq/6Ko7/3N8+YYEJIhZFcbQEZwmkK42ylk/aDbT+GqmJrTs1lhNGdrTBljmFQRVuYni03Z6scMY3QywG0ygj9nK2E62OlNGcrrnskthsrjTDkUOOIFXOhSTRBbIkQCr/Xas/Fvdh/hzmOy2UioYvYitK3CDh7tkpl0+bS5kvlwJRN3dlaXD3xWc+ereQsKSOks0XILKQg68mF2Kp8qZbNygFOlB4JlUlbz5aPs5X379kaHMvL2UG5YjlULwkhsxXL2QoeagwAeoWdiH6P0rMVNEcPqGNARpyerTqdpFG/0/RYfDf8nK2wjo1Xz1YhVBmh+Gu/jZ44G1dsyDJNWUYY/b6BaYRNcbbqt101hl+chPAqI/RDlhHaerZqTCOsvof0k5+5gjXU2Ot9mU4mkE4a8rXepreyvvqWESasgIwW7t+ms0XILESfbi/SCIHa+rbC9mwFOVsiXQ0IFzFNyGxG9mwFBWS4CAHAOvvtlUaoEsXZcpQRRnW2SvbvqTC4JcPVgjjp05VNRSojVPVElDldgPd+CrM/hLMVXEZYq9iK4WyJMsKgOVtNGGpczzlbiYRhOapl/4AMP9wGG8ctI2zT+qD0fR7G2QLspcXS2apjQEbSsB6jlfu3KbYImYVIZytV+ZJVG3xr6dsK27OlDj92O0s2Uj14VNc6nbnv+U047WcPY93WialeCpllmKZpRb8HlRFWP+ZeARle6WMqVs+W/+dyslCSIq6/K+acrRhJbMJJqJezJb6LgpIeBeKr1BaQETHSXPZsOcoIQzhbhvjrXkY4WWsZoSa2ooiWoDLCxgdkJJT/r+9jyPlz1d/PQoxwlwU9YrBx7WJL78PWT47kiqVQ21a/E7ZthNhKJGZFGSHFFiGzDNM0HY3WiYShnPmM/4WnNrj6OlvKl6rbbA3V2ZoJYuuG+1fjzqc34K6nN0z1UsgsYzxvHTSFnrOlCRFx8kNviHfDSiP0FzOihDCdNNBd7QWL4mzZvqciiC3dYaiVsCWaArd4ffEVFrpnyyNIJExpWsrD2XKUEcY8+tPLCCNoicAywkYHZKhrrfdDyMHGwtnyGGrsh1sZYVRXVK5HE1t6hYh6wsNv26Jvqy1dSVEE6iOKrPJIpwvXilBsETLLUH/o1BIHGf9eg5Wvnon1K+OxlRG6iLth1dkqxjtoamawhjgga+WhjGR6Ij4r6aTVaO6F15wj8XkMun/lccINNR4ctfq1hPsRxdmyfU9FKSOsc89WZGfLpVQzqmPjXUYYXJomHsPpbFX+LQ5op6SMMEhsNXzOlvU+qmcZIaCUrzoCMsK/d+e7lBEG9VV5oY9z0Xuo1Uh4v/el+MzO7czWbUQMoH4mEkr0e+v+flJsETLLUM/4qiUOViJhDWJLEU55H5GkD1rUf3ztPVvRz3Z9967n8Iav3omXNo1Fvm8cRMAA+8tIsxFCv7stHXgAKV0XrYwrV4jgbImD7YCTIJurA43FjC0A6KjO/imWzUDH2v49NYXOVsgZZvrju5YRRk4jtO+jMKVpUmxpN0lrzlZcQVNLGmHgUOMZGpABWK+J+A2IE+4ierbG8yWM5iqfa/HeqdXZ0j9vYcWWcLbmdWVkb3c9AjJszlZKDNyms0UIaRFUQWB3tmr/Ip0I6Wzpgk5/TJvYiuFs/fW5jdg6UcATr2yJfN84jCrJiYQ0k5GQ4RiAdaCst8xIZytE2p7s2QpytmQSoSVS2jLW9oNKCQu276k4zlZ9Poviuyiss1XPOVsThaLt8jClad5ztuzf73FL9ZLSwak8pyiaTTpbHl/pjQ7IaFT0O6CUEZZEGWH0NMLObEqG1AwMV0oJS9XPQVQBmnGIP/c+zaBtt1d7tuZ2Za1jhDo4UGXT2j8sIySEtBxqOYFaniOs/PoFZITr2ar8237bWgMyckX3H5hGMZITYqt1fyzI9CSK8+LWTwRYs5fCOFtp7aDSC0tsWc5WJpmQjkJQKaG6/Shn9es9Z0ukEYbu2ZLujXVZVLHVFjhnK4SzZehiS5QR1jbUWGw3H8PZSrm4fiolxe1oBI0aagw4UzDjpBECwIIe0beVq24vnrOlu1D676i9Z8t7h3dU34v9nZm6lhHK8kjDUMRW656spNgiZJZRLFk/tuqZPr2BOg6TodMIdbHl7WzFEVtepRONYqwqtmoRqoTEIUqAg/i462WE4iAnG6JnywrICOdsidh3oNInI9LNgsSW6pxFOasvDhzrF5ARL43QrMXZ8pqzFSaNUJYRBjhbMcVGShOzUTSA+L3xem0aXUao/t7V2zyz0ggrzyFOGiHgHGwcNzQkm7SXETp6tpT3lt+mRRnh3K5MXapfBOK1TiVnx1Bjii1CZhky0Ur7EcjW4QvPVkYYcs4W4BR4qrMVR8CIH4NmiJ9S2ZT1760gtp58ZSs++cvH8MrQ+FQvhYRgOEKAgziINR1iS5QRhne2glzjQW2gscBrYK+O5eIYseLF6yW2wsbqC9zcQ1EyFTqNUO4jj54tvzlbRoDYKsQrSxOI51fLnC1PZ6vBZYSqO1RvQacHx4i/6YiPo8/aqrVnK+eRRih+s5IJ/8/XXtv2AgDesGSO/OzmimXHd0hU3JytVi7DD3eqhhDSMsjyBu3LWxxoxbXyTdOMNWer8pj2Ay/RHAzEC53INdHZsq21BX4s/vvva/D/Hn8Nuy3qwZn/stNUL4cEMBKhzM2txA2wPi/hygjtqWtebPYQW+3Vvq2wYitKzwtguT716tmKImYB9zRCy50I95iec7bEAbyPs7VNX6UMbVG1HE0gywjr5GyJ7+V4PVtTNWercWWEenltMaazpce/l2TEfrTtiJI/rzlb4vKgff3xQ5bhA/tti76OjPwsmGbl9z2Tir8P1Uh769ijdZ0tii1CZhnWQGP7l3dbprYvvHypDPWEpW/PVoCzNWwrI4x+Bs3rbF4jGKtRGE43RHmJ2kBNpi+izK2nPfjnXJYR6tHv1dc8VBlhQgRkhHO25upiy6MfSacQY6AxEL5na7JQwmdv/gf2234OTnnLUs+z+1YASfw0QulsRQ7I0MsIgw/gzz18Nxy19zbYb/s5tst1ZytuQEZNzlZg9HtjnS3VWax/GqFdhMZ9/+qDjeP2bDnTCK33oLr/w2y3r6PyGc4qxwy5Ykk+RhzU8sjZUEZIsUXILMOrFKXW+NVJR0yxTxqhIyCjQT1bMWd0RaHVnC3x2oSZhUSmnuEIYkAKAb2MsPqZz4YoI4zas+V0tsL1bMWZUwSEn7N1/4ubccsT63DLE+uwZvMYvvLePV0FiBWtHzWN0LpMxlxHLiP0mLMVMBfpgKX9jsud0e+hluJA79mK4kKJl9J7qLG4XYPKCJUnXe85W17OVpQZcQAwv6sqtkbtPVtR94k+ykWIv85M0nYyM8p2M0lVbJXRHWlFdtTyyLClxTMZ9mwRMstQeyFUak0E0kWaX8+E/qXq17MVL42w2kMVY0ZXVFRh2Ao15+LMbCvPPGklZEBGmDRCw0NsyTlbwYcEVsR1QBnhqJizpTtb4coIZRhExIPMsAEZW8bz8v9vuH8NPvWrx12f00hOlBHWMGcrZkCGs4zQChWISrpOQ43F/QqyjDCK2Kq8Np5ztiI6gFERa2/E5tNaGqHlQkZ7sM6s3fktxdwnurMlfve7svaTBlG2axiGQ8SZpunZg+dHSRHr6rFHrb1g0xWKLUJmGV7lDbVa+fqZaj+XRxd0fs5WVAFTLpvyh64Z0e9jLedsVcVWC8fwthJxAjJqiX63nC3vz1ahVJZnz51iK1wZoRAWUZ2tZNL9OepsHa/st2372pFKGPjDP17Dn58ZcNxOiNneEGWagHUgrwraqL1IooxwvFCyHXxaaYTRD910ZytuGaEcah0jjVD2swVEvzc6IKMR2xciX4qbEP11bsheq+prXaq1jLBUrv4mVp0tTWxFjpSXs7Yqn9/Tf/4Iln/7/yIfN6glo+p310iuNcvXKbYImWUUiuJHQCsjrHGwoKPkxedgR38MVVCZpmkrzYvqbKl9U80QP61WRiidrRYu6WglosyB8nS2IgRkWM6R93t9qOoaGYbV7yGQ0e+BARnxel5kmVuQ2KqKqLe9bh7evdciAMDaQXsCp2ma0mUP62y5pRFG7UUSr0NJOXEEqKVp0cWCvh/DljTqJKXYit6zJSrqvAIyGj1nK9FAsWWlEWoBGRHLCDPa4OA45ZqAvb8qXyp7iq3I29USCe95ZgAvbhqLnF5rC8hIJ+Uw58HRvN/dZiwUW4TMMuQZY71nq85iy08kidt2uoRyjOdLtgOVQkQBo063b0oaoerCNeDxHlkzhC/87klb2VMjESWYFFszg5GJ6EONVZ1ULpvyJEFbiIZ3cTDo1w8pXKuOdNJxMBe2P8PqLY0XkBGURri1ut962zMyxGPLeMF2m7F8SYb+hA7IcBG0YilRywgBbVB8uXZnSxBRA0j0aP1IzlbAUOOoEflRkc5WA4589ZTOMDPR3MgqjhRgvY/jlhGKbRU8ygijikG1jDBXLMv3wXjEHl99ftic6mdwsEm/c82GYouQWYbXj0DNPVt6f4FPmZEQROKstxqYoZYQVtYbrRRQHbjYCtHv37/nedz0wFrc8dSGum/bDfEcWEY4M5DOVogyN/GRV50F1VXOhnK2qs6Gj5gR7yG3tDIR/R50cGaVYcULyAh2toTYSnse6AlXK6UkpgXh52yFPWBOJw15W/WkRzFmHxBgDzcA4rs7Yl3iNY7SsyXDSwKcrbgljkEkG1lGKIYIi4CMmGWwGa1ML3bPlhpmUShLEdiWTtgEcuzgjUJJljAD8cWWeE+IcuOhMYotQkgL4DX/o+aerer9Mkn7mTm/2/ZWz8arB3xqOEbQdtxQt9X8MsL6u0GbqkEDQ01ztlhGOJMYjlDm5uYsqK9zGGcrpaWuuSHeQ27phu0hHfS4wkKGMAScpNk6Ufk89banMafD/UBPDR8JKyqSWhqhaZqRAzIMw3DtbbPSCKMfujnKCGMKGmcZYfj7yqRGj9em0c5WI8WW6mypr3n0nqj69GwZhmHr27ICZxK2z2V0sWWVEaonRqOm1zqcrepncJBiixDSCogv3YzubInBgjEFihBQotnVL61MHGj1daRt/wbsM7aA6IJJFVvNCMiodQBzEOJs+7AmQhuF2N+tHMPbKkwWSvL16gkRkGEYTmdBfF5SCSNUeZqeuuaGcJfd5naFjX5XDw6jUIuzpZ/QGIk40BhwClp1GVFEhFu5pZhtFi+NsE7OlqGLrShphNPD2WqElksrKZjq707Ukk/vnq3oh+vZpOVCiTWlUwmb4xy9Z8s6KauW0Ed1tvT5Yf0en8FWgWKLkFmG/MH26NmKO19J3E/0jngJHdM0HWLLz9mKWgqolhE2Y8iwKrZyNZbe/eEfr+Gsmx61vQZbxir7Qy+vbBR0tmYOQoAnDKAzE6aMUPQTWZeJ1zlMOAZgHbTnfXq2xOdAL10DvGdI6VhlWPF6tvzEIKCJrer30NCY/btnJEL4iEAvI1TLCaOIiA6XwcbS2YrRs1W3MkLp4EQXRoFDjRs8Zyspo98bUUZolVeq773oaYRVgaQ5W3FCQ4QwUp2tdMKwia3YaYSaszWej/b7pLuYlrPVnJOKzYZii5BZhlfKlygjzMUdalw9SBdngb1EUr5Ulgd7ve2VL1j1wH40p/ds1eJsNTcgo1Zxd92KF/CnJ9bhb89vqmyvWJZRuM0SW+zZmjmI90R3WzrUQa9rGWFRiK1whwOpEGJGHCi6OltiztY0cbb6OqwyQr1nK0qsvkCPfleDMqKICLdZW8WYoSGAWxlh5E1U7lc9OM7HKCMMElsND8hICrFV/21baYRlu7MVM40wX037s3q24gvsvBJkkU4mbEmFtZQRjuYsYRS1EqKoldbO7Wrtnq3w3yCEkJbAGmpc3zRCcVAQJLbUg3j3nq0aAzKU7c+06HdxACr6tNQEQt3xaxRCbMcV3aR5DE9EEwPiGLZk69ny7q9yIx2mZ8tnm+Gj32P2bIk5W4E9W5azJQ74toznYZqmLLeMEqsvH19LI1T3daQyQhdnyyojrEMaYY0BGVYaYQRny6WMVaXRZYSJBjpbacXxU0vo4zpbQEXQ6uV2kbalxLSL36ZU0qitjDBlnZRVTyRELSPUZ895nfBoFehsETLLyMtSFPuXbHuNaYSyZytbOTApm+5nMEXKUsKwDhInbWmEdlERdaix6i7NtDRC8Vw3jYhQDGtf6L1sjUAdCB23nJQ0j6hiQDpbpiq2vPur3JDlUj6fLdmz5RK4IUXEFKYRThZK8nuuRwnIKJTsM/6iilnAWUZYtJURht6MdADH3QIy6tGzVWNARpwBxOK+puke/y5dnMZoLekyNULMpZRgKNW1iZLWCNgTPHPFsjxpEKe00u5sWZ+nmgIyhIArlGvs2bJH2vd3ilJeii1CSAtglRHaP/7ZOqURqhHUbmJnQukRcYubdzpbUedsqT1btQVkmKYZ+PjqD06xbHrOkAmDEGubqz84ajJTM8oI1QPouEEppHkMyxlb4cSA2wwoIfDbIjtbfmLLJ/q9+pkfb9icrWoaoc/nUOw3wwC6sym0Z5KyjFKdtSV7tkLMMJOPr6URqt8HUUrK3HrbrH0Sx9nSyghjujv66xFlM+qBvZu7pbsd9aa/WqrWrw3argeq42uVwNYW0Z8vlmNHvwP2kkQZkJFsUM9WLmLPltafR2eLENJSWEON9Z4tkUZYW0CGGkHtdnZZCKu2dNJWkiAQX+DiYKOmnq0aBcMnfvEYDrrkbmwd9y7h03vMaunbks6WSxmhOEBsJOq+K5WDhSaZWsR7rysbTgxYrot1mRWQEe5wwEoj9BYz4qSBm7Mlgh/0uXw6ccMg0tLZ8n7vqiWEYp/0u0RPx+nZ0vviVFER5bi23WXge1EONa7d2YoraHRXKIqzpd7XTQw3uoxw2752/PepB+Laj+5X922r7zuvUv0wqJHtuWI58tgAFfX3taB8nrLKumopI1R7toJOnug4nS1GvxNCWoiC15ytlCjviTnUWDhbithyEzviTG27h7MlDnDEl28tYqvWwIr/W7URm8fyeH7jqOdtxjSxVUsioRCdm0erzlaTe7b0Pi0mEk5vchGFkh7eAERPIxSuil8vpd+cLbdIczdkr0pEYdFbTRb0O2hTxZagz+XMej3SCMuy3C7aAGC3dNii4k5ERb9P3LYl3QmJcqyu3rfs5myZ0UsTo3LILvOw4/yuum83paR01iKKASuyXQ22iOWSKaJNna+plgxP2Zyt6ssv0wirv/dbJwq+rvlMhWKLkFlGwaPuX6YR1lhG2JlNyh/ygsvZZbVHxC0BUXyBi3SiqH1Q6u1rcWYmCyW5Fj/RMaKLrVK8/WeaplJGWO3ZUg4YR3NFmB6N5fVC39ectTW9EYLHLWLdDbc0QivMIqyzJcRWvJ4tWUYYmEYYr2RuuzntAICXByc8b+MmtsTJHTc3uZY0wrhlYO5lhPESGgEXZyumoNGFUCRnywjnbDUqjbCRqPPnain3BKyS/lyxhJLmAEXajiK21PmaGZuzFW2Ncm2Fsu23L3L0u3itq/utr/pZNE3r89lKUGwRMsvwKs+pVxlheyapHJC