{
"cells": [
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
"import seaborn as sns\n",
"import gc\n",
"sns.set_style(\"darkgrid\")"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"fpmms = pd.read_parquet('../data/fpmms.parquet')"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" id | \n",
" currentAnswer | \n",
" title | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 0x0020d13c89140b47e10db54cbd53852b90bc1391 | \n",
" No | \n",
" Will the Francis Scott Key Bridge in Baltimore... | \n",
"
\n",
" \n",
" 1 | \n",
" 0x003ae5e007cc38b3f86b0ed7c82f938a1285ac07 | \n",
" No | \n",
" Will FC Saarbrucken reach the final of the Ger... | \n",
"
\n",
" \n",
" 2 | \n",
" 0x004c8d4c619dc6b9caa940f5ea7ef699ae85359c | \n",
" Yes | \n",
" Will the pro-life activists convicted for 'con... | \n",
"
\n",
" \n",
" 3 | \n",
" 0x005e3f7a90585acbec807425a750fbba1d0c2b5c | \n",
" Yes | \n",
" Will Apple announce the release of a new M4 ch... | \n",
"
\n",
" \n",
" 4 | \n",
" 0x0094fa304017d5c2b355790e2976f769ea600492 | \n",
" No | \n",
" Will the Hisense U8K be considered a top-tier ... | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" id currentAnswer \\\n",
"0 0x0020d13c89140b47e10db54cbd53852b90bc1391 No \n",
"1 0x003ae5e007cc38b3f86b0ed7c82f938a1285ac07 No \n",
"2 0x004c8d4c619dc6b9caa940f5ea7ef699ae85359c Yes \n",
"3 0x005e3f7a90585acbec807425a750fbba1d0c2b5c Yes \n",
"4 0x0094fa304017d5c2b355790e2976f769ea600492 No \n",
"\n",
" title \n",
"0 Will the Francis Scott Key Bridge in Baltimore... \n",
"1 Will FC Saarbrucken reach the final of the Ger... \n",
"2 Will the pro-life activists convicted for 'con... \n",
"3 Will Apple announce the release of a new M4 ch... \n",
"4 Will the Hisense U8K be considered a top-tier ... "
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"fpmms.head()"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"currentAnswer\n",
"No 2170\n",
"Yes 1500\n",
"no 1\n",
"False 1\n",
"IND 1\n",
"Name: count, dtype: int64"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"fpmms.currentAnswer.value_counts()"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"RangeIndex: 3673 entries, 0 to 3672\n",
"Data columns (total 3 columns):\n",
" # Column Non-Null Count Dtype \n",
"--- ------ -------------- ----- \n",
" 0 id 3673 non-null object\n",
" 1 currentAnswer 3673 non-null object\n",
" 2 title 3673 non-null object\n",
"dtypes: object(3)\n",
"memory usage: 86.2+ KB\n"
]
}
],
"source": [
"fpmms.info()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"all_trades = pd.read_parquet('../data/all_trades_profitability.parquet')"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"is_invalid\n",
"False 23830\n",
"True 3877\n",
"Name: count, dtype: int64"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"all_trades.is_invalid.value_counts()"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"24722"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"mask = (all_trades[\"is_invalid\"] & all_trades[\"redeemed\"])\n",
"filtered_trades = all_trades[~mask]\n",
"len(filtered_trades)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"27707"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(all_trades)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"24722"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(filtered_trades)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"winning_trade\n",
"True 13133\n",
"False 11589\n",
"Name: count, dtype: int64"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"filtered_trades.winning_trade.value_counts()"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/var/folders/gp/02mb1d514ng739czlxw1lhh00000gn/T/ipykernel_82376/982645160.py:1: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
"Try using .loc[row_indexer,col_indexer] = value instead\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" filtered_trades[\"creation_timestamp\"] = pd.to_datetime(filtered_trades[\"creation_timestamp\"])\n"
]
}
],
"source": [
"filtered_trades[\"creation_timestamp\"] = pd.to_datetime(filtered_trades[\"creation_timestamp\"])"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"current_answer\n",
" 1 13016\n",
" 0 10814\n",
"-1 892\n",
"Name: count, dtype: int64"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"filtered_trades.current_answer.value_counts()"
]
},
{
"cell_type": "code",
