File size: 2,545 Bytes
9b3da8d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
import os
import gradio as gr
import openai
import pandas as pd
# The OpenAI API key provided by the instructor
openai.api_key = os.environ.get("OPENAI_API_KEY")
# Instructor's prompt (invisible to students)
instructor_prompt = os.environ.get("SECRET_PROMPT")
def add_user_message(msg, history, messages):
messages.append({"role": "user", "content": msg})
return "", history + [[msg, None]], messages
def get_tutor_reply(history, messages):
# Generate a response from the chatbot
completion = openai.chat.completions.create(
model="gpt-3.5-turbo",
messages=messages,
max_tokens=150
)
# Extract the chatbot's reply
reply = completion.choices[0].message.content
history[-1][1] = reply
messages.append({"role": "assistant", "content": reply})
return history, messages
def save_chat_to_json(history):
formatted_convo = pd.DataFrame(history, columns=['user', 'chatbot'])
output_fname = f'tutoring_conversation.json'
formatted_convo.to_json(output_fname, orient='records')
return gr.update(value=output_fname, visible=True)
# Create a Gradio interface
with gr.Blocks() as SimpleChat:
gr.Markdown("""
## Chat with A Tutor
Description here
""")
messages = gr.JSON(
visible=False,
value = [{"role": "system", "content": instructor_prompt}]
)
with gr.Group():
chatbot = gr.Chatbot(label="Simple Tutor")
with gr.Row(equal_height=True):
user_chat_input = gr.Textbox(show_label=False, scale=9)
submit_btn = gr.Button("Enter", scale=1)
with gr.Group():
export_dialogue_button_json = gr.Button("Export your chat history as a .json file")
file_download = gr.Files(label="Download here", file_types=['.json'], visible=False)
submit_btn.click(
fn=add_user_message, inputs=[user_chat_input, chatbot, messages], outputs=[user_chat_input, chatbot, messages], queue=False
).then(
fn=get_tutor_reply, inputs=[chatbot, messages], outputs=[chatbot, messages], queue=True
)
user_chat_input.submit(
fn=add_user_message, inputs=[user_chat_input, chatbot, messages], outputs=[user_chat_input, chatbot, messages], queue=False
).then(
fn=get_tutor_reply, inputs=[chatbot, messages], outputs=[chatbot, messages], queue=True
)
export_dialogue_button_json.click(save_chat_to_json, chatbot, file_download, show_progress=True)
# Launch the Gradio app
if __name__ == "__main__":
SimpleChat.launch()
|