Update app.py
Browse files
app.py
CHANGED
@@ -8,58 +8,14 @@ from datasets import load_dataset, DatasetDict, Audio
|
|
8 |
from huggingface_hub import PyTorchModelHubMixin
|
9 |
import numpy as np
|
10 |
|
11 |
-
#
|
12 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
13 |
-
|
14 |
-
# Define the config for your model
|
15 |
-
config = {"encoder": "openai/whisper-base", "num_labels": 2}
|
16 |
-
|
17 |
-
# Define data class
|
18 |
-
class SpeechInferenceDataset(Dataset):
|
19 |
-
def __init__(self, audio_data, text_processor):
|
20 |
-
self.audio_data = audio_data
|
21 |
-
self.text_processor = text_processor
|
22 |
-
|
23 |
-
def __len__(self):
|
24 |
-
return len(self.audio_data)
|
25 |
-
|
26 |
-
def __getitem__(self, index):
|
27 |
-
inputs = self.text_processor(self.audio_data[index]["audio"]["array"],
|
28 |
-
return_tensors="pt",
|
29 |
-
sampling_rate=self.audio_data[index]["audio"]["sampling_rate"])
|
30 |
-
input_features = inputs.input_features
|
31 |
-
decoder_input_ids = torch.tensor([[1, 1]]) # Modify as per your model's requirements
|
32 |
-
return input_features, decoder_input_ids
|
33 |
-
|
34 |
-
# Define model class
|
35 |
-
class SpeechClassifier(nn.Module, PyTorchModelHubMixin):
|
36 |
-
def __init__(self, config):
|
37 |
-
super(SpeechClassifier, self).__init__()
|
38 |
-
self.encoder = WhisperModel.from_pretrained(config["encoder"])
|
39 |
-
self.classifier = nn.Sequential(
|
40 |
-
nn.Linear(self.encoder.config.hidden_size, 4096),
|
41 |
-
nn.ReLU(),
|
42 |
-
nn.Linear(4096, 2048),
|
43 |
-
nn.ReLU(),
|
44 |
-
nn.Linear(2048, 1024),
|
45 |
-
nn.ReLU(),
|
46 |
-
nn.Linear(1024, 512),
|
47 |
-
nn.ReLU(),
|
48 |
-
nn.Linear(512, config["num_labels"])
|
49 |
-
)
|
50 |
-
|
51 |
-
def forward(self, input_features, decoder_input_ids):
|
52 |
-
outputs = self.encoder(input_features, decoder_input_ids=decoder_input_ids)
|
53 |
-
pooled_output = outputs['last_hidden_state'][:, 0, :]
|
54 |
-
logits = self.classifier(pooled_output)
|
55 |
-
return logits
|
56 |
|
57 |
# Prepare data function
|
58 |
def prepare_data(audio_data, sampling_rate, model_checkpoint="openai/whisper-base"):
|
59 |
feature_extractor = WhisperFeatureExtractor.from_pretrained(model_checkpoint)
|
60 |
inputs = feature_extractor(audio_data, sampling_rate=sampling_rate, return_tensors="pt")
|
61 |
input_features = inputs.input_features
|
62 |
-
decoder_input_ids = torch.tensor([[1, 1]])
|
63 |
return input_features.to(device), decoder_input_ids.to(device)
|
64 |
|
65 |
# Prediction function
|
@@ -67,56 +23,35 @@ def predict(audio_data, sampling_rate, config):
|
|
67 |
input_features, decoder_input_ids = prepare_data(audio_data, sampling_rate, config["encoder"])
|
68 |
|
69 |
model = SpeechClassifier(config).to(device)
|
70 |
-
# Here we load the model from Hugging Face Hub
|
71 |
model.load_state_dict(torch.hub.load_state_dict_from_url("https://huggingface.co/jcho02/whisper_cleft/resolve/main/pytorch_model.bin", map_location=device))
|
72 |
-
|
73 |
model.eval()
|
|
|
74 |
with torch.no_grad():
|
75 |
logits = model(input_features, decoder_input_ids)
|
76 |
predicted_ids = int(torch.argmax(logits, dim=-1))
|
77 |
return predicted_ids
|
78 |
|
79 |
-
# Gradio
|
80 |
-
def
|
81 |
-
|
82 |
-
|
83 |
-
audio_data =
|
84 |
-
prediction = predict(audio_data, 16000, config) # Assume 16kHz sample rate
|
85 |
-
label = "Hypernasality Detected" if prediction == 1 else "No Hypernasality Detected"
|
86 |
-
return label
|
87 |
-
|
88 |
-
def gradio_mic_interface(mic_input):
|
89 |
-
# Assuming mic_input is a tuple with the audio data and sample rate
|
90 |
-
if isinstance(mic_input, tuple):
|
91 |
-
audio_data, sample_rate = mic_input
|
92 |
else:
|
93 |
-
#
|
94 |
-
|
95 |
-
|
|
|
96 |
|
97 |
prediction = predict(audio_data, sample_rate, config)
|
98 |
label = "Hypernasality Detected" if prediction == 1 else "No Hypernasality Detected"
|
99 |
return label
|
100 |
|
101 |
-
#
|
102 |
-
demo = gr.