"execution_count": 38,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"203"
]
},
"execution_count": 38,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(list(all_trades.trader_address.unique()))"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"27707"
]
},
"execution_count": 25,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(all_trades)"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/var/folders/gp/02mb1d514ng739czlxw1lhh00000gn/T/ipykernel_70112/183699308.py:1: UserWarning: Converting to PeriodArray/Index representation will drop timezone information.\n",
" all_trades['month_year'] = all_trades['creation_timestamp'].dt.to_period('M').astype(str)\n",
"/var/folders/gp/02mb1d514ng739czlxw1lhh00000gn/T/ipykernel_70112/183699308.py:2: UserWarning: Converting to PeriodArray/Index representation will drop timezone information.\n",
" all_trades['month_year_week'] = all_trades['creation_timestamp'].dt.to_period('W').astype(str)\n"
]
},
{
"data": {
"text/plain": [
"winning_trade\n",
"0 14574\n",
"1 13133\n",
"Name: count, dtype: int64"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"all_trades['month_year'] = all_trades['creation_timestamp'].dt.to_period('M').astype(str)\n",
"all_trades['month_year_week'] = all_trades['creation_timestamp'].dt.to_period('W').astype(str)\n",
"all_trades['winning_trade'] = all_trades['winning_trade'].astype(int)\n",
"all_trades.winning_trade.value_counts()"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" month_year_week | \n",
" winning_trade | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 2024-04-22/2024-04-28 | \n",
" 60.465116 | \n",
"
\n",
" \n",
" 1 | \n",
" 2024-04-29/2024-05-05 | \n",
" 53.887043 | \n",
"
\n",
" \n",
" 2 | \n",
" 2024-05-06/2024-05-12 | \n",
" 49.626201 | \n",
"
\n",
" \n",
" 3 | \n",
" 2024-05-13/2024-05-19 | \n",
" 47.931617 | \n",
"
\n",
" \n",
" 4 | \n",
" 2024-05-20/2024-05-26 | \n",
" 46.209810 | \n",
"
\n",
" \n",
" 5 | \n",
" 2024-05-27/2024-06-02 | \n",
" 41.855369 | \n",
"
\n",
" \n",
" 6 | \n",
" 2024-06-03/2024-06-09 | \n",
" 43.714888 | \n",
"
\n",
" \n",
" 7 | \n",
" 2024-06-10/2024-06-16 | \n",
" 46.697039 | \n",
"
\n",
" \n",
" 8 | \n",
" 2024-06-17/2024-06-23 | \n",
" 52.762120 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" month_year_week winning_trade\n",
"0 2024-04-22/2024-04-28 60.465116\n",
"1 2024-04-29/2024-05-05 53.887043\n",
"2 2024-05-06/2024-05-12 49.626201\n",
"3 2024-05-13/2024-05-19 47.931617\n",
"4 2024-05-20/2024-05-26 46.209810\n",
"5 2024-05-27/2024-06-02 41.855369\n",
"6 2024-06-03/2024-06-09 43.714888\n",
"7 2024-06-10/2024-06-16 46.697039\n",
"8 2024-06-17/2024-06-23 52.762120"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"winning_trades = all_trades.groupby(['month_year_week'])['winning_trade'].sum() / all_trades.groupby(['month_year_week'])['winning_trade'].count() * 100\n",
"# winning_trades is a series, give it a dataframe\n",
"winning_trades = winning_trades.reset_index()\n",
"winning_trades.columns = winning_trades.columns.astype(str)\n",
"winning_trades.columns = ['month_year_week', 'winning_trade']\n",
"winning_trades"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" month_year_week | \n",
" winning_trade | \n",
"
\n",
" \n",
" \n",
" \n",
" 6 | \n",
" 2024-06-03/2024-06-09 | \n",
" 43.714888 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" month_year_week winning_trade\n",
"6 2024-06-03/2024-06-09 43.714888"
]
},
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"that_week = winning_trades[winning_trades[\"month_year_week\"]==\"2024-06-03/2024-06-09\"]\n",
"that_week"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" month_year_week | \n",
" sum | \n",
" count | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 2024-04-22/2024-04-28 | \n",
" 26 | \n",
" 43 | \n",
"
\n",
" \n",
" 1 | \n",
" 2024-04-29/2024-05-05 | \n",
" 1622 | \n",
" 3010 | \n",
"
\n",
" \n",
" 2 | \n",
" 2024-05-06/2024-05-12 | \n",
" 2788 | \n",
" 5618 | \n",
"
\n",
" \n",
" 3 | \n",
" 2024-05-13/2024-05-19 | \n",
" 2271 | \n",
" 4738 | \n",
"
\n",
" \n",
" 4 | \n",
" 2024-05-20/2024-05-26 | \n",
" 1969 | \n",
" 4261 | \n",
"
\n",
" \n",
" 5 | \n",
" 2024-05-27/2024-06-02 | \n",
" 1719 | \n",
" 4107 | \n",
"
\n",
" \n",
" 6 | \n",
" 2024-06-03/2024-06-09 | \n",
" 1245 | \n",
" 2848 | \n",
"
\n",
" \n",
" 7 | \n",
" 2024-06-10/2024-06-16 | \n",
" 1025 | \n",
" 2195 | \n",
"
\n",