5lRFazpY4S2bv2ap80Yoa7qh9V6pwq6WMcLMidLzO2uWVlCf1sjgUy6aMxN9UdbbUgIyyCYw1OLRCDyOpdW7YbOG2f67DrU+ua/rj5iOW2iVc0uByxWjOlpW65v3eyPv1bLmUxwHAK0PjeMe3/oKf37/atv1MKtpB5nZzOuT2vBB9WarYmtPpnPNjDTWuPY0wqlvjOmcr5uyxyn3qU0aouzVR3LpkUBlh9aJGlRE2ErVnqxYHErAHW9RSRujWs6U7W1EdszbpbJW0OVsxo9+r759UMiE/j6042Jhii5BZhtdQY6tHyvRtLvdiUmm0l/XrLgdkk7aADOvMm0B3tqIKJnsZYXwnSCQCAt4CVC0hFAdHccWWer+h8TyKpbIjmanRpYS6uGIZYTCThRI+8YvHcM4vHnOUlDYaP1Hjhjjgt83ZUnoow5DyOZEi8CsjVEWE6tT+/cVBvLhxDH98oiJavb6ngti2r+JsDU8WPc+Qb5XBIorY6nCmocm0x5ABJID3UOOoB7Xuc7biO1u1iCQVXTRGaUtKBjhbVkBGrKVNKWpKZ6HWMkIlsj3u+wcAMinrN0kN7cjU0rOl/GaPKr9HUcsIyy7Pq9/lhEerMAPf0oSQWvCKD1YPtuIcZE+qzlbKu9TIOrizImjV0kUptuL2bNnmbMUXCxsVseX1QyICCtrTSUtsxSxdVEWiaVZcLceQ1YnGHszra2cZYTCDY3kUSiaKZdP2nvGjWCrje39+Dg+tHqzpsQsRnS0r+t26LGpAhjg48i0jFKWJLtsU3zMlZcwAAExUy5DEd4HX8PUgOrMpedD26pB7KaEcaGwTW9Whqi59kpHmbGn7OG7og+ucrZizxwBnqWlcQaMLvagBGXLWm0tJdFwXcDqgpnRKZytmGaHbMOI4Q43VMkLRR5ZJJRqTRhgz+l39XMwJ0W85U6HYImSW4fWDrfZXxBFbavCFXxP9pC0gw83ZEgEZ2eo2os7Zch6cxEEkAgLe+0P82HS1pWw/kHHQ77d5LGcrI6w8XqOdLT0gY/aUEcaN7FcPztX3jN82H14zhG/esQoX/P6fsR5TIMVWyFI7tzLCSdlfFc7ZEgdqfmmEYXq2APtJDHGwJr5HrJK56Icpom/Lq5TQrWdLOlu1BmQYdmerXGPPlm3OVszZY273idsXpT90VGGU1PaPSi0x51ONmtIZ90SBwN6zFd/tU8sI80XLKVY/61FPAqgnSNUk3qgn5sTL7+ZssYyQEDLj8TobnkhYkbNxHA11fpbV1+H8QZ2QARlqz1blMtO0hooKZyvqUGPV2aolIEM9cPbaH2N5Eb2dsiU/xUFPAtw0kncpI2yuszVbygifHxjFG756J66++7nI91XHAoheOwD4jxsfwdu/9RfXfSgO9l/cNFbTXLboARmVv25lhKGHGodwtvzKGzOphNyG+rnSxVYts4osseXubA27iS1xoFctYSqUynJNcaLfrTLC6uURRYk1ZN6ZRhhnnzSqjDDqZvQyS5Wy1sczkxAnGPPFcuwSWIF7z1YtzlZJEeoNmrMVMSDDzdlq5fh3ii1CZhl+M0DaUmKwcXTB4BaQ4VZSJ8sIU5azJQ4ockojr+zZqiH6vZYhw+qBs9f+EAONVbElDjQfXj2IY669D0++sjXU47k7W5U1LOypuHzD7NlqCA+vHsTWiQL+95/rI99XdR9FimS5bOKOpzZgzeZxvLhxzHEfsV/zxTLWDU/GXLUyPDhqQIaaRigCMiIPNY7XswW4J+2J/xeftaLHiIowWCEZ7mJri08aofjMqcPKI4ktr4CMqM6WWxmh7AWK4WxpB+v1CsiI6myJg3u3MWjC2ZrRARmKsxU3IEPti6qtZ0sNyFDmbCliK27P1oTmbEUtIxSvv/q8rBMeFFuEkBmO/MF2+ZJtczmbGha1PDDlk1gmyw0zCfl44uBMiAnDAPqqZT1RSwF1h8gtfj4MG0M4WyM5S2xlU/aAjD/84zU8smYIfwqZUqc7Yuu3Tsozhzv0d1Yer8nO1mzp2RIH32sHxyPH62+ZUMoIR0SKZF6WwbkJZFXUrtnkFGNhscoIQ4ot156taAEZtUa/A1Y/kno2XPy/6P2UZ+JjHGQuiVVGaD+rLl63jkwykrgR2kMXW1HdmnrP2UokDNt3fuyhxo7o92j3F/vBbej0THa21JROr1mWYREnT3K2nq0Y0e/KSc+CcpK1Nmer8r7U3aeoARnS2VJea7fB4q0CxRYhswy/M8bibKouWMKg9mxl5AGZ88BVDmJNJeXBmDgbODLpFC+Re7bqFMW+KURAhkif63QpIxzLiTP14falLraeH6gMUk4YVllUo8WW/rrPluh3EQU+mitG/qHf4uJsbRi23jvDLol4arrl6s3eEeVBRA7I0FwXIEZAhtKb4iVMLWfLfZsdLvHvzjLCxjlbUmx1OMsIt4wXYJpmrH4tQC0jrPy79jlball0beVpqisVf6hx/IAMQBX8rdWzJYcal5ShxjGfhzo4uJbod5lqWFDSCLUywuhDjSv31ftTi2Uz0m+t+Hyo70k5foE9W4SQmY463FCnzWXuVRhM01R6thLyC9RvqHF7Jmk7m67WgPe0pa1SxBqi34H4IRmqs+UlPkWpUbcakFHdvxOF4IHIKvpjPFcVW73taXlQ2OgyQn1fx525NtPYqrhTawajiR91CO7maunpwIhVGugmkNX3xOrNTmfryVe24lO/fMx3VhTg/1l2w61fJrKzpRxse4VkBEXSSyGRt95vE9LRMlEolWsqxYoTkNEv5/qVMZYvxRpoDKhphJqzFfGg1k2Qqn03cVBFeeyhxtpLGrX3K6WJURXxczEzywgtZ8uvVD8MavlfTXO2lN+kotLfqZb3xhVb4iST+vmI4m7JYc0uzhbLCAkhMx6/M8Z6D1VY8qUyxInKNnWosYtQUoM01F6TyUJJGSKakj9eUaPUnWKrcc6WWkao92zpZ+qD8HK25nRm5FDVhqcR6mJrtpQRKu7UyxHF1pAtIKPynhlQ3jtuAlk9mbHapYzwx397Eb9//DX89tFXfR87+pytyl+3ocZeLpSOeiba67MV1LPVlnYrI7T3bxVq6FXZdo73rC3TNF3FVnvGctqHxvLKjK1ozla90gj9ygjjlqfZxFbcni2HsxXt/r4BGeZMLiO0qjRUFykOarBFLT1baqqhl7MV1SXNaidl+jszcm3jhfCVF24iks4WIaRl8CtxyLo0rodhUjlD3Z5OyrPfbme+ZfpZKmFLQFSdre42S7xMRRlhrliSB1uATxqhSxmheDxxkBT2bJ++TtF83N+RQU/17GHDe7a0NajOQyujiq01Ecv6triJLSX0wm02mipi3R5vbVXwrQ8Iz8hHPIMuDmLV8r9czJ4twNs1lgLOozTRLSBDFV6T+ZISnx39MKUjk5JppvqsrclCWb7PezUhpYZkDE/W6GxpQ42jHiu7BmTUkNAI2B2xuGmE+ssRVbT5Rr/LMJFYS5tSRFXIyGRB/u7FTiNUfkvE73VNzpYekFHLUGPtpExXNiXfq1FCMtzEVr+WCNpKzMC3NCGkFnzTCNPxygjFAUEqYSCdTMi5P+5Dja0yQsD68rY7W2nfvi8/9HK8OEOGN49qzb8BaYSqOBSPL9PVQoo94QbovTN9HRl5wNf4nq3ZWUa4ZaIWsaWUEY6JMkLL2XJzI23O1mZn/PvLVYEwECC2hHMcVmy5lhGKNMKQPVvqAbtbAA5gifasx7r8erYql5drCoMAvEsJhauVTBjoytqFVJ/SoB+7Z0ubZVaOWQbmJkhrmT2m3y/+nC37Y0cVbbKnza9nawY6W8vmd8IwKim2G6qf29hphLaercplscSWbaix9XlST4LUKra621Ly8xypjNDF8RVlhKO5Yqy+8ekMxRYhs4y8T1N9myJ8oqCGYwDwHWo8oQRkAHaBpzpbYn2lsul6FtSLepQR6s2/XvtjVE0j1HrMxMHjZERna3Fvu+3y/s60POBjGWFj2KoIprWD0dIB1QGcW8YLKJTKGBj2LyNUD6BzxTI2KD1ek4USNo44gzbciBqQYZW4WZdNap/HIAzDkAdIXj1bsozQQ8C1uRycTXiWEcY7TPEKyVBLCHWh0N9Z+ZxtGS/E7tnS0wiL0tmKJ7ZE345pWt+DccvT7GWEsTbhEEKR0wjDzNmagT1bXdkUduivvOfEuI/YaYS2nq34bqYq2sSJmVQiYSvfjx79bv+e6Mqm0ZGpfEZqdba621Ly32rFQCtAsUXILMNvun27yxnnMIgDJXEQ5RcPLcqWdGdLLd3rbkvZ4qyjCCY9Qa9QjB6QsXEkmtjqzKbkgaVeRhjWHRJn8hb32cWWvWeruWmErSi2No3m8LVbnsbzAyPysq01OFt6T9DQWD4wICOn7dfVm6zHVJ0YdTtuiBMnYfutxDGWaUsjjDbUGLDO2HuV6OZkqbD/nK1xD2drolDy/Z4Kg9dgY7d+LcEcF2erO2YaoQh7EGfwoz4P8f0IVMWncuJKn5kVlvqUEdY2Z8tPbM3kOVsAsMfiHgDAP6piK87YAkAfRhx/qLFtzpbiiqqf9bhDjQU9bSnr8xxhsLHbSIREwsCcahhUq8W/U2wRMstQywl02pQzYVHQna10iDlbomzJ7mxZZYTq+qKUAuq3jVNGKJwtsUav8gjV2dLTCMUPT9Serb6OtK2ka45SRugWI15P8rIsrbLv4wy3nu78/rFX8aO/vYRr//IigMpzHlNeo4GRXOjXzDRNeQZWHLNsHM3Zo9/dygg1UbtGSSR8edASBxtHcr6ubj5qGaFW4gaoARnhnC0Avj2Z9m0GlBHmVbGl9EjmSzUnugmx9bJHGaFb8IUQW0PjefzjlS0AgPnd2UiPq5fJxZ0dpe67iXzJNpeqPs5WvcRWtPvLkBZXZ6v6GDOwjBAA9timIrbE70fc18ktjbB+Q40NZJK1pxEKupQywrDOlmmactaf/vhzWjSRkGKLkFmG36yWuGmE+qweGdvuUkaoly21KYlJW5XSHbXUwS3V0AvdNYgTkLGp2rMlSpG83Cm3nq1a0wizqSTmdVkHeP1T0LMlzvq3orMl+qrWba2IGvGeMwygu9rDox+gezGaK0rBsX21hGjTaN7mjLoHZFT2szhIeUkRW6qzVTaBzaPepYTqAVQY3FyFqNHvAHyHlgMRot8LdjfLWlPJd/h6GLzKCEWPnauzVW3Qv2vlAB5ZM4RMKoH3vn6bSI+rpxFaoQ/RnodhGHI/TWrOVtyD+FRderbs94se/V5Zg+ucrRlcRggAu1fFliBuGWFW6bWK+/6xb8d+8sI2ZyvySQD790R3Wwod2WhlhOr3j/5ai5CMzRRbhJCZjF+fh1vccBjE7WXPls/BmGzIl2WElrP1SvWs/rZ97TAMQx5ERgnJEIJBfInH6dkSB8tLqmfHvVL5Rl2i33PFMsplU64jrDukHqDOVcSWWkY4mi86whTqiZ7S1opiS7in4jUWM7Z62tLYYV7lAD1sKaFwtdrSCRk3/uLGUZub6h6QUdmvr1vYXXk8pYzwZU0cDIz4ia3qAVTo6Hf7DCh1LWEDMgDrINI7jTBs9LsYYFy2batSRlgfZ8srIMNNbPVXS5hWrhsGAByz33ZY0N0W6XHVg8dy2awpzlxNJFS/S+OWEWZsZYSxNlFzGaEQDW6uqCwjnKnO1mK72Kq1jLBuzlapLL+TUknD5k4lIwr3dNKwvXe6sml0yOOGcCcDiyHE1lCLxb9TbBEyy/AbFiqaX6Om0KmzswAoSYIuZYRV4eLmbK2phhPsMLezuka7WxQGcaAnksZqCchYUnUrwvRsidKMXLHsOEsfbt1W6dW86g8OAMzpSEtnyzQrgqtR6M5W1BEAMwHhDoqh1UIw9XWksUN/5X23xmXQsBvyvu0ZzO2sCOSnXxu23WbYZ6jxbosqYmu1rYzQLg42+CQSSoEeMY1QlGuZpqmkYIZ3tvw+38WSlXwWVEYoTtLoZ8QrTk5tPVtC/I5os7ZEKW6fj7MFVMTI6W/bMfLjqqKqZJoyjCSOM9GunPyygjbi9zTVZ85WrQEZlb9uJ41mckAGACzqaZM9R0Atzpb1W1KsYZ9IZ6tgDQnPaM5WVBFnGHax1h2jjFA92eMoI+y0+iZbCYotQmYZ4YYaRxMoepx7yseRymln0sUPy/BEQfa6iFSntNYHFYZ8HcSW5WxV1uEmOkzTlGJLLyO0x1hH69nKphO2MsI5nZnKAOjq9htZSpivCr4e6Wy1Xs+W2H9bxgvIFUuKYEpj+7mV13ttyMHG4uxrX0davmZPV12RHqXPztRKpsR+FWJrzeZxeRtRwigEjV8ioXhvhx1qrMeSq72ZYUM2AMW5LjvfH+pn1St0o0vsm0n3vsaJQqnmWUUdmRT6qge+qmANE5ABAEfstQjL5nVGflx1uaWy6TvXMAjV2bLEZ/zDtlQdxJYu9CLP2UpYKbM6Vhx4rKVNOYZh2EoJa+3ZUj8X8dIIrbYAsbtTyYTd2Yrx+VId6+626HO2/JwtIVbZs0UImdH4/firPQJRmHQEZHif+RaumfiCFqLruYFRAJW+GXGQFHWwcblsyoM94Qa59Y0FYTlblbPjpbLpWINaT9+VTVmlH6Wy7Uey6HJfN2TpVTKBuV3WQZ+YPWINNm5cSMZs6NlS99/m0bycsdXbkZEiP3QZ4YTlionX7LkNlffxzgu6AFRef120is/Azgu6kUwYmCiUZLmgCMjYa9vKQZuvsxU5+r3yVzgIanJnpJ6thPfJFNWF9nLc9FEGeorZhDLUOO6sIsByr1Rny7eMUHG2/v3QnWI9ploCZ5rWWfw44kbtbZNllTW4Ppk6pBHqvxuR52yJgAyfnq2ZWkYIWCEZQPxyT/FboqZ1xnEzRbWFGgCUTho1OVuAveTYNmcr5O+F6mrq5bU9TUrebTYUW4TMMgoNHGqsiy29Lr+o9GaIMkJxlmzVhkoU9/ZzO+QPuF+5khvqWfXOqrNVj4AMwPlDIn4MDKNSFmU5WyWMF7SDxxA/QjIuO52UPVuGYblMom/LLXChXog1iAPRqKmU9WTd1omG9KepP+IbR3IyMEF1tvRSPi/Efed0ZDCvKrbEe3Dp3E4pbvREQrGfu9tS2LYa9b960xiGJwtSDOy/wxwAQT1b0QSJLCOsHugK0ZesDiMPi+9oB6Vn0suF0QNf3MsIvR34sIj3sZriucVHbO26qBvv2G0BTj1kGfbZri/WY6qiylZGGKdny1ZGWAdnSzn4jxuQoT8Pztmyo/Zt1e5sWd9VsZyttNNF1AMy4gVvWCdmurJptMs5W7X3bInfO7cU15kMxRYhswy/AzS1fyoK4qCpI2uPfteFzqTyb93ZWlV1BHaYawkcKyAj3EG/eqY+bhlhvliWB7yVoI7q2rUDQhmOkUnBMAzPMkIgnEOUV2rqxYF7X3ta/hh1N8HZEmuQPVsRg1LqxT3PDODgS/+M79y1qu7bVsXWwEhOvtZ9HWmZKPjy0HioQdpqv5fo2RIs7G2TBw76azap9DjuOL9Sqvbkq1tlQMycjjSWzas4YwNherYilxFq64hQQggoJ1Ncy4SDZ3/JEwfV/aKfjKiUEdaWRghYB25uzpZb9Hs6mcBPTn