import pandas as pd import gradio as gr import matplotlib.pyplot as plt import seaborn as sns from seaborn import FacetGrid import plotly.express as px HEIGHT = 600 WIDTH = 1000 def plot_daily_invalid_trades_plotly(invalid_trades: pd.DataFrame): fig = px.histogram(invalid_trades, x="creation_date") return gr.Plot(value=fig) def plot_daily_dist_invalid_trades(invalid_trades: pd.DataFrame): """Function to paint the distribution of daily invalid trades, no matter which market""" sns.set_theme(palette="viridis") plt.figure(figsize=(25, 10)) plot2 = sns.histplot(data=invalid_trades, x="creation_date", kde=True) plt.xlabel("Creation date") plt.ylabel("Daily number of invalid trades") plt.xticks(rotation=45, ha="right") daily_trades_fig = plot2.get_figure() return gr.Plot(value=daily_trades_fig) def plot_daily_nr_invalid_markets(invalid_trades: pd.DataFrame): """Function to paint the number of invalid markets over time""" daily_invalid_markets = ( invalid_trades.groupby("creation_date") .agg(trades_count=("title", "count"), nr_markets=("title", "nunique")) .reset_index() ) daily_invalid_markets["creation_date"] = daily_invalid_markets[ "creation_date" ].astype(str) daily_invalid_markets.columns = daily_invalid_markets.columns.astype(str) return gr.LinePlot( value=daily_invalid_markets, x="creation_date", y="nr_markets", y_title="nr_markets", interactive=True, show_actions_button=True, tooltip=["creation_date", "nr_markets", "trades_count"], height=HEIGHT, width=WIDTH, ) def plot_ratio_invalid_trades_per_market(invalid_trades: pd.DataFrame): """Function to paint the number of invalid trades that the same market accummulates""" cat = invalid_trades["title"] codes, uniques = pd.factorize(cat) # add the IDs as a new column to the original dataframe invalid_trades["title_id"] = codes plot: FacetGrid = sns.displot(invalid_trades, x="title_id") plt.xlabel("market id") plt.ylabel("Total number of invalid trades by market") plt.title("Distribution of invalid trades per market") return gr.Plot(value=plot.figure) def plot_top_invalid_markets(invalid_trades: pd.DataFrame): """Function to paint the top markets with the highest number of invalid trades""" top_invalid_markets: pd.DataFrame = ( invalid_trades.title.value_counts().reset_index() ) print(top_invalid_markets.head(5)) top_invalid_markets = top_invalid_markets.head(5) top_invalid_markets.rename(columns={"count": "nr_invalid_trades"}, inplace=True) return gr.DataFrame(top_invalid_markets)