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
fn=gradio_mic_interface,
|
108 |
-
inputs=gr.Audio(type="numpy"), # Use numpy for real-time audio like microphone
|
109 |
-
outputs=gr.Textbox(label="Prediction")
|
110 |
-
)
|
111 |
-
|
112 |
-
file_transcribe = gr.Interface(
|
113 |
-
fn=gradio_file_interface,
|
114 |
-
inputs=gr.Audio(type="filepath"), # Use filepath for uploaded audio files
|
115 |
-
outputs=gr.Textbox(label="Prediction")
|
116 |
-
)
|
117 |
-
|
118 |
-
# Combine interfaces into a tabbed interface
|
119 |
-
gr.TabbedInterface([mic_transcribe, file_transcribe], ["Transcribe Microphone", "Transcribe Audio File"])
|
120 |
|
121 |
-
# Launch the demo
|
122 |
demo.launch(debug=True)
|
|
|
8 |
from huggingface_hub import PyTorchModelHubMixin
|
9 |
import numpy as np
|
10 |
|
11 |
+
# [Your existing code for device setup, config, SpeechInferenceDataset, SpeechClassifier]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
# Prepare data function
|
14 |
def prepare_data(audio_data, sampling_rate, model_checkpoint="openai/whisper-base"):
|
15 |
feature_extractor = WhisperFeatureExtractor.from_pretrained(model_checkpoint)
|
16 |
inputs = feature_extractor(audio_data, sampling_rate=sampling_rate, return_tensors="pt")
|
17 |
input_features = inputs.input_features
|
18 |
+
decoder_input_ids = torch.tensor([[1, 1]])
|
19 |
return input_features.to(device), decoder_input_ids.to(device)
|
20 |
|
21 |
# Prediction function
|
|
|
23 |
input_features, decoder_input_ids = prepare_data(audio_data, sampling_rate, config["encoder"])
|
24 |
|
25 |
model = SpeechClassifier(config).to(device)
|
|
|
26 |
model.load_state_dict(torch.hub.load_state_dict_from_url("https://huggingface.co/jcho02/whisper_cleft/resolve/main/pytorch_model.bin", map_location=device))
|
|
|
27 |
model.eval()
|
28 |
+
|
29 |
with torch.no_grad():
|
30 |
logits = model(input_features, decoder_input_ids)
|
31 |
predicted_ids = int(torch.argmax(logits, dim=-1))
|
32 |
return predicted_ids
|
33 |
|
34 |
+
# Unified Gradio interface function
|
35 |
+
def gradio_interface(audio_input):
|
36 |
+
if isinstance(audio_input, tuple):
|
37 |
+
# If the input is a tuple, it's from the microphone
|
38 |
+
audio_data, sample_rate = audio_input
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
else:
|
40 |
+
# Otherwise, it's an uploaded file
|
41 |
+
with open(audio_input, "rb") as f:
|
42 |
+
audio_data = np.frombuffer(f.read(), np.int16)
|
43 |
+
sample_rate = 16000 # Assume 16kHz sample rate for uploaded files
|
44 |
|
45 |
prediction = predict(audio_data, sample_rate, config)
|
46 |
label = "Hypernasality Detected" if prediction == 1 else "No Hypernasality Detected"
|
47 |
return label
|
48 |
|
49 |
+
# Create Gradio interface
|
50 |
+
demo = gr.Interface(
|
51 |
+
fn=gradio_interface,
|
52 |
+
inputs=gr.Audio(type="numpy", label="Upload or Record Audio"),
|
53 |
+
outputs=gr.Textbox(label="Prediction")
|
54 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
+
# Launch the demo
|
57 |
demo.launch(debug=True)
|