" \n",
" 8 | \n",
" 2024-06-17/2024-06-23 | \n",
" 468 | \n",
" 887 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" month_year_week sum count\n",
"0 2024-04-22/2024-04-28 26 43\n",
"1 2024-04-29/2024-05-05 1622 3010\n",
"2 2024-05-06/2024-05-12 2788 5618\n",
"3 2024-05-13/2024-05-19 2271 4738\n",
"4 2024-05-20/2024-05-26 1969 4261\n",
"5 2024-05-27/2024-06-02 1719 4107\n",
"6 2024-06-03/2024-06-09 1245 2848\n",
"7 2024-06-10/2024-06-16 1025 2195\n",
"8 2024-06-17/2024-06-23 468 887"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"winning_trades2 = all_trades.groupby(['month_year_week'])['winning_trade'].agg([\"sum\",\"count\"]).reset_index()\n",
"winning_trades2"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" month_year_week | \n",
" sum | \n",
" count | \n",
" winning_trade | \n",
"
\n",
" \n",
" \n",
" \n",
" 6 | \n",
" 2024-06-03/2024-06-09 | \n",
" 1245 | \n",
" 2848 | \n",
" 43.714888 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" month_year_week sum count winning_trade\n",
"6 2024-06-03/2024-06-09 1245 2848 43.714888"
]
},
"execution_count": 29,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"that_week = winning_trades2[winning_trades2[\"month_year_week\"]==\"2024-06-03/2024-06-09\"]\n",
"that_week"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [],
"source": [
"INC_TOOLS = [\n",
" \"prediction-online\",\n",
" \"prediction-offline\",\n",
" \"claude-prediction-online\",\n",
" \"claude-prediction-offline\",\n",
" \"prediction-offline-sme\",\n",
" \"prediction-online-sme\",\n",
" \"prediction-request-rag\",\n",
" \"prediction-request-reasoning\",\n",
" \"prediction-url-cot-claude\",\n",
" \"prediction-request-rag-claude\",\n",
" \"prediction-request-reasoning-claude\",\n",
"]"
]
},
{
"cell_type": "code",
"execution_count": 60,
"metadata": {},
"outputs": [],
"source": [
"tools = pd.read_parquet('../data/tools.parquet')"
]
},
{
"cell_type": "code",
"execution_count": 61,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"RangeIndex: 127674 entries, 0 to 127673\n",
"Data columns (total 22 columns):\n",
" # Column Non-Null Count Dtype \n",
"--- ------ -------------- ----- \n",
" 0 request_id 127674 non-null object \n",
" 1 request_block 127674 non-null int64 \n",
" 2 prompt_request 127674 non-null object \n",
" 3 tool 127674 non-null object \n",
" 4 nonce 127674 non-null object \n",
" 5 trader_address 127674 non-null object \n",
" 6 deliver_block 127674 non-null int64 \n",
" 7 error 127668 non-null float64\n",
" 8 error_message 19534 non-null object \n",
" 9 prompt_response 120607 non-null object \n",
" 10 mech_address 127674 non-null object \n",
" 11 p_yes 108134 non-null float64\n",
" 12 p_no 108134 non-null float64\n",
" 13 confidence 108134 non-null float64\n",
" 14 info_utility 108134 non-null float64\n",
" 15 vote 94137 non-null object \n",
" 16 win_probability 108134 non-null float64\n",
" 17 title 118074 non-null object \n",
" 18 currentAnswer 88330 non-null object \n",
" 19 request_time 127674 non-null object \n",
" 20 request_month_year 127674 non-null object \n",
" 21 request_month_year_week 127674 non-null object \n",
"dtypes: float64(6), int64(2), object(14)\n",
"memory usage: 21.4+ MB\n"
]
}
],
"source": [
"tools.info()"
]
},
{
"cell_type": "code",
"execution_count": 62,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"currentAnswer\n",
"No 51140\n",
"Yes 37190\n",
"Name: count, dtype: int64"
]
},
"execution_count": 62,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tools.currentAnswer.value_counts()"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"127674"
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(tools)"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {},
"outputs": [],
"source": [
"tools_inc = tools[tools['tool'].isin(INC_TOOLS)]\n",
"tools_non_error = tools_inc[tools_inc['error'] != 1]\n",
"tools_non_error.loc[:, 'currentAnswer'] = tools_non_error['currentAnswer'].replace({'no': 'No', 'yes': 'Yes'})\n",
"tools_non_error = tools_non_error[tools_non_error['currentAnswer'].isin(['Yes', 'No'])]\n",
"tools_non_error = tools_non_error[tools_non_error['vote'].isin(['Yes', 'No'])]\n",
"tools_non_error['win'] = (tools_non_error['currentAnswer'] == tools_non_error['vote']).astype(int)\n",
"tools_non_error.columns = tools_non_error.columns.astype(str)\n",
"wins = tools_non_error.groupby(['tool', 'request_month_year_week', 'win']).size().unstack().fillna(0)"