4jLnjPHrEfUxUjpbJZk4BQhz9bJ8ni74+0rXws3jacPVsRAzIMb7E10wMyAHsiYdxwFyFmxnLW5yLO+8fNWU4nEzaxVEt5IhCzZ0vpP9SdUesECZ0tQsgMxi/lS7hNUQ+yRbyyGMibknN47EJH3a74whZf/KIhdvt+q09CrDGsw5IrVbafMKwm/Khia/NYdUZKwkBve1oprbRvZ0yIraoI8iojBIBJjzRD29pFQEY6gYU9lQQ0dcZPM+LfxRpEKUfUoJR68WzV5fznq1vrvm31jGnF2bJ6trbpbUc6aaBQMmU0vB9Wz1YG87R5TAu6s/I126odOKgJgP/yuvkAgNv+uV72ay3p78DCnsr2NngMNi6VrVk1YQMyrIG7VWcrRuw7oPZkujlb/jO2AKC33d/ZmsiXa04jBKz38XDIMsJ6oKcR1iIg2sWcvzqkM1buW3sZoe6ERD1WF+8dt+h3OWdrBjtbO83vkp/HuCcKpLOlnISI40TqPZOGUdm39p6t2rbblU05Am+C8OvH7Gmjs0UIaQGschQ3Z8uZRug1S0dFlF0JZ0D2WhX1YADrQEz82Os/CHZnyz9iWsc6q550zL0KiwjHmNeVRSJhuM4EAixnS/zQiB/YXMFFbIUQLWqy3BuX9uOst++ELx1lnWHX+1wawXSJfhcH34Pj9X2u5bIVagJUxZbSs5VMGDIUJUxIhhBqczrSmKv0+wDAgu42zwOHSSUB8N17VeY4PbJ2CI+uGQJQCWYRgnvAIyBDFTphD8DF8ZpwFcIIIzf8hhrnQrhtcpRBrgjTNB2R0ZPF2tMIAbUkydr+VvGadTZGbKnHriXTVNLkom/LNmfL53s7LOk6lBHW2rMlRKebK1qqob9tupBJJbDLwoorXeucLbUsrx7OlvieUC+P52xZJ2d62qwTklHnbLm1tPW0W8FCrQTFFiGzCNM0fYcaZ7U0wmvueR57X3hHoMMgDkzFgapsoNecrZwWjgFYbppACDZAFW0hnS3lQC9OkiFghWPM664cPLd5iC3xQyjKFdWZJuN6WVSIH6GckkaYTBj43OG74W1V1wOwnC23KPF6IdagphHqSXrNQIi8LXWetTKWL0J9OhtHJ209WwBkOEsYB9G6b8aWIAkAC3qyrs3ehZIVrNKWSmJRbxv2274Ppgnc9OBaAMB2/e1YUHXKNo3mXE945GOILelsmbU5W+mUn7PlP2MLsN7LpbKJ8XzJWXarRJ3HDRkArAM34WaZpmmFmrRnPO9XC4Zh2IJIyj5n8YNoVxwDKyCjBmcrZR1YxxU0tc7Zkj1bLRqQAQCH7DIPALBjjDRLwPotEZ/PZMKI5USmkgmb+BfhKomENcOylkh5AOjMJtFR7dnSf+dyxRK+esvTuOfZAdvlpVDOFssICSEzFPVMtFvpkZ5G+H+rNmKiUMJjL2/x3OakkqS2RIts1x0pfcYW4HS2bGIrYkCGeqZerqEYTSxsGqkcQIuDZ9FTpv+QiHp68UMjDi7zxbLjTH2ogAzpbLkfpOp9Lo1Ad7bUdTUTIWTrPWtFF1AbtZ4tQA2JCX7NhpSerfZMEp3KSYSF3W2WQFbO0qrvBfHeP6Lqbon1bTenA3O7skgYQNkENrvsB9WxDdvHI9wMS2yJ0tWIZYQJb8c5jFvWnk7KEzLDkwVnGaFSNleTs6WVEY7mivJAr6+jMc4WoA6PVs/ixykjrB7EKkONa3K2lO/8+g01jnb/lFbKKij7hCbMNM49fDf87fNvx9t3WxDr/vpnp5b9YevPUl5/8dtai9jqyCSRSiasni0tGOr/Pf4afvy3l/D/2zvvcLmqqo2/Z/rtvaTcNJKQhLSbSgJE6UhRpIgiHfxE4KMpRFApggYbioggooBK8ROlF6VKC4QkkEpCSG+39zZ1f3/M7H32OdPOOTNzZ+696/c8PORO3bPnzDl77Xetd1312Fo0dKrp0GpqbfRr842+Hm/AUFbNUIGCLYIYQcipGwnTCCM7ai2RIKrPG3+XaV+kzqTQ7RA9MvjiT3+y5Ol0snWsHHg57Yqo+wLUnVij6pTcq4pfEMzWbPFmtzzY4rvL+lRAHhAURExBUjXIUBUBYw5umUBVthzitmykEvL56x5I7wU3VrAlm1wA6m/Aa8CRUw3UwipJhaRuVRe7Yzpr8flUFPW7PmlmreZ168ryYLcpomYvlv27XzJUMbrrrejMCeTaMTPE+30D2t9gonHIx3OsPlvpSJsr0Rlk8O/a47SZVvPMYJPUG2H9buFj5LnU2h1/in3HgPQ0NdanH5oNIkUaoS7YkpUuqymOuYLdpmicbM2iT8FNZT7k15K/f77BkkoaIc/qiNdn641Pw4pWry+IFS9/Km4XylaMDV9+XgCgSfke6lCwRRAjCDmtL1GwxRsP88AjUS427ws0tixPLObiK1uqCxtHXpSNLcvXLAJEKqDJNEK3w27ayZDTog+2eACaRNniFzWvVTfCJLUuRYPQf4SPocDlEBfhbDQ2luerI425+/p6tybJ+r0kj6eNRlJ4DNTZtQvr9/B3w3ttFXkc8DjtMQNk2a2P/17qyvMxa0yJeAxXiKuL4tdtccXWjDudmkYY/lvUjiVI+YuFqmzFTyNMZtpRJNUg8t8L7yXX61XTPVNLI9QGu6oZSmZSCDlCQQyxFJUtVWVNR98x+bmWrd9tikYVs5pGqDfIkN0JU/jKhwX6a0AqjpxuTbClvo6qbJmfbH7N5ue3WAYZ3kAQ72xrFn8/+8kBfLijFUDidFGnpJQNJ0fCEX5IE8TIQla2Yi1iPJL71YA/KLmFqSe9Pl8Ab2xpFAtz7qAmp/854qT/CQc/t7p7JS/05NcA5DRCgwYZ0kLPrJMhh/fY4vbryWq2hLIl1YhFGWQYCFiSpV8NTlNj1REx3uceDORgtT2NqYT8eOaKR1O3V9QGCGXLYSyNMBRiqrMdD7Yi9u/c3CKWG55s+y4jq1u891YiR0LR0NiEuQWPf/hC1+tXv28zOB3xf5dGarYAuRA+IH5LXBmUg9N0KFt80dbRz90jM5dCCGh7SQnTBwvBjUcyHkhH3zFtGqH1eZU/S7r6bMnB11BPI0wV/W/HnsJvIL6yxYMt86/Jr1GFkfNbvuizpZ4zV+1sQ68viKoiN76xqA4AcOtzmxCQalbjBZHD0ZEwp4OtFStWYOHChSgqKkJ1dTVOP/10bN26VfOYgYEBXHnllaioqEBhYSHOPPNMNDY2ah6zZ88enHLKKcjPz0d1dTVuuOEGBALDJ2ImCKPw4MduU2LutPKFZiDENDnW8kn0929uxyWPrMZfVu4CAOxpVe2qOSLNSGeQwRdRcqqAvNDTB1tOk6mA8uIxUePVRDRHFrY8hSteo+deXxxlyx9d8G8kYFHTrxLXbGVK2QqFVPMUl92mKjxZCLbkYLU9jY6E/OLNe1vJiilfmOtNYhK9Fl8fcqWkKmKqws0t1D5b6ncmTCl0C6rTZo+Gx2nDYaOLxTFXHQnaGmMoWz6DCpKMvseRVWWLF9rrf9+A8QCuyK0uqPjvpTzi6CjPV2rW71qDDK5sZcr2ncNPrUHGEEyh9oyPs73Pn5a+Y+lII9Q/17JBhj6NUFa2hngaYaroN9xS+c7lYMuRLmUrcr4oTqBsvbElnEJ4zKHVuPHEaSjJc2JLQzfe3tYsvut4x+BwdCTM6WDrv//9L6688kp88MEHePXVV+H3+3HCCSegt7dXPOa6667D888/j3/84x/473//iwMHDuCMM84Q9weDQZxyyinw+Xx4//338eijj+KRRx7BLbfcko2PRBBZRdgpxznJybvtXLECtMHW/o5w2uD721s1j6srk2qt4phT8MUuDxwA7UJPtn0HzBtk8N1+t8OmOhmaTiMM735X6dIIo5StiErHTRE0fbZScCOMt3hOpmwN+IN4cf1By7uBcl2c22k3ZRSRbuT5a0+jIyFfxFcVulEkqauFboc4Zt0GlS2+cC9wqW0GuLLFgy3VQVJStmLULQLAuIp8/PvaZXj0kkXiNv46zTGULbU5ufVgy2uxZkvtsxWtbMnNuRMhp1hGB1vqfKWjqbFII9SZoWQKuZ9ZKn22eO+2lm5v2vtspfAymkWy2Y9lV+IoW9JpeqQrW/rfTirBp6ySya+7aGI5ijwOHFpTZOE1Y6cR+oIhBIJhB9vXI/Vax0yvRlmBC/XjSgGEr6+BZMHWMFS2HMkfkj1eeeUVzd+PPPIIqqursWbNGixbtgydnZ3405/+hMcffxzHHHMMAODhhx/G9OnT8cEHH+Dwww/Hf/7zH2zevBmvvfYaampqMHfuXNxxxx1Yvnw5brvtNrhcmc3dJohcItkFW95R47VYgDaNkKcCrt3TjlCIiceNkwKleNbvppWtyOLAcFNjP697sptOQeSo1u+6mi3d4lsoW25dU+MYboRG6n+SKQLCjTBOHvtjH+7BHS9sxre/MAk3fWl60veLen9pjsPKVmxFLxUCwRB2t/VhUmVBwjSm/gynERZ5nKgqcqPbq00rBKS6xSTHnNzQmHPK7FF4b3sLzl4QTpsxk0YIAOMrtFbRNQmULWGQYSqNMDznXJFLNJZEJFKNRU1akteUA6H+iIsZ71UmF8ansvAukZzNQiGGTlFjl+GaLdkgI8nCMhF8w6elx5uWvmOyuUZKaYQpKFuyeYjMcDLISBVuza62aUm/svWTr87CracdZur8weHXKL1BBgD0+YNo6vJiT1sfXHYbjpwctsHnm6pef1A1jYmrbGmNbYYDOa1s6ensDPf6KS8vBwCsWbMGfr8fxx13nHjMtGnTMG7cOKxcuRIAsHLlSsyaNQs1NTXiMSeeeCK6urqwadOmmO/j9XrR1dWl+Y8ghgOJGhoD4ZM8DxriKVu9kUCio8+PHS29oqFxneS+FC/9jy92C6VgS17o6RebZlMBZUc/HqiZ6bPlD4aEYpHM+l3UbPGmxpHPHGLqYpFfTPTmGrFIpgjwhWNHvy9m76t1EXt+Of3TDLxeS1HCQW4m0gjvfvUzHPur/+KVjQ0JH9eXoTTCbqGsOkSaKKAPtox9bq6SyM1xp48qxtNXHIEjIguM4hgGGQMGgxFAqtmK4Ubos2CYIJQtXrMlNVc2A/9dxmpMm8xVk5NI2eKih9Nurb+Q/j0YC78PP5ZKMqxsKcIgAykpW/wYbe31ie87JTdC6TtJJaDRBlvmnhvP+l1rkDGygy1Aq0ilUrPljlOzBZjbqJFZPLEChW6HOM+57DZxTPR5g3hjS7iU5/BDKlAQCcg8Unp20jRCj1rPOVwYMsFWKBTCtddeiyOOOAIzZ84EADQ0NMDlcqG0tFTz2JqaGjQ0NIjHyIEWv5/fF4sVK1agpKRE/FdXV5fmT0MQ2cEXSJ6KwhdePIgCdMGWV/33m1uahDogW91y8w39YqzHG17sFMdJI6wrz9M83mwqoE/usyUpTUZpjaQQ2m2KaHLrccVRtuK4EQJqihnfQR9IMgbGmKapcSyqIwvvAX8o5kXos8buyLisXaDkGiBFUeIqeqmw8UB44+rTg4k3sAYynEZYrAu25LQyo4qe3NA4Homs3z0GFjrcjTBhzZYFZSuks35PFhjpiadcA8b6bAGx3Qh5sKW+T2pLFLfDLhZ5XQP+wXcjZAz81GVF2eLzEQwx0f8vFTdClyaNMBWFTAq2zFq/i3q/2AYZIz2FkKNRpFL4HWiCrTTZPC6bWoX1t56Ar8wdAyC8uZAvzFwCol7rWKnPmJyWLoKtOAF/rPPmUGfIBFtXXnklNm7ciCeffDLj73XTTTehs7NT/Ld3796MvydBDAZc2XImuKDxxUn8YEtdzD/zyX4A4R1YOZUgnqoUK42wqsgNRQEmVhaIwIVj1Y0wbP1uvmarOdJXrKLAJRYFcWu24rgRAqrqwdOiktVsBUJMpHa54zQ19jjtYvF1oLNfc18gGMKO5nAtq9XeJHpFQlwcDaRAGqUpotDEatIrkzk3QrVmMG6w5TBm/d7em7z+pziGqQkPcOTfSzx4gN3a643qaeW3UMPDf/ZqU2PjKpuMI05NJmA8CJR3r/nvg1vnq++T+sJb7rXVmQU3wlSCCKfdJtoKNHSFf/OpuBHKi/ZU6oDk55pVHmVbfJlkC/CRhhwkpRJ/ytcl3rcyHeiDbH4+6x4I4JNIlsWRUyrF/fL1JLmyFZ1+PdTJ6ZotzlVXXYUXXngBb7/9NsaOHStur62thc/nQ0dHh0bdamxsRG1trXjMqlWrNK/H3Qr5Y/S43W643e6Y9xHEUMaIfTA/Ke5rj12zJS+EN0WUCn2tlSNOmlGsYKu2xIO//88SYQYgY7XPlsthrakxr9eSF+LxLND1ypbDboNNCadAcdWDB0fJ3Ajl+qBELm6jSjxo6/WhoXMA00cVi9t3t/WJwFZWHs2gd0PkaSz9vvTVbDVFglmuIMYiFGI6g4x0phGqx19VSE4jVBf5+l5z8TBitsCP87B1dwhOu82UAyBfdDAWroUoln63lgwydPUyVpsau+K4jQImrN81ylb4eykv0J4DUjGDkN+nscuLrn5Z2cqwG2Fk2EHGxDnQqmJTWehGe58fBzrCGxWJNsqS4UzTAt6RQhqhXXcMctR+ZNbHNZxIm7LlTM/rJIObZHyytwMD/hCKPA5MlMoCxHXUZyCNkLsRZrCn5GCT04c1YwxXXXUVnn76abzxxhuYOHGi5v758+fD6XTi9ddfF7dt3boVe/bswZIlSwAAS5YswYYNG9DU1CQe8+qrr6K4uBgzZswYnA9CEGmms9+PU+99Bz9/ZYup5wUMFFnzRaCsPsgBVizlRHYiBOK7CHJlodCtXewsmliOCZXaei1ACrYM12xJaYQJdt/j0axraAyoypZXl1amV7YA9QLJF3U82EqWiufTmVPEY1RJOK3soK4ua1tjj/i31TRCvRtiXpz0Sav4AiG0RY6ptgRqld6YIhNphEUepzAfAFJLI0xktiBvKvD3NuMA6HZoayFk/AZd/2TsUi0RkEJT4wSKs/E0QrVmiytbpXlOjbtdKsYAHDklqaN/cGq2ZPUmlEKfLUA9F/FazFTUvnSlEcqqhtnPpap+2ttTnafhhvz7SeW70ihbaVCK45EX2XRcGXEpnjO2VHOcyM3iR6KyldPB1pVXXom//e1vePzxx1FUVISGhgY0NDSgvz+8415SUoJLL70U119/Pd58802sWbMGF198MZYsWYLDDz8cAHDCCSdgxowZOP/887Fu3Tr8+9//xg9/+ENceeWVpF4RQ5Y3tjRi4/4uPP3xflPPk/soxcMTI72pzysrW1pjCEDbYwuIbw3N67vkRWgiRM1WZFH40Ds7cNtzm2IaRACyOiM1NbagbMUKtqKULV2fLUDdzef1CNw8IVnAwheoTnvs/mecWhFsadMIt0XqtYAU0gh1bohG0+mMwgNZIJwWF48+nZNjOoOtLskgg/ewArRKh1GDDJ5yWhVDkeU47DbxO+EbDWYcABVFETvGvbp58Vqo2Ypv/W422IooWzF+W74ktYccuW9cn5//luzi9wakR9mS0wj1tZSZwialEaqKjcVgK3J88d982tII01WzZTnY0h47Yp4o2AIQ30XQLLLCnI7fUzz4eerDnZFgq65Ec79cs5XU+