vam
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,149 +1,96 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
|
|
|
|
|
|
|
|
4 |
from openai import OpenAI
|
5 |
-
|
6 |
import os
|
7 |
|
8 |
api_key = os.getenv("YOUR_OPENAI_KEY")
|
9 |
client = OpenAI(api_key=api_key)
|
10 |
|
11 |
-
#
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
-
|
30 |
-
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
|
37 |
-
|
38 |
-
|
39 |
-
negative_prompt = negative_prompt,
|
40 |
-
guidance_scale = guidance_scale,
|
41 |
-
num_inference_steps = num_inference_steps,
|
42 |
-
width = width,
|
43 |
-
height = height,
|
44 |
-
generator = generator
|
45 |
-
).images[0]
|
46 |
|
47 |
-
|
48 |
-
|
49 |
-
examples = [
|
50 |
-
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
51 |
-
"An astronaut riding a green horse",
|
52 |
-
"A delicious ceviche cheesecake slice",
|
53 |
-
]
|
54 |
-
|
55 |
-
css="""
|
56 |
-
#col-container {
|
57 |
-
margin: 0 auto;
|
58 |
-
max-width: 640px;
|
59 |
-
}
|
60 |
-
"""
|
61 |
-
|
62 |
-
with gr.Blocks(css=css) as demo:
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
-
|
70 |
-
|
71 |
-
prompt = gr.Text(
|
72 |
-
label="Prompt",
|
73 |
-
show_label=False,
|
74 |
-
max_lines=1,
|
75 |
-
placeholder="Enter your prompt",
|
76 |
-
container=False,
|
77 |
-
)
|
78 |
-
|
79 |
-
run_button = gr.Button("Run", scale=0)
|
80 |
|
81 |
-
result = gr.
|
82 |
-
|
83 |
-
with gr.Accordion("Advanced Settings", open=False):
|
84 |
-
|
85 |
-
negative_prompt = gr.Text(
|
86 |
-
label="Negative prompt",
|
87 |
-
max_lines=1,
|
88 |
-
placeholder="Enter a negative prompt",
|
89 |
-
visible=False,
|
90 |
-
)
|
91 |
-
|
92 |
-
seed = gr.Slider(
|
93 |
-
label="Seed",
|
94 |
-
minimum=0,
|
95 |
-
maximum=MAX_SEED,
|
96 |
-
step=1,
|
97 |
-
value=0,
|
98 |
-
)
|
99 |
-
|
100 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
101 |
-
|
102 |
-
with gr.Row():
|
103 |
-
|
104 |
-
width = gr.Slider(
|
105 |
-
label="Width",
|
106 |
-
minimum=256,
|
107 |
-
maximum=MAX_IMAGE_SIZE,
|
108 |
-
step=32,
|
109 |
-
value=1024, #Replace with defaults that work for your model
|
110 |
-
)
|
111 |
-
|
112 |
-
height = gr.Slider(
|
113 |
-
label="Height",
|
114 |
-
minimum=256,
|
115 |
-
maximum=MAX_IMAGE_SIZE,
|
116 |
-
step=32,
|
117 |
-
value=1024, #Replace with defaults that work for your model
|
118 |
-
)
|
119 |
-
|
120 |
-
with gr.Row():
|
121 |
-
|
122 |
-
guidance_scale = gr.Slider(
|
123 |
-
label="Guidance scale",
|
124 |
-
minimum=0.0,
|
125 |
-
maximum=10.0,
|
126 |
-
step=0.1,
|
127 |
-
value=0.0, #Replace with defaults that work for your model
|
128 |
-
)
|
129 |
-
|
130 |
-
num_inference_steps = gr.Slider(
|
131 |
-
label="Number of inference steps",
|
132 |
-
minimum=1,
|
133 |
-
maximum=50,
|
134 |
-
step=1,
|
135 |
-
value=2, #Replace with defaults that work for your model
|
136 |
-
)
|
137 |
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
146 |
-
outputs = [result, seed]
|
147 |
-
)
|
148 |
|
149 |
-
demo.