]
},
{
"cell_type": "code",
"execution_count": 63,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" win | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" tool | \n",
" request_month_year_week | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" claude-prediction-offline | \n",
" 2024-04-22/2024-04-28 | \n",
" 14.0 | \n",
" 23.0 | \n",
"
\n",
" \n",
" 2024-04-29/2024-05-05 | \n",
" 34.0 | \n",
" 99.0 | \n",
"
\n",
" \n",
" 2024-05-06/2024-05-12 | \n",
" 22.0 | \n",
" 34.0 | \n",
"
\n",
" \n",
" 2024-05-13/2024-05-19 | \n",
" 40.0 | \n",
" 52.0 | \n",
"
\n",
" \n",
" 2024-05-20/2024-05-26 | \n",
" 18.0 | \n",
" 52.0 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" prediction-url-cot-claude | \n",
" 2024-05-06/2024-05-12 | \n",
" 67.0 | \n",
" 91.0 | \n",
"
\n",
" \n",
" 2024-05-13/2024-05-19 | \n",
" 28.0 | \n",
" 43.0 | \n",
"
\n",
" \n",
" 2024-05-20/2024-05-26 | \n",
" 64.0 | \n",
" 145.0 | \n",
"
\n",
" \n",
" 2024-05-27/2024-06-02 | \n",
" 81.0 | \n",
" 112.0 | \n",
"
\n",
" \n",
" 2024-06-03/2024-06-09 | \n",
" 7.0 | \n",
" 41.0 | \n",
"
\n",
" \n",
"
\n",
"
91 rows × 2 columns
\n",
"
"
],
"text/plain": [
"win 0 1\n",
"tool request_month_year_week \n",
"claude-prediction-offline 2024-04-22/2024-04-28 14.0 23.0\n",
" 2024-04-29/2024-05-05 34.0 99.0\n",
" 2024-05-06/2024-05-12 22.0 34.0\n",
" 2024-05-13/2024-05-19 40.0 52.0\n",
" 2024-05-20/2024-05-26 18.0 52.0\n",
"... ... ...\n",
"prediction-url-cot-claude 2024-05-06/2024-05-12 67.0 91.0\n",
" 2024-05-13/2024-05-19 28.0 43.0\n",
" 2024-05-20/2024-05-26 64.0 145.0\n",
" 2024-05-27/2024-06-02 81.0 112.0\n",
" 2024-06-03/2024-06-09 7.0 41.0\n",
"\n",
"[91 rows x 2 columns]"
]
},
"execution_count": 63,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"wins"
]
},
{
"cell_type": "code",
"execution_count": 56,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"186"
]
},
"execution_count": 56,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"selected_traders = list(tools.trader_address.unique())\n",
"len(selected_traders)"
]
},
{
"cell_type": "code",
"execution_count": 59,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"182"
]
},
"execution_count": 59,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(list(tools_non_error.trader_address.unique()))"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"10817"
]
},
"execution_count": 36,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(tools)-len(tools_inc)"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"11778"
]
},
"execution_count": 32,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tools_week = tools_non_error[tools_non_error[\"request_month_year_week\"]==\"2024-06-03/2024-06-09\"]\n",
"len(tools_week)"
]
},
{
"cell_type": "code",
"execution_count": 44,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0"
]
},
"execution_count": 44,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"filtered_trades = all_trades.loc[all_trades[\"trader_address\"].isin(selected_traders)]\n",
"len(filtered_trades)"
]
},
{
"cell_type": "code",
"execution_count": 45,
"metadata": {},
"outputs": [],
"source": [
"all_addresses = list(all_trades.trader_address.unique())"
]
},
{
"cell_type": "code",
"execution_count": 58,
"metadata": {},
"outputs": [],
"source": [
"for a in all_addresses:\n",
" if a in selected_traders:\n",
" print(\"found\")"
]
},
{
"cell_type": "code",
"execution_count": 57,
"metadata": {},
"outputs": [],
"source": [
"for a in selected_traders:\n",
" if a in all_addresses:\n",
" print(\"found\")"
]
},
{
"cell_type": "code",
"execution_count": 46,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0"
]
},
"execution_count": 46,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"filtered_tools = tools[tools[\"trader_address\"].isin(all_addresses)]\n",
"len(filtered_tools)"
]
},
{
"cell_type": "code",
"execution_count": 55,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"count 27707.000000\n",
"mean 3.912224\n",
"std 4.622220\n",
"min 0.000000\n",
"25% 1.000000\n",
"50% 2.000000\n",
"75% 5.000000\n",
"max 66.000000\n",
"Name: num_mech_calls, dtype: float64"
]
},
"execution_count": 55,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"all_trades.num_mech_calls.describe()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "market_creator",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}