p1qtgaX+++/H52dnfjiF7+IUaNGif/+/ve/i8f8+te/xqmnnoozzzwTy5YtQ21tLf71r3+J++12O1544QXY7XYsWbIE5513Hi644AL8+Mc/zsZHIoi08MH2NgDmG9z6k7gRArEL9/v8wYiJQ1AEUEsOUfOx9cFWvHqpWGmEiXCKoC3cu+Pn/96KR97fhT1SPZmMSGGyq26EfhMGGbwIvbJISiuL0bARkPtsqZ9Fv/At5wYZSVQSn8HUq1ElYQVRr2x91pS6sqV3Q0y39bvsqJeoZksf1GbG+t0RV9lyG6xV458nVvqrjN6yXzQ1NhjgxGoYCshphCbcCCOHp6jZMugcqCdR/7tk/eI4aqqQapCRpwu20lGzJTc2HqyaLZswyFDT5awqNvw45SlV6UsjTI+yZbrPVhJli5wIw8jXglS+K23Qlvlgi6d9zxlbqrmfryu8/lBy6/ckbU6GIjldsxVv91rG4/Hgvvvuw3333Rf3MePHj8dLL72UzqERRFb5ILJ71OMNIBhihtMMAqJvR/KaLRnGwosoecF31JRKvPZpuP5Rtn0H1AWgfueb7+7LboSJUN0IGfp8QRGUtPX6omziAW2PHytNjbn6Ii/E+UVCDgJCIabuxstphLqLmdmarWQqBU8j1Nu7y8pWry+IUIiZXrTo+yOl2/q9SXLU6+jzIxAMxbz464OKzn6/pc8TC7mptmz3rqnZchgLMrlDoKyQxaI4z4GGLvW9+3UKYjLCwbw3KojmmwhmdquFG2FUzZZJZUu4EcZIIzRousGD0I4+v/hd57scmrGkI42Qf88HOwfERtFguhGqfbasvZa88QOktmDWNDVOYQGfkrKlaI9BTiqujcMR+VqSrj5bGU0j1P3e59aVav6OqWzFOXZKSNkiCCLbHOjox+5WVdnpMaFuBQzshsu1JHKqYK83IFLU3A4bFk0sF/fJDY3Drx9d0+EPhsQC1riyFdkNC4Q0DQ474pgmyPUiiXbf49ESIzUsVu3SQCAo3AMLNGmEumArErQlcyP0GVQYeBqh7EYoOxFy+iwESFzZcvOarTRbvzd3awPEtjjpgTwY4amcIZaei24oxMTxW+xxoLzAJYr7tTVbyYNMxphII6xJEmzJFufy6xqtk+LBfF+UspU8JViPPW4aoUnrd2GAk4r1e/h3I29E5LvsmrGkxSAjsnDbEzlnuhw205/XLHIaYSDVNMJCrXKaitonz2cqXglygGX2dVTrd0ojTIS8GZNKAJoJ6/dY8H5aQHhTUL8JJbsR8g2IeMeyUL2pZosgiGzxwY5Wzd9mFqJGGmPKO8s1xR6xMOnzBcWCr9DtwNSaIiyaWI7FE8sxSndiFTVboZBQqOWUR/nEnAg5YNIEW/2xF+oiYJAMMsz02UpUsyUvvrnjn6JoF6px0wiTpKTxBWpyZSucRtjQOSDmlTsR5jnt4qJsJZVQLJIjn8ed5mBL3ysqnkkGP8ZK8hwojBwniQw1jNLrC4gAucjjhN2mCHV0TKlq8GIkfbKjzy+OtarCxGmE+gadptMInaqjoYxI+zSRAqhI6W1AKk2NuXIdw/o9aGzjQL/hoijh58iW+OlJI4wEW5HU47AJR2YX9DymCUrKllV1Qn98pbJg1gRbqShbduvKliNJGmEGM92GFBplKxVTFDnYSqP1ux75dzt7bEnU/XJT40CSwJr/Znt9wZgbOkORnE4jJAgiGn2wZaZuiy+OnAkWQvKOe2WhGx39fgz4fejzBUWRfr47vLD/v28vifka/ELBWHjH0mFXhAKX57Qb3rF2OmIHW7zHkR6ewuSSg60YC8I/vbsTHqcN31w8XnN7rGArlvW7ahLi0CzctHa9ilhQDiRRtkTqlcE0wj5fEF0DAZTkOUUK4ZSaQuxs6UX3QMBSsOXT1dqku2arSa9sxbF/5/Oc57KjNN+JHm8gLfbv/HfitCviwv+H8+djf0e/pubQiPV7Y+SzlBe4kveT0qXE8MDbqLrClS29QYYvlTTCFJsaJ3IJNXosux12uB02EfDlO+2aZtpAeqyqeUqSCLYyXK8FaN0Iec2W1eAmncqWHPClopbI6V+m+2zpjkEO9dnSIqfhpq1mK5PW79J45+hSCAH18/T7glJqbezPpXdxLSvIbNrvYEB7CAQxxPhgR5vmbzPKlpGmxvIOVVWRWxS+9vnURXyBK/E+jVxXwHexZCc4o7gkgwytshUvjVA1mohXs9Xc7cUdL2zGD57eiDe3qC0h/MGQWNRXFkb3XZKDDrXHllYRkHcj81x2NQUxibrmNahSeJx2tclppG7rs4jt++TqQqEExeq1xRiLSmfc3dqLxz7cDV8gpM6dU5tGmKzezCh6ZasljlrFx5jvdIiat1RMMvgiTrZ95wvEqTVFOPrQas3jZYviePD6s2TmGOH30/aMMesAyH9rffqaLQt9tkQaoa6psXk3Qp5GGMv63ZjZC6CmWAKqdbQ8lnTUmPCUJD6u0gw7EQKx3QitBjd6t8tUUivl80sqC3i7pmbL3HP5+wb0wRYZZGhIV82W/Ds0o4KbRb4WztWZYwBShkgguRuh7OI6XOq2KNgiiCHE/o5+7Gnrg92mYHJ1IQBzypba1Dj+yVvOFZeDrX5fUCzik6UByoskvvtt1okw/DpqKqC2Ziv24ttIzZZsJX7z0xtELQ1vtGu3KRpraB4wxVS2dPMgz12eU3VWS1azpaoByReotZFUQl639VlE2ZpaUyTGE8v+/bq/f4L5d76K/R1qvdcdL3yKHzy9Ea9uboyhbKXZICNS48Qvom09se3febqcx2UXC2Or9u/PfrIfh9z8Ev69qUF8z8mOP67s+oPqQlmPcCJMUq8FRPeMUQMcY5dffvzp6/BEsGUiNYivr/nnMquycZy6upuN+ztFDZvRmi1ADYQAdbGWbmVLb8aT6YbGgM4gI4nzWjIqCnUGGam4EWrSCC2/jC7YMqtshf+vN8hIpnaMNLQ1W+kJsNNhOBMPvlmiKMDMmGmEar9KIw6dIiNgmDgSUrBFEEOIDyMphDPHlIiUsm4zypZoamwsjTAcbEXUEl9QVbaSBVvSxYHvfouGxgadCAFoUgG7DBhkaPpsOVRVTEZ+nYOdA7jr5XBjaJ5CWF7g0uyu8sWfLxASi1S1x1Z8ZSvfZRcXzP6IdX489LbridA7EvKGxlNrCsX3ok8jDIUYXvu0CX2+ID7e0y5u39Ecfu7utt4oRUK+OKaDpkiAMm1UMYD4dVg8qM132lGerzrWWeGF9QcBAM+vO2A42JeVlXiBJg8cawwpW2o/Kfk1jRpk8OBU39TYJ7U5MApfyPJDUU0jNFuzpf4ud7f24rTfvYv/+etq7bgMBHCysiWCrXTXbOmCq8FII9RYv6do/OC02zRjTq3PVprSCFMKtsLj129kUBqhFvlakEodm8YgYxCs3w+pKozpNixv3gUj1zt7gt+32KQiZYsgiMHmra3NAIDDJ5Vb6rJuqKmxtNisKtSmEcZqaBwLm00RF2Qe7MhOcEaRUwHlBXc8pUPt8WPXOCLK9QFcIeOL7sc+3IMPd7TGtH0HtLv+fNc+Vo8tebxAeKdP3qX3Jkgl1DcUTsQo0dh4AL5ACDtawgHTlOoiFMap79nf0S/mf397WNlijAmVq7FzIMp+3iMFiqniD4ZEb63po4oAJEojjNT2ScpWPOfCZGw+0AUgrLyINFZ34sW2vDiJF2xxZSuZEyGgqjf8uFPVJKNuhHyzQ1ezxesvLQRbQcYiffOsphGqrR0+a+wBY8BnDWGFVf4NJkM+F/Agy5PmJqwlUcHWYKQRhv8vpxGmoirIdVuppFbmQhohH35Qb/1OaYQa5GtBKgqvNtjK3NzOHFMMu03BCTNqYt6vttQIgmcfJ1a2hpcjIQVbBDEEYIzhF//egufWHQAAHH1otQgWTKUR8qbGCS5onqg0QtUNrUfUKiUPmBy6YCuVNEJ9zVZnspotp02zUPNLNsN80T1nbCm+vrAOAPDHd3YI2/dKnVohL/54OqBQttw6ZUt6bNjGOrlKAlhTtg529GPVzjb4gwxVRW6MKc0TwZ8+jXDzwS7x732RYKulxyfmq7HLG5X+JfdFSRWuGjpsCiZXhdNf4xpk+MJjynPZRc1WR58Pe9v6cNzd/8Wf3t1p6D07+/0imNzV2icaQSc7/mw2RSxKea3dZ43d+M1rn4nvX9RsFSdXtsp0qZADfuPKD6BubMRtamyiDoMvsIMhBl8wJBQuo2PhOKWaLW58wpVvfe1fIoqTKVtpWHjrlS198JUJ5H5mwRSt3wFtDWkqC2+t9XsqwZb1oE0E/EF9GmHkflK2AGgV61RUSK2rYeaW/PPHl+OTW47HDSceGvN+1fo9hKCBdQgpWwRBDCqhEMPNT2/EfW9uBwDceNKhOHxShRpsmXCeE02NjSpbGoOMoFC2Ct3Jd61dkrIEqGmEyZSFmK+hq9mKq2xJ7mryjp7c74vngBfnOXDpkRMBhBXDbU1hhahSVyNhsynitbjKI7sRxhovEF48Ou02cUFJ5OpntBEsoNZsNXQN4PUt4abSxxxaDZtNkQwytMfEloNq02MegMi1W43dA2rNlj7YSmJbbwRujlFV5EZVUThYbO2NU7PljzheSmYgbb0+/O2D3fi8qQfPfrLf0Ht+KgWYgOriWWQgjZU3suaB5q9f/Qy/eW0b/rl2X/jzRAKM6qLkyhZXJXjAabaRcJ6UxitjxSBDXtsM+NTj0WhKI0dtahzSGJ80d3sN94wDtIFvnjOWQUbqS5QitwPy+n0w0wiDIWZoFz8ZsrKVkhthmpoay0MwG/uJNEJ9zRYpWxrczvRsOrjT3LcuEbL5kB6+iRsMMXG9S/RdU80WQRCDytvbmvHEqj2wKcCKM2bhii9OBhBdeG8EI02N8+IFW1JT43wDfbLkVCPAorIVqbvy6d0I41i/y72HNMqWlMLH56vY48SUmiLMHFOMQIjh7x/tBRC7b5K+sbGYB33NlpxG6NQW/CdKxzPamwgARvPGxh39eP3TsJvi0dPCjnqqQYb2vbY0yMpW2AKbpxMC2jRCUbMl0j5Sr9ni9VrVRW6hVrXGSSPkNvlyGmF7r1/UXxk93nkKIWfVzrCLp5HjT6/q8bFu3N8Z+Ty8oXFyZYsH79yARRhkmK7Zim39bsZhTN4h7/aG59FhU0ynF8ktGfh3CwDNPbJCasSNMIlBRhrSnuRNCAAozct8GqFQb0IsLcYPsiNhSmmEaWpqLCtb5q3fw/+Psn6nPlsaXGlSIeV03kymESZD3kTpiWxWJla2tOnXQx06rAliEHhraxO+9sBK7GzpNf3cLZFaiFNmj8Y3Fo0Tt1tJIzRS58F3oBQlbBYh0gj9QVGkX2gg2NL34uHW14WmrN9juxF2ewNRxheA1tXPblPETr7cD4inJfCds6/WjwWgntT1fW2A6MCjL44roxws8cWj24AjodwfLBm1kWBrZ0sv9rT1wWW34cgplZrx6JUtWeXZ394fqdfqE7c1dXtFYMHHIALMJE6KRmjs5ml3HhF8JGtqLKcRfrK3QyhxRi++/DPzY5W/rpGaQb3dP5/PzQe7wJiaOmfEjZCnpfZ4AxjwB4X6mpek7pGTrxs/xy9ST40voORFG6+BLLbQ5Jcb4ASCTNSvAWHTFlEXasSNMGYaYXpqVWTk1MGyweyzxZjaSD6Fha5G2UpTGmEqryNfPsymEcazfg+RQYYGbc3W0FC2Eo5DOh/w86khZYvSCAmCMMr/rd6LVbva8PLGg6afu7s1vCieWJGvub3IQk5zwMCFnwcH5fkuOO02jfU735HSKzqxkOs6AFUNMpLGpX8Nv86NEIi96PbqUphk63j98/gC7MtzRmt2nfV9bYBo+/feOPPg1hhkaBePidLxfEHjdtk82OJrlcWTykVAIQwypGCr1xvA7jY1sOr1BdHR59coW4EQE+6Gbp1BRjrSCJtjKFsdff6YAbNoauy0i5QvbbAcSOjsyOF1aqfNGa253VAaYeSze3VK5taGbjT3eEVAEUsF1VPkdojAo7nba76psVM1qJGxZJAhLWR5Kq4ZwxqOQ/S/Y8KZEVDrAQHzaYR8UyfPmf6deDmoKxmMNEJRs6UqsanUilWlySDDblPw7S9MwjcWjRO/Qys4NDVbJp9rVwNRmXTUtg0nXJmo2cri3CqK2kyeb1YaqtkiZYsgCKPwvOOWbvOuanvawmpYXbk22FJ3fkzUbEUuaM4Eu5rcgGFiZQEA1QSi1xtQXfgMKVvaXjxG+xzJyG6E+uBKbwceCrGodLxYjY1FzVZkHFVFbhwVUYaAOMqWTp2Kp2xp0wi1i8dECpEZZSvf5dAs3I6dVq25D9AaZGxt7AZjvF4q/Nn2d/RrarYAYE8kIBPKllPtNxUrKDKDsEov9qA03yVqaGLV3vVLtvqxFoTBEIvZR0zGHwwJS/yzF4zV3GcqjTASGPXwhsSBkGgqXlHgMvR9KYoiFsuNXaryYzSNUPz+dMePLzI2czVbsZUts8jGNXLNFk9RBYwGW9HKljvNaYSAtp/XoLgRSv3M+Dynkr5YWZQegwwAuOlL07HijFkpvYYcEFlVtvTW7yEDvZdGEulStuRzVCabGhuBn1f5+TvRsSPcCE2sb3IZCrYIYhDggUZLnEauieDK1viKAs3tahqhGev35MrWtNpi/O3SxbjnG/UApJ11v9TU2IgboVCVuEGGeet3oY6FmAi2+CJO39hYVj/4RUVv0gFEpxECwFfrx4h/ywsbjr7BbzxlS2+QEX5ucqMJfb1UMnhADADHTFOtdmMZZHBzjOmjijGmNGyusa+9T6NCAOEasPAYwp+hyOMUO6rxUv6M0igpW3abgvJ8bR2TjGhq7LRrmkuX5DnF/CZLJdze3ANfMIQitwP1daWoldL9jBlkaNMI5eDura3hOjkjKYQc3phWDnCNGmTw31q0G6HxdD2OvE7vEMqWlWCLm74ENUYn/JiyKcacz+TfYF6smq0MpBEOSlNjyY2woz88z6kYc6TLICNdOFIItvjc6NMI+emblK0wcq1VKnMib3qk6/dkFX5e5ed4UrYIgkgrPNCQg633t7fgmF++hfe3t8R9nj8YEovg8VFphNqarUAwhG88+AFu+Me6hK8HJN8NP3JKpViYi5otb0AEGQUG3AjVQEmvbJlJI1RPxvziPC6i8OmVLbmPFQ9aYqURimBLGscJM2pRUeBCodshPreM3uSCXywS99nSBlv9vvjqkBkHN0ANtqZUF2KcdFyoNVvqwpybY0yvLcLYMh5sqcoWn0++9uGfwW7TKjKp0NSttUrnilWsIE40NXY54HHaRaD7pZm1YnGeLNji5hjTRxVDURTMHFMi7jOibLml4NofDGmOrbc/C/e6qzbQ0JjDF8tm0+wANWjX99nym2gXwNGmEfJNBytphJE0y4BqHw8AeyPKltFNg2QGGelOI3TaFUMp0KnCA5A+X1AE7KmkL2oNMrK/bJMDLPN9tiKBaDyDDFK2AOiDpPQoW9k0yADUTUu+eZUoPZJqtgiCME1XDGXrxfUHsaOlF69sbIj7vP3t/Qix8ElKv7jjCwgexOxo6cXKHa34x5p9cRW0gKjzMH7S5WlMfZE+OoC5NELR