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import matplotlib.image as mpimg
|
6 |
+
from embedding import model, docs_list, doc_embeddings, embedded_dict
|
7 |
+
import openai
|
8 |
from openai import OpenAI
|
|
|
9 |
import os
|
10 |
|
11 |
api_key = os.getenv("YOUR_OPENAI_KEY")
|
12 |
client = OpenAI(api_key=api_key)
|
13 |
|
14 |
+
# Function to generate meme caption using GPT model
|
15 |
+
def generate_meme_caption(topic):
|
16 |
+
response = openai.ChatCompletion.create(
|
17 |
+
model="gpt-4o-mini",
|
18 |
+
messages=[
|
19 |
+
{
|
20 |
+
"role": "user",
|
21 |
+
"content": f'''You are a loser, a meme lover who is always on the internet.
|
22 |
+
You are a meme professional, so you will generate short captions for memes based on the following rules:
|
23 |
+
Do not add emoji.
|
24 |
+
Do not add any punctuation.
|
25 |
+
Must be funny.
|
26 |
+
Only if some topic related to friends, use "bro" or "blud".
|
27 |
+
Answer from previous question can not be the same for this time prompt.
|
28 |
+
If the user does not specify their caption request, you can generate a short caption for the meme.
|
29 |
+
But if they do, you cannot replace their prompt; just need to copy their request and make it the caption.
|
30 |
+
Now generate a caption based on this topic: {topic}.
|
31 |
+
'''
|
32 |
+
}
|
33 |
+
],
|
34 |
+
max_tokens=250,
|
35 |
+
temperature=1.1
|
36 |
+
)
|
37 |
|
38 |
+
caption = response['choices'][0]['message']['content']
|
39 |
+
return caption
|
40 |
|
41 |
+
# Function to create meme with caption
|
42 |
+
def create_meme(prompt):
|
43 |
+
# Tạo embedding cho prompt
|
44 |
+
prompt_embedding = model.encode([prompt])
|
45 |
|
46 |
+
# Tính toán độ tương đồng giữa prompt và các văn bản
|
47 |
+
similarities = model.similarity(prompt_embedding, doc_embeddings)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
+
# Lấy chỉ số văn bản có độ tương đồng cao nhất
|
50 |
+
closest_text_idx = np.argmax(similarities)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
+
# Tải ảnh meme tương ứng
|
53 |
+
img_path = f'/kaggle/input/memedata/{embedded_dict[closest_text_idx]["filename"]}'
|
54 |
+
img = mpimg.imread(img_path)
|
55 |
+
|
56 |
+
# Tạo khoảng trắng để hiển thị caption
|
57 |
+
white_space_height = 100
|
58 |
+
white_space = np.ones((white_space_height, img.shape[1], img.shape[2]), dtype=img.dtype) * 255
|
59 |
+
|
60 |
+
# Kết hợp khoảng trắng với hình ảnh gốc
|
61 |
+
combined_img = np.vstack((white_space, img))
|
62 |
+
|
63 |
+
# Sinh caption từ GPT model
|
64 |
+
caption = generate_meme_caption(prompt)
|
65 |
+
|
66 |
+
# Hiển thị ảnh với caption
|
67 |
+
plt.imshow(combined_img)
|
68 |
+
plt.axis('off')
|
69 |
+
plt.text(
|
70 |
+
x=combined_img.shape[1] / 2,
|
71 |
+
y=white_space_height / 2,
|
72 |
+
s=caption,
|
73 |
+
fontsize=11, color='black', ha='center', va='top', fontweight='bold'
|
74 |
+
)
|
75 |
+
|
76 |
+
plt.show()
|
77 |
+
|
78 |
+
# Gradio interface
|
79 |
+
with gr.Blocks() as demo:
|
80 |
+
with gr.Column():
|
81 |
+
gr.Markdown("# Meme Generator using Embeddings and GPT")
|
82 |
|
83 |
+
prompt = gr.Textbox(label="Enter your meme prompt:")
|
84 |
+
run_button = gr.Button("Generate Meme")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
+
result = gr.Plot(label="Generated Meme")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
+
def gradio_infer(prompt):
|
89 |
+
plt.figure(figsize=(10, 8))
|
90 |
+
create_meme(prompt)
|
91 |
+
plt.savefig('/tmp/meme.png') # Lưu hình tạm thời
|
92 |
+
return plt
|
93 |
+
|
94 |
+
run_button.click(gradio_infer, inputs=[prompt], outputs=[result])
|
|
|
|
|
|
|
95 |
|
96 |
+
demo.launch()
|