1JgbZBh4Lke/a++0KxgVCYb0KWjcBU1R1PeW3Qw5svU7J89lxzNXHoFnrjwiZjCYp3On6xWujPHdCPXKViI3Qn2Pq2RMrAz3qjpO10CSB8GyEsONIqaNKsKYSLD16cFuEaTPG1eqeQ15oczd9uRUMSvw53OrdK70xHIk5AoOn/OxZeFg8MtzR6NE1yA4HjzYmjG6GAAwy2SwJRtk6M1GWiJqnBEnQg43BeFpdi6HzfButTDI8OrTCK1Yv8eq2bKgbMUZO68DNNq3K2awJffZSlNgwRduJXku02YgVtArwnabgiIT5z09FQWyQUb2gxGNsmVyPHJjbZl0uDYOJ+RriT2lpsbpbaWQCh5d/WnCYEsoW8MjjdD6r58gCMPwvGM5bYqrBe198ReO3NhgXHl+1CKBn4wG/CH4AiFhcAAAa3e344TDaqNezx+5oJlJJ8iXzCF64yg6sXDqUvgsWb/rxlmS5xRuYvoFt7DCttvEXLmk2hKO3iCDo6+Jk/HoGsvGU7bcuqbGAJCnS0GMhWxZb4Qrjz4E4yvy8bUFdZrbRRph5GLGGNOkEfKAd9WucM+p0nwnJkWaDIvPIC2Uw6lynSkpW4FgSKSacWWLLx5bY2wK9Ovc+n79tbnY1dqLpYdUiu8sWWrJpxE1b8aocLA1c0yxuM+YQYYaXMdz+6wxkUaoV7Y8JlL/uPW7LxiCPxiKcvk0s3EiL4w701CzxfE4bRjwh6IMapIhB3q8n5imz1aaFt78uBkMJ0JAVWf4+b7EguOjjMthQ0meE539/ow2pjWKtmbL3HNFimVUGiEZZMhkRtnK7rHD6zF55kViZYvXbJGyRRCEAQb8QREItPX5hCMg3+1vT1APs6c1bI4xLkYgIFuodw/4NQviNbvbY76ekT5bengaodYgI3kqjmh8GgwhFGLCydBMGqHNpmguNMV5TlFzEa1sRS/0nLpgKxRiQgk0s6Mvangi7xG3Zkt6b75o1KtisVAt642dkisK3bhw6YQo+3C99fv+jn50ewNw2hVMqiwUKtHetvCif0xpXpRC45YuyPy+phSCrZYeHxgLX1h5kFWRwP69TzLIAIBZY0uEo2CJgUaXjDFNGiGgVbYMWb/zpsaBoPiuC90OzcLSShohV36M1msBWqVHtn/3mwzQOXyBkw43Qs602mLN30bHpLF+1/1ewu+TJmUr8hkHo6ExoAYMbZFNhnTUiR05pRKl+U4cUlWQ/MEZRj4nmw0i+dxE1WyJNMIUBzdMkH9DaavZynYaocN4GiE/1/f5gikbNOUCpGwRRIaRd8YZCwdc1UUeNEQWsInMB/YIZSv6AmuPNOvs8QbQPRAwFGwZrdmSETUjXlXZyjehbAWC4UCLZ42YUbb46wRC4fctyXOqjW71NVs8YJEWa3o3wl5fQNQmmdnR5/btZtwI83U79UaULaO1LvEo1NVscVXrkKpCuBw2kUbICQdbWoVGVrZqIml/qaQR8p5UlYUucXFN1Nh4wK9NI5QpMVCz1dzjRXufHzYFmFITVu2qiz04d/E4dA8EYlr765HTCLkaWFHoQo3Nje3NveI1jcJ7be3rMB9suew2OGwKAiGGPl9AzIE/YN76HQirLkEwqWYrdWVr+qhirN/XIX5bRo/jwhhphLIlfroWh1NqigAAk6uL0vJ6yeBryLbIHKfDbv5336iHLxhK+RyRDuwaZcvcd8QDtSg3Qkoj1OBKl7Jllzcfs12zpW1Nkqg+Ty436B4IpNSqIBegYIsgMozeLbCl24fyfJeoq4plf81RnQhjp7gVecLBVteAX7MgXr+/E95AMOrCzFP6zOwY86BBdh0z1tRYrZfiAafTrhhWbzguh02klmnSCKMMMqLrnvQGGTyd02W3mRpHVM2WBTfChDVbJqzfE8GDv35/EMEQw66IMnpIdTjo0Jt/jCmLDrZkF6yaiBFHY7d1ZatJV68FhG3Tgeg0QsaYyOePZWRgJNjiqVvlBS5NUPPTrxq3u5b7bHV7VWVrUlWhCLbMpRGGPy8/Do322ALCykG+y46ugUBalC2+vuFzaKVmS7/4G13iQUWhG80RIxSjvy15wygvRs1WohYVZlh6SAVevW6Zxkwmk9gzoGwpipITgRagD7ZMPldq+CzDlS2zwdtwRf6uUwlAbTYFTrsCf5BlPY2QX0e5qmlPEPw57DZxbujq9w/5YIvSCAkiw+hrPlp6vGju8Qqlx5CylSDY4u/RIClbvkAIG/d3Rj2eOwOaSyNU+y0B4YurkcWiQ1a2BtQUQrNpJ/IFQqts6azfA9GLT5eobwmPndf6FJusoZCDrXBAEFvZitXU2IgboTdoLo0wHnJ6Z68vIOr4RkeCpgK3Q1O3MqY0T2OLDuiUreLUlS0eqMnpihWRtDr9se8LhoQ64okRbBlxI+Qulak0kZXVyF4p2Jo+SlVGrKQR6l/fKKojqBpsWTHIAGKkEVpwI7TbFMg/n+pit6bxrpnj+NDaIrgcNpEqrU0jTM/CW1EUTKkpGrRghQcMbT3c9n1oLxT1pKJsxUsjJGVLS7pqtsKvZY+8TrYNMrTvn8x5kqf/Doe6LQq2CCLD6E8ULT1ezeLVGwhF9dABwrv8PNgaH8e8QXYk5HU1PDiKlUoolC0LBhmcApfDUKAim1NYaWisvo76XuFgK/yZ41m/a9yXeBph5D6xm29ygemW1ClvICRSYBLVbOmtrBP22YqoXqkqW26HXQTSvd4ADkaOidoSVdHidVtAONgqzXfGDFCB9NRscWWrSlK2RBqhrs+W/DuwmkbI+0eVpbDAjZVGWOh2CMMNAIbSETlRwZbJRb/a2FjduDFrqsLhC5xUlC1FUTSqU3WxR5ifmB3T3y5djHdvPFoE4J4M1GwNNjxg4GnXqQT+uYhdU7Nl7rk8cCCDjMTIwVaqAWh1sRs2RVXYs4V+kynZ5yo2UKM7VBiaZzKCGELola3WHp/GORAI13Hpaenxoc8XhKJoF8gyPHjp6leVrWOmVQMAVu+KDra4QYaZHWN9fZbe7jweDsn63YoTIcfpiK1s6Zsaq81w5cBBaz/fZXGBqfbZCmlSufRzI18g853h+3i910CMgJqTrpotQGuScTBSIzRaaoIspxKOKcuDoiga1SlWzVZrr0+kaZqlKYayVRnH+p3PrdOuxFRsDClbkftSMUNwSwYZvJi70ONAfV0ZijwOzBpTYkpRKs1zahYWRq3RObEaG/stmN0A6uKYWahdlJHPITVFHo3SZ+Y4znPZNfVvbodNjDFdboSDjV7tGSxjjsFCViTMBgI8mNJbv/O+89RnK4wrjcHWny5ciCf/Z4mpOtNMYDrY4vbvpGwRBJGMqJqtHq9YgHJiORLuaQvXhowuyYu7U8yd/Tr6faJe4pRZowAAa/e0g+kuaFzZMtMI1eWwadIYjPTYArTW7/xkWeROrRhfrtnq0C24D3aGAws5LU5vk81rtswuMPMk63eeVuZx2qIuFomaGidWttJTswWoC/Meb1AE9bVSsDVWMsnggVeNpDrJx0ZpvlP8zY8vs8Sq2aou9sCmhIOmPZG6RECyfY+TZmdE2eLpcSV56VC21GCrwO1ASb4T7954DP5x+RJTr2ezKaJOTX59o+gbGwdDTG1CbTGNkGNF2QK0v8vqYrdG6UslHVZRFKH8DXVli5OOmq1cIpU0Qh5MBYOURpgIecMi1TTCiZUFWDSxPNUhpYx+kynZ5xL270lafQwFhuaZjBgRdPb58e62lqh0g6GGXgJv7vFGK1sxgi1ujhHL9p3DlaKdLX0IsXA91RcPrYbLbkNLj0+8BsdvQdkCtOlyRnpsAeqOeyAY0qgDZpEXk8WSstXnC2rUFt7DSA4mePAiDDKEsmVuHMIwIRCM22NLfj8gVs1WoqbG6anZAlTzkq5+PxojAdKoEq2aFR6XTaTz1UjBmOzmqCiKSA+zWrcVq2ar2OPEEZMrAQDPfLJf3C4aGseo1wIk6/cEO53cOCWVnkr8O/MG1KbGvCltSb7TdLAEaFMJrQZbvGaLH8+A9ZotjtUUN/77dtgUlOe7NMG028L8yPDvP9vuaVaJCraGdc2WtedGK1tkkCGTrqbGuYQ+fTpZyigpWwQxCNz+wiac96cP8fqWpmwPJSW4ssUXTC09vqiFayxHwmROhICq0HzeFLb4ripyI89lx6yx4b5Cq3V1WwELTY3DY1cDCyM9tgBtj6t0phEWSf2O5Lot3sNITpPTN1bmJ22zC8zSiErS2DWgOhHGmAc5MOTqTJ4BN0JfID01W4D6/exu7UUwxGC3KRrVgQfvdWVqo+x4yhagmmRYrduKpWwBwOlzxwAAnv54v1Bg+RzFay1gpKkxPyZSSd3ySI2oZWUrFSql78BMU2MAyI+8N3dq9El9Z8weM/Ji1mlXTDkjyvBzSHWRGzbdMWZWbdPDfzPZLui3ij5eSIf1ey6hrdkyqWwJ63ft7UGhbKU2tuGCXeoxOVzmRL/JlFzZopotgsg4nzWGA4hdLb1ZHYc+Fc8sPHVtYmW4V1ZLt1f0xOLXqVjKVjInQkANXrY19QBQU+gWjC8DEG2SYaWpMWBN2eILJb/FRsIcvUGGzaZIdVvqontfR3i+5Po2fVPjTsmN0AyHjQ4bI2xr6hHBQ6x5KM13waaErc35okI2W4hHOpUtHhTwY6KmyK1ZHB05pRLnHT4Oy0+aJm6rLQkvlBUl+tioEcqW+WArGGKixUG1rnnySTNrkee0Y2dLL9btCztnctXQSBphvN+lSCNMxSDDoX5n3ZJBRipUSmmE8ZS7eBSINMLw/MhNPs2mGMnBVrEFd1DxvpHjpCpyztHUbFkM4Dg8AMx2E1ar6OuOKI0w+rl663dKI4yGb6QMG2VLd15IduyQGyFBDAINneFFWqzGp4PFW1ubMPfHr+KlDQctv0a3PtjqUYOtiRXh22LXbHEnwuiGxhxRsxUJOngB7HwRbLVpHs8VHrOpR7KKY7hmyxExpwikqGzparYAdfEiK4JC2ZLTCHmvL5FGGKnZMhn0VRd7MLrEA8aAVTvDcxqrD1R5gQsPnr8AD14wX9ym79GlhzFm2VkuFjwI/JwH4CVaRcntsOPO02fhuBk14jauXrnstqjFN1ekGi3UbLX2eEV6a4WuT0qB24ETDwuP4em1+wAYTyP0B1lcpZDX8qUjjVBj/W7h2JXRKFsWrd/7dcFWrO8rGfJi1qo5Bn9vIBzMA0hbzRagntdi/caGAsM+jVCRgy1zz+UL7IBO2qI0wmj47yjVmq1cIUrZSrKZYsQQaahAwRaRk/gCIdFEN1YgMli8tbUZnf1+vLq50fJr8F2ZSZFgq7VXdSOcFunbo3cjDIYYtkWUvYRphLoFIFe25kWCrc8aezQnKss1W04LaYSR3bhAiKWkDrgcMYItnf17rzeA9si/5WBLr2zx78JKb6E5daUAgPe3twCIH3QeN6MG88erxchySlos/EEmnOHS6UbIg61RukbGseDBVqxFstpry7yy1RQJ0CoK3THNDk6vD6cSPr/+IPzBEPr98Rsa89v5QjbeBZjXbJWmZJDBa/SkesNUlS3Jdtl0GqHOIEPtsWV+ESZvkputXZTh5xB+fFRZdCOMxY0nHor/WTYJiydWpPQ62SLKjZCULYGwftcJ06RsRcOvfcPFDl+fsZBc2UqeNj5UoGCLyEmaugfUpr8x6pkGCx4UcdXECjyFbnxExQqGGLojC7jpteH0tPZe7clk04FOdA0EUOR2YFptEeKhV2h4yldloVsoaWv3qKmEvGYrJWXLsEGG6gTYLTU1NktMZUtn/74/YnFe7HFo5kQYZKRo/Q4As8eWAgC2NISDYKO77p4kNVty/U16DDLC78cDnVEG7H6n1hTB47RhUlVh1H1qry3zyhYP0Gp0KYScIydXorLQjbZeH97+rFk0fo6n/CiKktSRkKudqdVsyW6E4e8t9WBLTrMzmUbIa7a8OmXLwvGiSSNMIQiQa7aAsPrG5yhVhXbp5ErcfPL0tCi92SDK8XEYB1tmhSi1ZosMMpKhNiMeHnMS1dTYqBvhANVsEURaYIxpdv7lXfRY9UyDBXdS29fel+SR8eGBRnmhS2PMkO+yoy5iVqA3yHjv81YAwOJJFQntj/VpeTXSwnreuLC6tVaq2xLKlsmTtxxY5BtcdDokN8LUmhqrqRR8HKU6+3f+/ej7kUUrW+HvwooD25y6Es3fRoNO2TY+Fl7puE/VWACIVtz0aYSxKC9w4e0bjsZjly2Oui8dypbeHIPjsNtw6uxwq4LXtzQJA4hEgawItvqigy3GWHr7bPmD6PGGXy9lg4wU3Aj5jnCfn7sRWts0AbQpYFZt3wHVuEY+5/DAKx2bBkMZeRFZ5HEMO7UmFWXLFi/YCkW/9khHrdkaHnOi32RKapBByhZBpJebn96AeXe8ir2ROiVerwVkN42wMaJsNXQNaIrSzdAlmUPIqUS1xR5hva0PKHmq2hGTE6fR6HdM5YXPggnhYEtubqw2Qk3BjdCgosMDh67+gLBlt1azFT4hl+SpxfxlEWWLB6mx6rUA9WLljyxOuywaZADArDElml1co82d1T5bsY8fn1R/k450EX1QMNpAGiEQrkuLFVCkYpDBnyObJ+jh9YWbDnSpNVsJgpFEefwD/pBIsUulTkY2NemNqElWjl0ZbbBlcUtFdAAARYNJREFUsqmxm1u/h4NRq79jQJuSZCWdlnNoTSEUBZgtbUJUUbAFQKv2DLeGxoB28W82EOALbL31OzfMGC6BRTrgv6Ph0ug5yvo9WRqhgVYfQ4WRfUYkcob3t7eizxfEhxHzAd6gFsieQUYoxMTOfIghqjeWUbiyVexxaBZc1cVuEWzJypY3EMRHu8LzwHsRxUO/AJRVDL6I/WRvh1icBawaZMhuhCaVrVc2NWB/Rz+KPQ7MiaTimYEHTLIaVapTN2L12ALUQC06jdD8IrPI48RkKc3OsLIVWbj7AqGo3VwgvQ2Ngeh0NyPKViK46UrXQCBhr7BYCGUrQSojd3rccrBL1EclcutTe21Fp5bw35HTrhjeFIgFd9MbCATRM5Am63dNzZY1g4xenfW7lWMmXcrWijNm46MfHIdpkVRoAJhSE/59yH3dRiLyHKdSO5irpJJGyBfYwRDTOIrycyOlEaqcMnsUJlYWiHrhoY5+kympQYZQtiiNkCDSQltPeJHEbd7lXfTOfn+Uc9Fg0NrrEzVOgLqgNwNjTFOvJDuS1RZ7UMaDrV7VyvrjPR0Y8IdQWejGlOroGhoZfQ2U3C9pclUhij0O9PuD2HKwG4wxtc+WycL6PE2wZa7PFhAOOB6+eJH4vGbgryOrURWRoJXXau3riO6xBajqmi8Y0tTKWa2hkC968XpB6ZEvMLFMMvjCOV1qgD4oGJVisFXkdoiAsanb3IaD2mMrvrI1oaIABS47vIEQNh3oApBY2UpUs8UNU0ryXJYtzQFV2WJM/X5SrdkqL3CJhanVpsbCjTCgqqFmkacllVoiu03RbB4BwPKTpuGxyxbjpJm1ll93OCAHI8NS2dK4EVp3w5T3nqjPVjRXfHEy3vzeFzXmM0MZ/XkvubIVcWH1BzWN3IcidFgTWccbCIpF8M5IsNWgK8bvyELOrj5tykrdVp8vKC4ixXkOVEmLk5piD8ojqU6+YEj00Hn/83AK4dJDKpIuGAtcdmG963HaNGlBNpsi1K3Vu9s0gaPTZN+OAk0aoTlFx2lX8OAF88VYzMKDLVnZmhsJetbsbocvEJKULV3NlkgjDAmFArC+oy8HW0aDTo/DLsb+z4jFuUz6lS11XHabErdeyiiKogh1TN+MOxk8OKtJoGzZbAqmjwqrI9zMJXHNVvj4ixls9adujgHEVp5SDbYcdptIfzWbRqgqW5GaLZ5G6DAfUGqs31NMjdRT5HHiiMmVIz4VTF5EWqkPzXXkzTrTwZb0eFnpF2mEpGwNW6KbGic+D8qbyd1DPJWQgi0i68j1SiLY6uyP+5jBQh9scRXFDFzVstsU5DntmlSimmIP8lx2sfDitWnvbQ+bYySr1wLCC2F+Qqop9kQFZ/Ol5sZyzZnZRZqVNMLjptfgG4vq8KcLF+KoKVWm3k8mVhrhtNoilBe40OcLYt2+DlGzFZ1GqBpk8MV5ntNuObCZK6VBGlW2bDYF1x8/FQDws5e3RAXt3kB4AZ0JZata19DYKlyZMlu3ZUTZAtRUQt7UOJHyk6homitbqfTYAsIbBPK05TntaZlHbohTUWhupzq6ZisFg4w09dki4jPclS2bRtky91y7XVa2YqQRjvBAfTgT1dQ4yenLblNQ5B4ejoQUbBFZp7VHDaR2tfaCMYYG3aIuG8GWfgxW0ghlFz5FUTSLLL7bz3e723p96PEGsG5vBwBg6SGJ67U4vG4rlnrA+z2Fgy31wpZsR0mPxiDDYLBVku/EijNmY9lU64FW+L3DC81yKQXRZlOw5JBwMPr6p01o6Qkv6vXBlpxGmEqPLc6htUUiUDOqbAHA+YePx8IJZej1BXHTvzZoahV4ekS6lC35+0m1XotjxZEwGGJojnwviZQtADhstNbpMVEgazSNMBUURdEEfKk2NOb84qzZuPtrczBnbEnyB0vw+VDdCFMwyEhTzRYRHzlgGI41Ww5NzVZ6lS2q2Rq+6NPDjaxDhEnGEHckpGCLyDqyAUafL4imbi8aI26EvN4kG46EPGWK76xY6bXVJcwxwicMucahtiT8bxFs9fnw0c5wut+48nyxC56MYknZ0jOnLuygd7BzQGPwYbYZqkbZSsF4wApnL6jDRUsn4MKlEzS3HxEJRp/+eJ8Ylz5lR3YjTKXHlvx69ZFUQjPpeTabgrvOnA2Xw4Z3trXgH2vUdEJvgNdspWde5XS3VOu1ONyRcHer8VTatl4fgiEGRdGaQ8Rixuhizd+GrN8zmEYIaNW1VFMIOVNrinDGvLGmF6h8PvR9tqyoobJwkMrGAxEfjUHGcFS2bNaVLXl9Lae2B6mp8bBHn7FgZK+IbyYPdUdCCraIrNPWq60D+XhPu6hJ4A19s+FIyG3f544rBQDs6zBfs9Wl6y8lLzr5Yl04Evb68J5Ur2UU/tq1MRrH5rscGB1xBtve3AMgfDEzu9jLs5BGmC7GlObhti8fJpo0c/gc8aB4bFl+1OdyxlS2Ulv8/PLsOfjdufVYPLHc1PMOqSoU6YS3P7dJmMGowVb6la10ucItnhie6+fWHRC9sJLB67UqClwJe8UB4SBE3gBIlEZoRNlKNY0QADzS95GuYMsqvE7SFwzBHwypNVupphGSspUR5HhhWNZspdBnS1YzQppgy9rrEUMH/TXObkrZojRCgkgJOY0QAD7YEbY9ryx0CbUmK8pWZLHI654OdgzEtO5OhOpEGF4scVchRQlbvwNQHQn7/KJea2kSy3cZfjGPl6o1LqKQbW8KB1tmVS3AmkFGphlfka9xH9T32ALUz+oPhsTJOtXFT115Pk6dPdpSbcG3jpqExRPL0esL4uonP0Znnx/PfLwfgHmHungUutKvbB09rRrjK/LR2e/H05HxJkOt10o+BpfDhqk1ReJvI8pW7JotrmylnrqVCWXLKvJmR58vKPXZMn8MatIIh2EgkAto0gjTcCzmGvLnM6tEyQ+Xe22pfbZSGxuRuyiKogm4jJihiBpdUrYIIjX0qtXKSMBRIzX9zYayxdPuZo8tgcOmIBBipg0Cuge0qWtjSvNw/uHjcfUxU0TaWHlkF/7zph58ejBsfW1G2Tp/yXgcM60ap8weFfP+8RWRYCuibJl1IgS0iz2jzXwzjaIomnnS12sBUs1WQDXISLcDmxnsNgW/+fpclOY7sX5fJ4782Rt4ZVMD7DYF5x0+Li3vIX8/6arZstsUXLhkAgDg4fd2aWrO4sGVreoYimssDpNSCRP12UrU1JgrW+lI3XI7s6fm6nE5bCKw6vMFqGYrxxnuaYTami1zz1UU1XwmGCONkJSt4Y28iWUkUOepzlSzRRApwntsVUQCq62N3QDCu/Kxmv6a5d7Xt+HUe9+JuThLBG/IOqokD6NKw4tWs46EXE3hjoGKouCO02fiukg6GaAqW//Z1AAgnDqp71+TiKOmVOHPFy2MmzI2TgRb4bQ1sz22ANUMIrzoy53Thtz0Wd9jC5BqttKYRpgqo0ry8LMzZwMAur0BVBe58cS3DsdJM2MHy2Zx2m3ic6ezuezZC8ai0O3A5009eGdbS9LH8/TOGoO1bbJJRqp9ttJhSiA7Z+mbh2cDYf/uVZUtS02NIwscp10xbUFPGEPjRjgM1cNU+mwBaiqhJthiVLM1EpDPOYaCLVK2CCI9tEZqtubp+jDVFHs0Tn1WefKjvdi4vwsf7Gg1/BxvICjes7bYg7Gl4YDFbK+tbl3NViz06t0SE6qWEcaXh2uddkSUrWT1M7GoK8tHWb5TY32eCyzRKFvRhiI8MNzb3o8nP9oLIDd28088rBa3nTYD31hUhxevPgqLTNZ/JWNuXSnK8p2YUpO4KbYZijxOnDV/LADg4fd2Jn18ppStkohS4A2EoppEp9UgwyErW9lXcwukxsbcWdRKU2OeAlbscabU+JmIj5xmVzIMlS17CjVbgGqSoXEjJIOMEYF5ZWt41Gxlf7uOGPHwIGPB+DK8urlR3F5b7EF5YWrBVijExKJvb5vxQInXm7gcNpTmO0U9kFlHQl6zlUhNKdPl9B9h0PLdKLxmizdEdVq4mBW4HXjv+8dYWtxlkppiD+aNK8X6fZ2axTpnSk0hptUWYUtDN5ojSmVZQW7UUFx0xMSMvfZjly2GPxgy3AvMKBctnYBHV+7Cm1ub0dztFTWIseDKVnUS23fO9FHFsClAiKkOoLEodDmgKABj4dQS+eLdnsY0QnkHttCd/QUzD0B7U0wj5MJ2thXe4Yys/AxHgwx7Cm6EgDo/lEY48pA3sYwpW8PDjZCCLSLr8EBq9thSURsFhOtNyvNVpz5Lr93nE7vAe0wEW7w2q6bYDUVRRD2Q2V5bInXNgLIFhE8+iyelV+XgaYQcp0XXu3Qv3NPFQxcuRFuvFxN0boVAeMwvX3MUPj3Yjdc+bcT+9n58tX5MFkY5uDjtmUn3nFBZgLqyfOxp68Ou1t6EwRZPw03W0JhT4Hbgti8fhpYeX8IAzWZTUOxxorPfj85+v3gsYwydIthKt0FGDihbkQC0zxdIyY2QL2azWbs43OFryHyXPW0tHXIJu6Zmy3xwxJ8f2yCDgq3hjEfKWnCYUrYo2CKIlOBuhDXFbtSV52NnxBK7VqrZarNYsyX3ljIXbGnrTXg9kNmaLb0bYSzkXfjZY0tEfVe6KMlzojTfKepZjJzghhLlBS5NwKpHURTMGF0c1cuJsMbYsjzsaevDvvY+LJwQf2OgObJhYTTYAoALIiYcySjJU4MtTr8/KIKQdNTJ5JIbISD12vIF4U+hEbZIIxyGikuuwOd4ONZrAWpAZPVSwp8fitVni5StYY3cUsOIo69aszW00whzKyeIGHEM+IPo8YZ/RBWFbkyQVBjZIGPAHzLc30eGpxAC5oKtBq5sRdzceD2QWWVL70YYCzlQSHcKIWe81CA5lwwuiKGHUHnb4v8Wwum7kQ0Lg2mEZuCpWXwDAVBTCF12W0LreKNo0ghzoM6PK8t9skGGBbMbu1C2sv+ZhivcObJkGNq+A3KwZS0wiqVs8TR3N5m2DGvkTSxjylb4vGfW4CzXoKOayCo8hdBpV1DscWhSwWqKPch32cXurZW6rYZOtWHyvrZ+zU5aIpp4sFXEgy1V2TL6GkC0G2Es5JotM5bvZhhXoc6rFTdCguDwjYe9Ccxi2vt8Ih3YjLOmUXj/MNmwhvfYKslPj/GDnP6VC2mE+XLNViQ12lIaYeQpfBFDpJ8FE8px1JRKXHzEhGwPJSOkGmzx5wUixzFjDNsiLsSHVKXP1IfIPeRNLCPHj1C2hniwRWdbIqvwAKos3wVFUTAxEmwVuh0iQCnPd6GhawBtvb6YjnOJkPti+YIhNHYPGLLD5spWbYk78n8PbEq4X1NTt9dw/yIjboQepx3LplahtceL+RPK4j4uFcaVq5+ZlC0iFYzUL/I03IoCl6VUt2Tw88SuVjXYEvVaaUrd0qYRZl8F4s3E+3xB1SDDShohKVsZp9jjxF8vXZztYWQMrkhYaNmoeT6v02ru9qK9zw+bAkyupmBrOGNW2RJN7MkggyCsw50IKyK73/xEKzeoLS9Qgy2z6JsQ72ntMxZsdXKDjHBQ5bTbMKmqEJ839WDzwU4TwVZyN0IAePTihQCsFRsbgdu/A9aaGhMEp648eUotT99NZKCRClwB5/WdgJpGqHf3tIq8A5sL1u+8WXWfLyClEVrvs0U1W4RVeMBuWdniaYQR9XtLQ1jVmlBZoFmME8MP2Y3QTM3WgD8EbyA4ZA1naNVFZJXWHnUHHAAOn1iBm740DXeePlM8JpXGxlHBlsG6rVj1JrPHhJuurt/Xaeg1QiGGHl9ygwwgHGRlsueN7EhIaYREKvCNkAMd/RrrZpkmk7bvZplQwZUtNdjiPbbS1ddIXvTlQlNjrmx19avBlhVl65hp1RhTmodlU6rSOj5i5FBe4ILTrljeTLHrgq2tkWBrWm1RegZI5CzyJpYRZatQOvd2D2GTjOxfQYgRTZtQtsIBlc2m4NtfOETzGN4XibsWAkAgGMIv//MZ8px2XHPclLiv3xBZ9I0pzcP+jn5DwRZjLErZAoBZY0vwr4/3Y4PBYKvbGwCv/832Ym28JtiiPRbCOtVFHjjtCvxBhsauAYwujVaKubJVkyFli6cR7mvvhz8YgtNuE2YZZekKthyyspX9S+Uh1eHPvPFAp9icsmKQ8ZW5Y/CVucO//QGROUrzXfjXd46w3ENMH2x92tAFADi0hhxjhztmmxrbbQqK3A50ewPo6vdnpAZ4MKBVF5FVWiIBVCLr7gqdshUKMXz/XxvwwH+349evfSaa1caCG10sjNRCGQm2DnQOoN8fdkaqKVZ/2LPHlgIA1u/vBGPJTTJ4vZbLYcu69F1T5BG1M1YWaATBsdsUEWDFSyUUPbaKM3NhrCl2I89pRzDERLNybpCRjh5bQO5Zv88bFz6HbdrfJXZ4qf6SyBazxpZE9XA0imhqzLTK1qGkbA17zAZbgNRrawgrW3SmJrJKW682jTAWvAajrdcHxhjufPFTPLVmn7ifuxjp8QaCoiZs4cRwPyAjwdZjH+wGACyaWK5p5DtjVDHsNgXN3V5hAJAIvtOeC81DbTYFdZH0LwfVbBEpoppkxP49qU3BM5NGqCiKUGt5KiH/vVndbdcjLwoKcqCh97jyfFQWuuALhkQqcybMRwgi0+RFnDWburwIBEPY1tQDgNIIRwKaYMtg6QTPDBrKjoR0piaySpvOICMW5QVO8dh73/gcf35vJwBVdfosTrDFFS+X3YY5EVVqb5Jgq98XxBOr9gAALjlioua+PJcdUyIGHuv3dSR8HQBYub0VQO7s1o2P1LlQzRaRKmNLI/bvcXptCWUrQ2mEgJpKuLOlL/L/cNCVrgCP1xYUuOyGCrkzjaIoQt3iyjspW8RQ5MjJ4X6SL204iF2tffAFQshz2jGu3JpSRgwd+HlVUYwZZADDw5GQztREVjGSRlheEF6wvbutBXe/+hkA4NbTZuDMeWMBAJ9FdsX08N316mK3SHdo6fGh1xtfin7mk/1o7/NjbFkejp9RE3X/7LFhk4wN+8M7yw+/txPf/uvqmDv8/9ncAAA4YUZt3PcbTPiFjBZoRKokU7YybZABqI6Eu1p60ecLYF1kA2TRhPK0vL47sgNbmAPKNGfeeG1rCCtuhASRbU6bMxoA8NZnzVizuw0AMLW2KCc2NYjMwpUto6oWIKUR9lMaIUFYgitblYUJ0ggjyhbvMH/tcVNw8RETMbUmrBjJaYTtvT4c6AjvtvNUv5piD4o9TpRGCufjNWNljOHhiGp24ZIJMfOJZ/G6rX2d2NHcgzte2Ix/b2rEWfev1IyjpceLNbvbAQDHxQjassH8yEJtvMU8e4LgjC2PX7PFGBOq8mAoW7tae7F2dwf8QYbRJR7UlSdv7WAEbjmcLiv5dDBfF2zRxgkxFJlWW4TJ1YXwBUL4/Vvbw7fV5EYGCJFZuLJltF4LkBobk7JFENbg1u9cvYpFhXTfRUsn4Jpjw+6DU2rCKX2fNfaAMQbGGL72h5U44ddvo7FrQDgK1kZ217mys6c1drD1/vZWfNbYg3yXHV9bWBfzMXPGcvv3Dtz7xufgztcNXQM4+w8r8cneDgDAG582IcSAmWOKMSaGW1s2OHX2KLz5vS/i6mPiuzcShBHqIs3F93VE/5Y6+vzwRazJM9VnC1CDrR3NvfhgRzhl9/BJFWlroVBfV4prj5uCH506Iy2vlw5mjSnR2CVTzRYxFFEUBafNDqtbuyPX41xJtycyC++zZSrYyqOaLYKwzIA/KNSqRGmEU6oLcfb8sbjq6Mm45dQZYjF1SFUhbArQ2e9Hc48Xnzf1YFtTD3q8AbyxpQmN3WoaIaA2Y41nksFVrbPmj41bZH9obRGcdgXtfX48/fF+AMBfLlmEuXWl6Ojz47JHV6Olx4v/bG4EABw/PTdSCIHwBW5iZQGlahApMzYSbB3sGEAgElhx+O+uLN+ZURdO3mvrQGc//vtZMwDg8EMq0vb6NpuCa4+biiMi9SW5gMdpx2GRfn8A4KT6S2KIcuqcUZq/yRxjZGApjZCULYKwDk8hdNqVhI59NpuCX5w9B9878VBNoOBx2oXpw7bGHrz3eYu4762tTWiMo2zFMsnY1dKL17c0AQAuXDoh7ljcDjum1aq9QI6bXo1lU6vw2GWLMbWmEC09Xlz390/wzrbw4u+Ew3IjhZAg0kl1kRtOu4JAiKFR13pB1GsVZa5eCwinHhe6HWBMraFcMil9wVauMm9cqfg3pRESQ5VDqgpx2Gj1WkrK1sjAzdMITWwU8ZotvmYcitCZmsgarZI5htXUn8nVPJWwG+9F3P8A4L3PW7E/UrtVowu2dscIth55fxcYA44+tAqHVBUmfM9ZY9Wd5WuPmwog3PT03m/Mg9thwzvbWuANhFBXnke7dcSwxGZTRHrsPt3vSTamySSKomBCpVp/OKY0Txh3DGfkui1KIySGMtwoo7LQndCRmBg+5FlQtrgL9Mb9XRkZ02BAZ2oia7SKHlvWT7JTI3VbWw52i7oNu01BjzcgDCp4sMWDqPX7OjWpT90DftG362Kd3XssuG3tl2bWYqaU0nNobRF+KNV3HD+9Nm31IwSRa/BUwr06kwzV9j2zyhagphICwOJJ5SPi98bt3wFyIySGNmfPH4t540pxyZETsj0UYpAYXZoHu03BqFLj14e540qhKOESkObu5D1Oc5Hc8bQlRhy8P1YqO+DckfDljQfRPRBAkceBow+txnPrDgjzCt6Pq35cKUrznWjr9WHVrjYsPSQcNP1j9T70eAOYXF2Io6Ykr8/40sxa/PM7S3DY6JKo+85bPA6rd7Xh5Q0NOGv+WMufiyBynXj2702DpGwBqkkGMDJSCIHwYmX++DLsa+9DbUnmA1qCyBQVhW7864ojsj0MYhCpKfbghf89EhUJHKj1FHucmFpdhK2N3Vi7px0nHpY7tfBGoW0xIiswxvCP1WE1KZU+VFOqw8FW10C4/8LhkypwzLRqzWO4suW023BCxIb95Q3hHljBEMOjK3cBAC4+YoKhnXFFUTB/fLmmE7p832/OmYv1t52AGVI+OkEMN3iwtWZ3O4J8ZwOqslWTQSdCjqxsHT5Cgi0A+Me3l+C/Nxwd8xxEEASRy0wfVWw682He+FIAwNpIxtJQg4ItIit8srcD25p64HHaolyJzDCpqgCyud4Rh1TgqCmV4DFTkduBArcq4H5pZvi9XtnUgFCI4bl1+7G7tQ8leU58tX6M5XHIKIpCiyBi2HPE5PDv7J1tLbj6iY/hDYSdRUUaYQYbGnMOGxPe0JhUWSDcRkcCNhudYwiCGDnw9Om1eyjYIgjD/F9E1Tp55ihh62kFj9Ou2d1eOrkSFYVuzI7UUtXo0myWTq5AkduB5m4vVu5oxS///RkA4NtfmIR8F2XVEoRR6seV4XffmAenXcGLGw7iskdXY8AfFAYZNYOQRjitthiPXrIID124IOPvRRAEQWQHbgy0bl8nfIFQkkfnHhRsEWmnoXMAf125C69ubhT1GzL9viCeX3cAAHD2gtjNg83AmxtXFbmFa80XDg2nEtbqdtfdDjuOi6QSXv9/n2B/Rz9GlXhwiQFjDIIgtJwyexQevmgR8l12vLOtBXe9vGVQDTIA4AtTqzApiYMoQRAEMXSZWFmAsnwnfIEQNh3ozPZwTDOitvLvu+8+/OIXv0BDQwPmzJmDe++9F4sWLcr2sIYNjDE8+8kB/OjZjeiO1FAB4R3uWWNKMWdsCWaNLcGull70eAMYV56PxRPLU37fGaNK8O9NjThycqWoubpgyXh81tCNcxePi3r8STNr8fTH+9EY6Qd03fFTKSWHICxy5JRK3HfuPFz8yEd45P1d4vaqQajZIgiCIIY/iqJg3rgyvL6lCWv3dKBecmUdCoyYYOvvf/87rr/+ejzwwANYvHgxfvOb3+DEE0/E1q1bUV1dnfwFhhG+QAjdA370+YIozXei0O1I2TK5vdeHHz6zES9uOAhAtWT/vKkHjV1eNHY14rVPGzXPOXv+WE2TYqtcfOQEKArw9YWqSlZZ6MYD58+P+fgvTK1CvsuOPl8Qh9YU4cx55BpIEKlw9LRqXHzEBDz83i4AQEmekzYwCIIgiLQxb3wk2NrdjkuPHFrZSCMm2Lr77rvxrW99CxdffDEA4IEHHsCLL76IP//5z/j+97+f5dFZp98XxM6WXuxq7UVrrw/dA3509QfQNeBH90AAXf3+qH8P+LX5rm6HDVVFblQVuVFZqP1/VaEr8n8PKotcMeua3tzahBufWo/mbi8cNgVXHzsFV3zxEDjsNvR6A9h8sAvr9nZgw/5ObNjXiR0tvSjyONKSQgiEbUGvPnaK4cd7nHacNX8snli1Bz88dTrsaQj4CGKk8/0vTcOHO9qw+WAXqknVIgiCINLIUDbJGBHBls/nw5o1a3DTTTeJ22w2G4477jisXLky6vFerxder9o4rasrd7pWP/7hHtz+/CbxtzeFQkG3wwZvIARvIIR97f3Yp2tOGguX3Qa9CMbHcEhVAX59zlzMHlsq7itwO7BwQjkWTlDTBTv7/bDbFBS6s3f43XraYfjuCYeiJM+6OQdBECpuhx33nluPq5/4OG3OngRBEAQBAHPqSmC3KTjYOYADHf0YXZqX7SEZZkQEWy0tLQgGg6ipqdHcXlNTgy1btkQ9fsWKFbj99tsHa3imCDIWFWCV5DkxqaoA1UVuFHmcKPY4UZznQLHHiSKPA8V52tuKPU4Uehyw2xT0+4Jo6fGiqduLlh4vmrvD//F/t/R40Rz594A/BF8wOrhTFOCipROw/KRphlKHciHAsduUnBgHQQwnDqkqxItXH5XtYRAEQRDDjHyXA9NHFWHj/i5sPtBFwdZQ56abbsL1118v/u7q6kJdXXpS3lLlq/VjNE1785x2lOU7Lddc5bnsqCvPT9qjhjGGXl8Qnf3+qPsKXQ6U5FPgQhAEQRAEQWSGu782F1WFbpQVuLI9FFOMiGCrsrISdrsdjY1ag4bGxkbU1tZGPd7tdsPtzs2ag0K3Iyvpd4qiZO29CYIgCIIgiJHN1JqibA/BEiOiz5bL5cL8+fPx+uuvi9tCoRBef/11LFmyJIsjIwiCIAiCIAhiuDJiZIrrr78eF154IRYsWIBFixbhN7/5DXp7e4U7IUEQBEEQBEEQRDoZMcHWOeecg+bmZtxyyy1oaGjA3Llz8corr0SZZhAEQRAEQRAEQaQDhTHGsj2IXKerqwslJSXo7OxEcXFxtodDEARBEARBEESWMBMbjIiaLYIgCIIgCIIgiMGGgi2CIAiCIAiCIIgMQMEWQRAEQRAEQRBEBqBgiyAIgiAIgiAIIgNQsEUQBEEQBEEQBJEBKNgiCIIgCIIgCILIABRsEQRBEARBEARBZAAKtgiCIAiCIAiCIDIABVsEQRAEQRAEQRAZgIItgiAIgiAIgiCIDEDBFkEQBEEQBEEQRAagYIsgCIIgCIIgCCIDULBFEARBEARBEASRARzZHsBQgDEGAOjq6srySAiCIAiCIAiCyCY8JuAxQiIo2DJAd3c3AKCuri7LIyEIgiAIgiAIIhfo7u5GSUlJwscozEhINsIJhUI4cOAAioqKoChK1P1dXV2oq6vD3r17UVxcnIURDl1o7qxDc2cOmq/UoPkzB82XdWjurENzZwyap9Sg+QsrWt3d3Rg9ejRstsRVWaRsGcBms2Hs2LFJH1dcXDxiD7pUobmzDs2dOWi+UoPmzxw0X9ahubMOzZ0xaJ5SY6TPXzJFi0MGGQRBEARBEARBEBmAgi2CIAiCIAiCIIgMQMFWGnC73bj11lvhdruzPZQhB82ddWjuzEHzlRo0f+ag+bIOzZ11aO6MQfOUGjR/5iCDDIIgCIIgCIIgiAxAyhZBEARBEARBEEQGoGCLIAiCIAiCIAgiA1CwRRAEQRAEQRAEkQEo2CIIgiAIgiAIgsgAFGxlmVAolO0hEARBEARBEASRASjYyiJbtmzBPffck+1hDEmCwSD8fn+2h0EQBEHkGLSJSRC5idfrzfYQsgJZv2eJDRs2YOHChfD5fFi5ciUWL16c7SENGbZu3Yrf/OY32L59O4444gj87//+L8rLy7M9rCHBrl278Oqrr6K/vx9TpkzBl770pWwPKefZvn07nnrqKXR1dWHOnDk45ZRTUFBQkO1hDSkYY1AUJdvDGBLs3bsXb7zxBtrb2zF79mwcc8wx2R7SkKGzsxMlJSUAwgGXzUb7yUY5cOAAPvroIwwMDGDKlCmYN29etoeUk+zcuRPPPPMMmpubsWTJEpx22mnZHtKQYfPmzfjWt76Fn/3sZzjyyCOzPZxBhc5EWWDdunVYtGgRzjnnHHzhC1/ACy+8AIB244ywceNGHHnkkWhra8OUKVPwk5/8BA8++GC2hzUk2LBhAxYvXownnngCTz/9NE499VRccMEFWLVqVbaHlrNs3LgRCxYswEsvvYS3334b5557Li6++GK8+uqr2R7akKCtrQ0AoCgKaF8vORs2bMBRRx2FBx98EA8++CBOOukkPP7449ke1pBg8+bNGD9+PH76058CAGw2G11TDbJhwwYsW7YMd955J2688UZ89atfxYsvvpjtYeUc69evx7Jly/DCCy/gv//9L77yla/gueeey/awhgy//OUvsXLlSlx00UVYuXJltoczuDBiUFm7di0rKipiP/jBDxhjjN1www2sqqqKdXR0MMYYC4VC2RxeTtPe3s4OP/xwdtNNN4nbbrnlFnb99dczv9+fxZHlPi0tLWzOnDniuGOMsZdeeonZbDZ22mmnsTfeeCOLo8tN+vr62Mknn8yuuuoqcduHH37I5s+fz44//nj2zDPPZHF0uc+mTZuYw+Fg11xzjbiNzm/x2bFjBxs/fjxbvnw56+/vZ01NTeyWW25h8+bNYw0NDTR3Cdi7dy+rr69nU6dOZeXl5WzFihXivmAwmMWR5T6ff/45GzNmDFu+fDlrb29n69evZ5dffjk788wzWU9PDx13EbZu3crGjh3LbrrpJub1ellbWxs7+eST2X333ZftoQ0Z/vznP7Ply5ezSy+9lFVUVLC3334720MaNEjZGkSamppwxBFH4Nvf/jbuvPNOABApcLx2i1Jt4tPf34/+/n4sW7ZM3LZ3716sWrUKixcvxne+8x28/PLLWRxh7tLR0QGHw4Fzzz0XjDH4fD7MnTsX06dPx0cffYTf/e53aG9vz/Ywc4q8vDy0t7ejuroaQFh5XrRoER599FF4vV784Q9/wPr167M8ytzkwIEDuPjiizF79mw89NBDuO666wCQwhWPQCCAP//5z6ivr8ett94Kj8eDqqoqLF26FAcPHgRA14Z4hEIh/POf/8TEiRPxwAMP4MYbb8SKFStw1113ASCFKxE+nw/33Xcfli5dijvuuAOlpaWYNWsWFi5ciJUrVyIUCtFxh/A83X777Tj22GNxxx13wOVyoaysDHl5efjggw9w6aWX0jXUAPn5+XjnnXdw7733YsmSJTjrrLPw6aef4kc/+hH+/ve/Z3t4GYWCrUHE6XTilVdewS9+8QtxW01NDerr6/Gf//xH3EaLkdj4fD5s27YN7733HtavX48777wTTz75JI4//nhcdNFFWLNmDe677z40NDRke6g5R3d3N9auXYuGhgYoigKXy4W+vj7U1dXhV7/6FZ5++mk89dRT2R5mzsAYQ09PD1wuF5qamgCEF3XBYBCHHXYYfve732HdunV49NFHszzS3IMxhjfffBPjx4/Hvffeiz/+8Y+4//77cf311wOggCsWDocDs2fPxsKFC5GXlyduX7x4MRwOB1paWrI4utzGZrPh5JNPxllnnYWjjz4a//M//4ObbrqJAi4D2Gw2TJ48GUcddRScTqf4XR5zzDFwOp3o7OzM8ghzA5fLhZtvvhnf/OY3YbfbAQA//elP8fTTTyMUCsHj8eDqq6/GLbfckuWR5jbz5s2Dy+VCXl4enn/+eRx99NGor6/H/fffP/xrBLOoqo14eHrDxo0bmdvtZn/605+yPKLc55FHHmH5+fns5JNPZkVFReypp54S923YsIEpisKee+65LI4wN/H7/ez8889nkydPZr/73e/YE088wcrKytgVV1zBGGPs2muvZV//+teZ3++ntBGJJ598kimKwp599lnGWPg36/P5GGOM/fWvf2VlZWVsz5492RxiTrJnzx4xZ4wx9thjjzG3282uvfZacRsdZ1r6+/vFv/ncdHd3s7q6Ovbxxx+L+1atWjXYQxsSyMdTc3Mzu+uuu1hxcbFIKQwEAuy5555jzc3N2RpiTnLgwAHxbz6H+/fvZ+PHj2e7du0St3366adZGV8usn79enbcccexl156SczPU089xRwOB9uyZUuWR5fbzJkzh23dupUxxti5557LCgoKWFlZGfvoo4+yPLLM4sh2sDfcOXDgAPbv34/W1lYcd9xxsNlsYpfNZrOBMYaJEyfi1FNPxcsvv4xzzz0XbrebpHto5+7YY4+Foii48MILceyxxwIAvvrVr2Lu3LkIhUJgjKG0tBT19fUoKirK8sizjzx3xx9/PBwOB5YvX4777rsPt956K2pra3HFFVeIdNbOzk60t7fD4Ri5pwS/3w+n0wlAVZfPOussvPvuuzjnnHPw9NNP46STThIOZ2VlZRg1ahQ5E8agrq4OdXV14u9zzjkHiqLg4osvhqIouPvuuxEMBvH3v/8dc+bMwcyZM7M42uwgH28A4PF4xL8VRUEgEEBPTw8CgQDy8/MBADfddBN+9rOfoampCZWVlYM+5lwh3nU1EAjA4XCgsrISl1xyCYCwAsEYQ2trK+655x7s2bMny6PPLnzuWlpacOKJJ6KmpgYAxNyFQiF0dXWhr68PLpcLiqKI4669vR3FxcUjYn0S7xgDgFmzZuEvf/kLRo0aJR5vs9kwY8aMEf275OjXH4qiwGazob+/H2VlZeju7sbVV1+Nt956C2+88QZ+9atf4fDDD8f777+PRYsWZXv4mSG7sd7wZt26dayuro7NmDGDORwOVl9fz+6//37W3d3NGNMW7vKdX9q1DBNr7u677z7W1dXFGAsXk1dWVrLXXntNPOfWW29lkydPZvv378/WsHMC/dzNnTuXPfjgg6yvr48xxti+ffuidjMvuOACtnz5chYKhUak4rBx40b25S9/mW3atCnqvp07d7JLL72UuVwu9tBDD7GGhgY2MDDAli9fzubMmcPa2tqyMOLcgqt9ifD7/ezxxx9nbrebXXfddezqq69mTqeT7d69exBGmFskOt44oVCItbS0sNGjR7Ndu3ax22+/nRUWFo74a0Sy62ogEBCPbW5uZitWrGCKooyI3fNkxJq73//+91Frku3bt7NRo0ax9vZ2dtttt7GioiL24YcfZnPog0qyY4yxaGX+hhtuYCeffLJYo4xU4s1dZ2cnY4yx7373uywvL4+NHj2arVmzhjHGmNfrZeedd55QvIYjFGxliObmZjZ9+nS2fPlytnPnTtbU1MS+8Y1vsMWLF7Nrr71W/CDlC0N9fT07//zzWTAYHJELXk6yuePOjZdffjlzOBzs5JNPZl/60pdYTU2NJt1mJBJv7hYuXKiZO8727dvZzTffzEpLS9nmzZuzNOrssnPnTjZp0iSmKAqbO3duzBP+wYMH2Y9//GPmdDrZIYccwubMmcMqKyvZ2rVrszDi3MJI4MAJBALsr3/964he/Bo53jh9fX1s5syZ7IQTTmAul4utXr16EEeaexi9rsobmeeffz4rLi42dHwOZ4zOHWOMNTY2stmzZ7Ozzz57xB13ZuaJsXAa5g9/+ENWWlrKNmzYkKVR5waJ5u6aa65hfX197Nlnn2WnnHLKiFurUbCVITZs2MAmTJjA1q1bJ27zer3slltuYYsWLWI/+MEPNDn6jDF2zz33sG3btg32UHMOI3Pn8/lYW1sbu++++9jZZ5/Nbr755mG9K2IUM8ddc3Mzu/zyy9mhhx46YoOGgYEBdtttt7GvfvWr7KOPPmKLFi1i06dPj3ssrV27lj3xxBPs8ccfZzt37hzcweYgZgIHxsKL4EsvvZQVFxePyODezPEWCoXY7t27maIozO12a37TIxUz57dQKMT++te/spqaGrGDPpIxM3cbN25kiqKwvLw89sknn2RryFnBzDytXr2anXfeeWzixIkjLniIRaK5W7BgAbv99tsZY0yjEI4UKNjKEFu3bmUTJ05kzz//PGOMiT5Qfr+f3XDDDWzu3LmixwD1iNKSbO7mzJnD3n33XfH4kawC6jFz3DEWVrb27duXlbHmAsFgkP3zn/9k//jHPxhj4V5u8RbAdJxpMRuoMhbu7TZx4sQRqWgxZu544/ziF78Y8aoMx+z5bceOHWzXrl1ZGWuuYWbu2tvb2fe+970RuSFiZp727dvHnnvuObZjx46sjTeXSDZ3s2fPZu+88w5jbORdTxXGyIM3E3i9Xhx55JGora3FM888A7vdLgpQGWOYM2cO6uvryTo6Bkbmbu7cufjLX/6S7aHmHHTcmScYDAo7XwBobW3FySefjO7ubjz77LOYMmUKAoEAVq1ahfnz58PtdmdxtLlDKBTCM888g1AohLPOOgsdHR048cQT0d3djWeeeQZTp06Nes6BAwdgs9lQW1ubhRHnBmaOt4ULF8LhcIwIQwIjmDm/McZo3iTMXhu8Xu+IPNfR+sM6tP6ID/XZygChUAhutxsPP/ww3n77bXznO98BAHHAKYqCL3/5y6J/D6FidO6am5uzPNLcg447a/CFL993qqiowIsvvoiioiJ85StfwaZNm/C///u/uO6669DT05PNoeYUNpsNX/nKV3DWWWcBAEpLS/HSSy+hqKgIp59+OrZt2wYg7HL2/vvvY2BgAKNHjx7RgRZg/Hi75ppr0N3dTQFDBLPnN5o3FTNzx4/LkRho0frDOrT+SAwFWxnAZrMhGAxi5syZePTRR/HEE0/gggsuQGNjo3jMzp07UVZWhmAwmMWR5h40d9ahubMGX1zwxRljDJWVlXjppZdQWlqK2bNn49FHH8V9992HioqKbA415zATqPb29mZzqDmD0ePt/vvvR3l5eTaHmlPQ+c06ZuZuJDd/pmPMOjR3iaE0wjSgT1fgsmlPTw+8Xi8++eQTnHvuuRg/fjzKy8tRUVGBZ599FitXrsSsWbOyOPLsQ3NnHZo78+jnjKd0dXV1IRQKobS0VPP4Sy65BM899xzefvttzJgxY5BHm/vo55P/3draitNOOw0ffvgh3G433n77bSxYsCCLI80OdLxZh/ei5ND5zTg0d8agebIOzZ05SNlKAR6d83iVMSYOuF27dmHq1Kn46KOPcOyxx2LTpk04+eSTMWbMGFRXV2PVqlUj8oDj0NxZh+bOPPHmzG63Y9euXZg+fTpWrlwpHs8Yw7333otHHnkEr7766ohf+ALq3HGCwSAURUFXVxc6OjoAqGpNRUUFpk2bhrKyMqxevXrEBVp0vFmnpaUFgLpTDoTnk85vyaG5MwbNk3Vo7iySAdONEcHWrVvZtddey8444wx2++23a9xo9uzZwyorK9mll17KQqGQ6KXF3VfkHiAjEZo769DcmcfInF122WUad6RQKMTefPNNasXA1F6A/PgJhULCZWrnzp1s9OjR7KWXXhKPD4VC7Le//S1TFGVEthSg4806W7duZUVFRexb3/qWuI0ff3R+SwzNnTFonqxDc2cdUrYssGHDBixduhTt7e0IhUJ4+eWX8cQTT4AxBr/fj2effRbnnXce/vjHP0JRFI3zFDCyC3dp7qxDc2ceo3P24IMPauZHURR88YtfxOTJk7M4+uzz2Wef4Xvf+x7OPPNM3Hnnndi5cycURYHD4cDevXuxcOFCnHzyyTjppJM0z5s1axY+++wz1NfXZ2nk2YGOt9TYvHkz8vLysGHDBnz7298GEK4L9Pl8eO6553D++efjD3/4A53fYkBzZwyaJ+vQ3KVAVkO9Icj27dvZ+PHj2Q9+8ANx26WXXsquvvpqzeN4VE+o0NxZh+bOPDRnqbF+/XpWUVHBLrzwQnb66aezww8/nP3kJz9hoVCI+Xw+du+997Jrr712xPVLiQcdb6nz0ksvsalTp7K77rqLzZo1i337298W9+3duzeLI8t9aO6MQfNkHZo76ziyHewNJYLBIF599VUce+yx+O53vyuKn/Py8rBx40Z84QtfwPjx43H55Zdj6dKl1OdDgubOOjR35qE5S40dO3bgtNNOw+WXX44777wTAHDZZZehsbERiqLA6XTiqquuEnVbIx063tLDrFmzMH/+fFx22WVwuVx45JFHcP3116OzsxOLFi3CJZdcAqfTme1h5iQ0d8agebIOzV0KZCvKG6rs2LGDbdy4Ufx9++23M4/Hw37605+yW265hZ1zzjls0qRJ1FE8BjR31qG5Mw/NmTUCgQB74IEH2CWXXMLa2tqEcnXVVVexY445hi1btoydf/757L333mOMMVK2ItDxljq9vb1s9uzZ7OOPP2a9vb3swQcfZBUVFUxRFLZ+/XrGGCmD8aC5MwbNk3Vo7qxDypZJJk6cKBymvF4vPvzwQzz11FM45ZRTAADvvvsuzjzzTHz++eeYOHFiNoeac9DcWYfmzjw0Z9aw2+044YQTcOSRR6KsrAwA8OMf/xgPPfQQbrnlFgwMDGDr1q04//zz8dprr9HcRaDjLTX8fj/cbjdqa2vR09OD/Px8vP766/D7/Zg8eTIeeugh3HPPPVG1IATNnVFonqxDc5caFGwl4cCBA1i7di18Ph/Gjx+P+fPnQ1EUBINBuN1uPP/887DZbKLnQHl5OWpqaqgZJWjuUoHmzjw0Z+mDAofk0PFmHXnuJkyYgHnz5on0o/nz5+Pzzz/Hgw8+iLfffhvPP/88NmzYgLvuugsOhwO/+tWvsjz67EJzZwyaJ+vQ3KUfCrYSsGHDBpx++umorKzEjh07MGHCBCxfvhxnnXWWiN553j1v7vbXv/4VHo8H48ePz9q4cwGaO+vQ3JmH5iw1KHAwBx1v1kk0dwDgdrtxySWXYMKECXjhhRcwb948zJ49GzabDSeeeGKWR59daO6MQfNkHZq7DJHNHMZc5vPPP2djx45lN954I+vo6GCrV69mF154IbvkkktYIBCIqlPYvXs3u+GGG1hZWRlbt25dlkadG9DcWYfmzjw0Z6mxfv16NmnSJLZo0SJWWVnJFixYwP7xj39oHqOfw+9///ts4cKFrLm5eTCHmhPQ8WadRHPHe7f5/X52xRVXsFWrVjHGqE8Ph+bOGDRP1qG5yxwUbMXA6/Wy66+/nn3ta19jXq9X3P6nP/2JVVRUsJaWFs3jP/roI3bFFVewOXPmsE8++WSwh5tT0NxZh+bOPDRnqUGBgznoeLOO2bkjVGjujEHzZB2au8xCaYQxCIVCGDt2LKZPnw6XyyVsepcuXYrCwkL4/X7N4xcsWID+/n788Ic/xKhRo7I06tyA5s46NHfmoTmzjs/nw+9//3ssXboUd9xxB1wuF+bPn49ly5bhxhtvxM9//nNUVFSIx69evRoPP/ww3nvvPbz55puYPXt2FkefHeh4s47ZuePP4WmYIxmaO2PQPFmH5i6zULAVA4/Hg9NPPz2q8Lu0tBROp1Nz0K1Zswbz58/HUUcdNdjDzElo7qxDc2cemjPrUOBgHjrerGNm7j7++GPU19fTQi4CzZ0xaJ6sQ3OXWWimIhw8eBCrVq3CK6+8glAoJA44uWlnZ2cn2tvbxXNuueUWHH/88WhtbRXOXSMRmjvr0NyZh+YsPfCL62WXXaa5PV7gAABHHXXUiAu06HizjtW5O/bYY2nuaO4MQfNkHZq7QWSQ0xZzknXr1rHx48ezqVOnspKSEjZt2jT2+OOPs9bWVsaYWgC4detWVlVVxdra2tgdd9zB8vLy2OrVq7M59KxDc2cdmjvz0JylxoEDB9iHH37IXn75ZU1Bs9yIcsuWLayiooLt2bOHMcbYj370I1ZWVsZaWlpGXANjOt6sQ3NnHZo7Y9A8WYfmbnAZ8cFWU1MTmzZtGrv55pvZ9u3b2f79+9k555zDpk+fzm699VbW1NQkHtvY2Mjq6+vZOeecw1wu14g/4GjurENzZx6as9Sgi6s56HizDs2ddWjujEHzZB2au8FnxAdbmzZtYhMmTIg6gJYvX85mzZrFfv7zn7Pe3l7GGGObN29miqKwvLw89vHHH2dhtLkFzZ11aO7MQ3NmHbq4moeON+vQ3FmH5s4YNE/WobkbfEZ8zZbf70cgEEBfXx8AoL+/HwBw11134eijj8b999+Pzz//HABQVlaGK664AmvXrsXcuXOzNeScgebOOjR35qE5s05zczMGBgZwxhlnYNKkSRg9ejSefPJJfPnLX8a//vUvPPLII2JeW1tb8cknn+C5557Dhx9+iPnz52d59NmBjjfr0NxZh+bOGDRP1qG5G3wUxqjCbdGiRSgsLMQbb7wBAPB6vXC73QCAhQsXYvLkyXjiiScAAAMDA/B4PFkba65Bc2cdmjvz0JxZY926dTj11FPx+OOP46ijjkJ/fz/y8vIAANdccw2ef/55PPPMM5g9ezYaGhpw55134qqrrsK0adOyPPLsQsebdWjurENzZwyaJ+vQ3A0uI07Z6u3tRXd3N7q6usRtf/jDH7Bp0yace+65AAC3241AIAAAWLZsGXp7e8VjR/IBR3NnHZo789CcpY85c+Zg1KhRuPXWWwEAeXl58Hq9AIB77rkHFRUVWLFiBQCgtrYWv/zlL0dcoEXHm3Vo7qxDc2cMmifr0NxlnxEVbG3evBlnnHEGvvCFL2D69Ol47LHHAADTp0/HPffcg1dffRVnn302/H6/6B/Q1NSEgoICBAKBEW1zSXNnHZo789CcpQZdXM1Bx5t1aO6sQ3NnDJon69Dc5QhZqhUbdDZt2sQqKirYddddxx577DF2/fXXM6fTydauXcsYY6y3t5c999xzbOzYsWzatGns9NNPZ1/72tdYQUEB27BhQ5ZHn11o7qxDc2cemrPU2LRpEzvhhBNYfX09Gz16NPvb3/7GGGOsv7+fPfHEE6yyspKdddZZzOfzCfv38847j339619nfr9/xNm70/FmHZo769DcGYPmyTo0d7nDiKjZamtrwze+8Q1MmzYN99xzj7j96KOPxqxZs/Db3/5W3Nbd3Y0777wTbW1t8Hg8+M53voMZM2ZkY9g5Ac2ddWjuzENzlhqbN2/GsmXLcMEFF2DBggVYs2YN7r33Xnz44Yeor69HX18fXn/9dVxxxRUoLCzEtGnT4HK58OKLL+KDDz7AzJkzs/0RBhU63qxDc2cdmjtj0DxZh+Yut3BkewCDgd/vR0dHB8466ywAQCgUgs1mw8SJE9HW1gYAYGEbfBQVFeFnP/uZ5nEjGZo769DcmYfmzDptbW247rrr8M1vfhN33303AODcc8/F2rVr8fDDD6O+vh75+fk47bTT8MUvflFzcV21atWIvLjS8WYdmjvr0NwZg+bJOjR3ucWICLZqamrwt7/9DVOmTAEABINB2Gw2jBkzBrt37wYAKIoCRVHQ1dWF4uJicdtIh+bOOjR35qE5sw5dXM1Dx5t1aO6sQ3NnDJon69Dc5RYj5grLD7hQKASn0wkgvPBoamoSj1mxYgUeeughUTROB10Ymjvr0NyZh+bMGvzietRRRwEIX1wBYMyYMSKYUhQFNptNY5wx0ueOjjfr0NxZh+bOGDRP1qG5yx1GhLIlY7PZwBgTBxRfhNxyyy2488478fHHH8PhGHHTYgiaO+vQ3JmH5sw8Ri+ubrcbV199NRwOB11cI9DxZh2aO+vQ3BmD5sk6NHfZZ0TOLj/oHA4H6urq8Mtf/hI///nPsXr1asyZMyfbw8tpaO6sQ3NnHpoza9DF1Rp0vFmH5s46NHfGoHmyDs1ddhmRV1u+8HA6nfjjH/+I4uJivPvuu5g3b16WR5b70NxZh+bOPDRn1qGLq3noeLMOzZ11aO6MQfNkHZq77DJiarZiceKJJwIA3n//fSxYsCDLoxla0NxZh+bOPDRn5tFfXO+88066uBqEjjfr0NxZh+bOGDRP1qG5yw4jos9WInp7e1FQUJDtYQxJaO6sQ3NnHpoza6xevRqLFi3Cxo0bR6S9u1XoeLMOzZ11aO6MQfNkHZq7wWfEB1sEQRDDHbq4EgRBEER2oGCLIAiCIAiCIAgiA4zomi2CIAiCIAiCIIhMQcEWQRAEQRAEQRBEBqBgiyAIgiAIgiAIIgNQsEUQBEEQBEEQBJEBKNgiCIIgCIIgCILIABRsEQRBEARBEARBZAAKtgiCIIgRx0UXXQRFUaAoCpxOJ2pqanD88cfjz3/+M0KhkOHXeeSRR1BaWpq5gRIEQRBDGgq2CIIgiBHJSSedhIMHD2LXrl14+eWXcfTRR+Oaa67BqaeeikAgkO3hEQRBEMMACrYIgiCIEYnb7UZtbS3GjBmDefPm4eabb8azzz6Ll19+GY888ggA4O6778asWbNQUFCAuro6XHHFFejp6QEAvPXWW7j44ovR2dkpVLLbbrsNAOD1evG9730PY8aMQUFBARYvXoy33norOx+UIAiCyBoUbBEEQRBEhGOOOQZz5szBv/71LwCAzWbDb3/7W2zatAmPPvoo3njjDdx4440AgKVLl+I3v/kNiouLcfDgQRw8eBDf+973AABXXXUVVq5ciSeffBLr16/H2WefjZNOOgnbtm3L2mcjCIIgBh+FMcayPQiCIAiCGEwuuugidHR04Jlnnom67+tf/zrWr1+PzZs3R9331FNP4fLLL0dLSwuAcM3Wtddei46ODvGYPXv2YNKkSdizZw9Gjx4tbj/uuOOwaNEi/PSnP0375yEIgiByE0e2B0AQBEEQuQRjDIqiAABee+01rFixAlu2bEFXVxcCgQAGBgbQ19eH/Pz8mM/fsGEDgsEgpk6dqrnd6/WioqIi4+MnCIIgcgcKtgiCIAhC4tNPP8XEiROxa9cunHrqqfjOd76Dn/zkJygvL8e7776LSy+9FD6fL26w1dPTA7vdjjVr1sBut2vuKywsHIyPQBAEQeQIFGwRBEEQRIQ33ngDGzZswHXXXYc1a9YgFArhV7/6FWy2cInz//3f/2ke73K5EAwGNbfV19cjGAyiqakJRx111KCNnSAIgsg9KNgiCIIgRiRerxcNDQ0IBoNobGzEK6+8ghUrVuDUU0/FBRdcgI0bN8Lv9+Pee+/Faaedhvfeew8PPPCA5jUmTJiAnp4evP7665gzZw7y8/MxdepUfPOb38QFF1yAX/3qV6ivr0dzczNef/11zJ49G6ecckqWPjFBEAQx2JAbIUEQBDEieeWVVzBq1ChMmDABJ510Et5880389re/xbPPPgu73Y45c+bg7rvvxs9+9jPMnDkTjz32GFasWKF5jaVLl+Lyyy/HOeecg6qqKvz85z8HADz88MO44IIL8N3vfheHHnooTj/9dHz00UcYN25cNj4qQRAEkSXIjZAgCIIgCIIgCCIDkLJFEARBEARBEASRASjYIgiCIAiCIAiCyAAUbBEEQRAEQRAEQWQACrYIgiAIgiAIgiAyAAVbBEEQBEEQBEEQGYCCLYIgCIIgCIIgiAxAwRZBEARBEARBEEQGoGCLIAiCIAiCIAgiA1CwRRAEQRAEQRAEkQEo2CIIgiAIgiAIgsgAFGwRBEEQBEEQBEFkAAq2CIIgCIIgCIIgMsD/AzvGXfnb+1hwAAAAAElFTkSuQmCC",
"text/plain": [
"